第一篇:八年级数学下册《平行线的判定》教学反思
八年级数学下册《平行线的判定》教学反思
本节的重点是:平行线的判定公理及两个判定定理。一般的定义与第一个判定定理是等价的。都可以做判定的方法。但平行线的定义不好用来判定两直线相交还是不相交。这样,有必要借助两条直线被第三条直线截成的角来判定。因此,这一个判定公理和两个判定定理就显得尤为重要了。它们是判断两直线平行的依据,也为下一节,学习习近平行线的性质打下了基础。
本节内容的难点是:理解由判定公理推出判定定理的证明过程。学生刚刚接触用演绎推理方法证明几何定理或图形的性质,对几何证明的意义还不太理解。有些同学甚至认为从直观图形即可辨认出的性质,没必要再进行证明。这些都使几何的入门教学困难重重。因此,教学中既要有直观的演示和操作,也要有严格推理证明的板书示范。创设情境,不断渗透,使学生初步理解证明的步骤和基本方法,能根据所学知识在括号内填上恰当的公理或定理。
本节课的教学旨在对平行线的三种判定方法的巩固。为此本课教学采取了以下措施:
1.重视复习的作用。
2.围绕重点练习巩固新知。课堂练习安排了三道针对性很强的练习题:第1题既复习了角的平分线又应用了平行线的判定方法2,它也是今后学习判定等腰三角形的一个基本图形。第2题主要是让学生注意逻辑上的区别,而且这是学生容易出现错误判断的一个图形,教师在教学中应特别提醒学生其中的对应关系。第3题意在培养学生体验“有什么”,“根据什么”“得出什么”进行说理的过程。对于第3题教师对于学生出现不同的解题思路要有充分的准备,并积极加以引导。
3.引导学生对学习过程进行总结和反思,并能准确运用平行线的判定方法进行平行线判定的说理,并进一步体会说理的规范表达。
这节课我比较满意的是:
1、对教学内容进行了合理、大胆的重组、加深,通过证明推理题、计算推理题对平行线的判定与性质进行了灵活的运用。注重学生的自己分析,启发学生用不同方法解决问题。探索直线平行的条件,实际上是“平行线的判定”老内容新教法,我的体会最深之一就是怎样让学生自主探索直线平行的条件,这与以前的教学方法完全不同,我感觉这节课成功之处是:引导学生参与整个探索过程使学生真正理解和掌握“同位角”的概念,并能够用自己的语言概括出“同位角相等,两直线平行”这一重要结论。
2、课堂上在与学生的对话和让学生回答问题时,有意识地锻炼学生使用规范性的几何语言。
3、注重由学生从临摹书写到自主书写,锻炼学生的动手能力。
这节课还需改进的是:
1、课堂的应变能力还需提高。对例三的研究时间过长,使后一阶段学生的思考时间较紧,由于时间关系,学生没有充分思考,虽然学生踊跃举手,但毕竟其他学生没有参与的机会。在今后备课中,继续要充分考虑到这一点。让学生在课堂上有更多的自主学习时间,让学生在实践活动中锻炼成长。
2、板书还要精心设计。
3、没有兼顾到学生的差异,如果在分析的环节不同层次的学生能够同伴互助,那么课堂的实效性将更充分体现。
4、认真备课。备知识:熟悉这节课的内容以及有关知识。备学生:既要因材施教更要因生施教,上好一节课不能只看老师在规定的时间完成了教学内容更重要的是学生通过这节课学会了什么,也就是不要看老师按时(45分钟)教了什么而是看学生到时学会了什么。学生学会了知识,掌握了知识才能说老师这节课是成功有效的教学。
反思是为了促进发展,反思是一种有思考的学习,是一种有理性的总结,可以提高教师教学教研的水平。今后每一节普通的课,都是我不断反省、审视自己,不断完善自己基本技能、提高教学水平的载体。
第二篇:八年级数学:平行线的判定
平行线的判定
一、素质教育目标
(一)、知识教学点
1、了解:推理、证明的格式
2、理解:平行线判定公理的形成,第一个判定定理的证法
3、掌握:平行线判定公理和第一个判定定理
4、应用:会用判定公理及第一个判定定理进行简单的推理证
(二)、能力训练点
1、通过模型演示,即“运动——变化”的教学思想方法的运用,培养学生的“观察——
分析”和“归纳——总结”的能力。
2、通过判定公理的得出,培养学生善于从实践中总结规律,认识事物的能力。
3、通过判定定理的推导,培养学生的逻辑推理能力。
(三)、德育渗透点
通过“转化”及“运动——变化”的数学思想方法的运用,让学生认识事物之间是普遍联系相互转化的辩证唯物主义思想。
二、教学重点与难点
重点:在观察实验的基础上进行公理的概括与定理的推导
难点:判定定理的形成过程中逻辑推理及书写格式
三、教学方法
启发示引导发现法
四、教具
多媒体计算机、实物投影仪
五、教学步骤
(一)创设情境,复习引入
利用上节课所学的平行线的定义及垂直的定义,让学生对下列语句做出判断,并说明道理:
1、两条直线不相交,就叫做平行线;(错)
2、如果测得两条直线相交,所成角中的一个角是直角,能判定这两条直线垂直吗?根据什么?(能,根据垂直的定义)
接着让学生思考:垂直的定义可以作为判断两条相交直线是否垂直的方法,那么平行线的定义能否作为判断两条直线是否平行的方法呢?如果能的话,我们用平行线的定义来判断两条直线平行要满足什么条件?(①、在同一个平面内;②、不相交)
给出下面两种两条直线的位置情况,引导学生观察发现,当我们不能用定义来判断两条直线平行时,就要寻找另外一些判定两直线平行的方法。由此引出课题:平行线的判定。
下面我们将以两条直线被第三条直线所截的图形为基础研究判定两直线平行的方法。
(二)探索新知,讲授新课
1、平行线判定公理
(1)动画演示:给出像课本第79页图2-22的两条直线被第三条直线所截的模型,转动直线b,让学生观察,当直线b转动到不同的位置时,从1的大小变化说出这两条直线的位置关系。
在这个过程中,存在着一个平行的位置关系,那么1多大时,这两条线平行呢?也就是说我们若判定两条直线平行,需要寻找角的关系。
(2)进行观察比较,得出初步结论
进一步启发学生,能否由平行线的画法找到判断两直线平行的条件,并让学生回忆平行线的画法,而后用计算机演示作图的过程:(过已知直线a外一点p画a的平行线b)
由刚才的动画演示发现:画平行线仍借助了第三条直线,但是要用与a、b都相交的第三线,根据“三线八角”的名称,在画平行线的过程中,实际上是保证了同位的两个角都是450,从而得出“平行线的判定公理”:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。可以简单说成:同位角相等,两直线平行。
(3)及时巩固,及时反馈。
用变式图形,让学生完成如下两个练习题:
练习1:如图,∠1=150°,∠2=150°,a//b吗?
练习2:如图,∠C=31°,当∠ABE=度时,就能使BE//CD?
2、平行线判定定理
(1)首先以简单的实例表明需要,引出新问题(“内错角相等,两直线平行”的判定):
如图1,如何判断这块玻璃板的上、下两边平行?添加出截线后(图2),比照判定公理图,发现无法定出∠1的同位角,再结合图3,让学生思考、试答。直至发现内错角相等的条件后,让学生说明道理,而后师生共同修改。
然后,用计算机显示出完整的“推理”过程,并作详细的解释,(如图3)如果13,那么a//b吗?
13已知
12等量代换23对顶角相等
a//b同位角相等,两直线平行
得到平行线的判定定理:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。可以简单说成:内错角相等,两直线平行。
(三)知识的应用
练习:课本第80页的1、2、3题
补充习题:
1、错例分析:
已知已知:如图12
AB//CD内错角相等,两直线平行
2、如图,说出下列各对角是哪两条直线被哪一条直线截得的什么角?并指出这些角具有怎样的数量关系时,可以判定哪两条直线平行。
(1)A和ACG
(2)ACF和CED
(3)AED和ACB3、如图,已知AEMDGN,12,试问EF是否平行GH,并说明理由。
(四)归纳总结
1、概括判定两条直线平行方法:,两直线平等判定公理:同位角相等,两直线平等判定定理:内错角相等
2、结合判定定理的证明过程熟悉表达推理证明的要求,初步了解推理证明的格式。
六、布置作业
习题2.2A组第4、5题。
第三篇:《平行线判定》教学反思
《平行线的判定》教学反思
过凤楼初中孟慧芳
本节的重点是:平行线的判定公理及两个判定定理.一般的定义与第一个判定定理是等价的.都可以做判定的方法.但平行线的定义不好用来判定两直线相交还是不相交.这样,有必要借助两条直线被
第三条直线截成的角来判定.因此,这一个判定公理和两个判定定理就显得尤为重要了.它们是判断两直线平行的依据,也为下一节,学习习近平行线的性质打下了基础.
本节内容的难点是:理解由判定公理推出判定定理的证明过程.学生刚刚接触用演绎推理方法证明几何定理或图形的性质,对几何证明的意义还不太理解.有些同学甚至认为从直观图形即可辨认出的性质,没必要再进行证明.这些都使几何的入门教学困难重重.因此,教学中既要有直观的演示和操作,也要有严格推理证明的板书示范.创设情境,不断渗透,使学生初步理解证明的步骤和基本方法,能根据所学知识在括号内填上恰当的公式或定理.
通过上这节课我感觉讲解基本到位,练习难度适中,并基本达到练习的目的,但仍然存在很多不足的地方,如:课堂气氛不理想,没有完全体现学生的主体地位;课堂升华不高;讲解过多;探究学习引导不够,导致占用时间过多,从而使后面的环节有些仓促。如果在这几个方面处理的更好一些的话,效果会更好。
以上我对这节课的一些想法和课后的一些感受,如有不当之处,还请各位老师批评指正,使我在以后的教学中能更加有的放矢、游刃有余。
第四篇:平行线判定教学反思
平行线判定教学反思
在课程设计中,我注重了以下几个方面:
1、突出学生是学习的主体,把问题尽量抛给学生解决。这节课中,我除了作必要的引导和示范外,问题的发现,解决,练习题的讲解尽可能让学生自己完成。
2、形式多样,求实务本。从生活问题引入,发现第一种识别方法,然后解决实际问题;在巩固练习中发现新的问题,激发学生再次探索,形成结论;练习题中注重图形的变化,在图形中为学生设置易错点再及时纠错;用几何画板设计游戏“米奇走迷宫”,在游戏中检验学生运用知识的熟练程度。而每一个环节的设计都是围绕着需要解决的问题展开,不是单纯地追求形式的变化。
5、有意识地对学生渗透“转化”思想;有意识地将数学学习与生活实际联系起来。
本节课对初一学生而言,本是又一个艰难的起步。但这一堂课,学生学得比较轻松,课后作业效果也很好,基本达到“轻负荷,高质量”的教学要求。
一堂课下来,遗憾也有不少。比如一个提问的不到位,上台展示的学生误解了我的意思,竟去书写推证过程(这超出了他们此时的能力范围)。在这堂课上,部分同学没有展示自己的勇气,一方面与教学内容的难度有关,另一方面也与我没能让他们完全放松下来有关。
第五篇:平行线的判定教学反思
《平行线的判定》教学反思
杨军
本节课的做法是,对教学内容进行了合理、大胆的重组、加深,通过证明推理题、计算推理题对平行线的判定进行了灵活的运用。注重学生的自己分析,启发学生用不同方法解决问题。探索直线平行的条件。
在教学过程中,我主要做到:突出学生是学习的主体,把问题尽量抛给学生解决。老师作为学习的组织者,引导者,合作者,做好牵针引线的工作。这节课中,我除了作必要的引导和示范外,问题的发现,解决,练习题的讲解尽可能让学生自己完成。
通过上这节课我感觉讲解基本到位,练习难度适中,并基本达到练习的目的,但仍然存在很多不足的地方,如:课堂气氛不理想,没有完全体现学生的主体地位;课堂升华不高;探究学习引导不够,导致占用时间过多,从而使后面的环节有些仓促。如果在这几个方面处理的更好一些的话,效果会更好。在课程设计中,我注重了以下几个方面:
1、突出学生是学习的主体,把问题尽量抛给学生解决。这节课中,我除了作必要的引导和示范外,问题的发现,解决,练习题的讲解尽可能让学生自己完成。
2、形式多样,求实务本。从生活问题引入,发现第一种识别方法,然后解决实际问题;在巩固练习中发现新的问题,激发学生再次探索,形成结论;练习题中注重图形的变化,在图形中为学生设置易错点再及时纠错;用几何画板设计游戏“米奇走迷宫”,在游戏中检验学生运用知识的熟练程度。而每一个环节的设计都是围绕着需要解决的问题展开,不是单纯地追求形式的变化。
5、有意识地对学生渗透“转化”思想;有意识地将数学学习与生活实际联系起来。
本节课对初一学生而言,本是又一个艰难的起步。但这一堂课,学生学得比较轻松,课后作业效果也很好,基本达到“轻负荷,高质量”的教学要求。一堂课下来,遗憾也有不少。比如一个提问的不到位,上台展示的学生误解了我的意思,竟去书写推证过程(这超出了他们此时的能力范围)。在这堂课上,部分同学没有展示自己的勇气,一方面与教学内容的难度有关,另一方面也与我没能让他们完全放松下来有关。