第一篇:第五章 相交线与平行线 全章知识点归纳及典型题目练习(含答案)
第五章 相交线与平行线
1.两直线相交所成的四个角中,有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为_____________.2.两直线相交所成的四个角中,有一个公共顶点,并且一个角的两边分别是另一个角两边的反向延长线,具有这种关系的两个角,互为__________.对顶角的性质:______ _________.3.两直线相交所成的四个角中,如果有一个角是直角,那么就称这两条直线相互_______.垂线的性质:⑴过一点______________一条直线与已知直线垂直.⑵连接直线外一点与直线上各点的所在线段中,_______________.4.直线外一点到这条直线的垂线段的长度,叫做________________________.5.两条直线被第三条直线所截,构成八个角,在那些没有公共顶点的角中,⑴如果两个角分别在两条直线的同一方,并且都在第三条直线的同侧,具有这种关系的一对角叫做___________ ;⑵如果两个角都在两直线之间,并且分别在第三条直线的两侧,具有这种关系的一对角叫做____________ ;⑶如果两个角都在两直线之间,但它们在第三条直线的同一旁,具有这种关系的一对角叫做_______________.6.在同一平面内,不相交的两条直线互相___________.同一平面内的两条直线的位置关系只有________与_________两种.7.平行公理:经过直线外一点,有且只有一条直线与这条直线______.推论:如果两条直线都与第三条直线平行,那么_____________________.8.平行线的判定:⑴两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单说成:_____________________________________.⑵两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:___________________________.⑶两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单说成:
________________________________________.9.在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线_______.15.如图,已知AB、CD、EF相交于点O,AB⊥CD,OG平分∠AOE,∠FOD=28°,求∠COE、∠AOE、∠AOG的度数.
16.如图,AOC与BOC是邻补角,OD、OE分别是AOC与BOC的平分线,试判断OD与OE的位置关系,并说明理由.
17.如图,AB∥DE,试问∠B、∠E、∠BCE有什么关系.
解:∠B+∠E=∠BCE 过点C作CF∥AB,则B____()又∵AB∥DE,AB∥CF,∴____________()∴∠E=∠____()∴∠B+∠E=∠1+∠2 即∠B+∠E=∠BCE.
21.如图,已知ABC,ADBC于D,E为AB上一点,EFBC于F,DG//BA交CA于G.求证12.22.已知:如图∠1=∠2,∠C=∠D,问∠A与∠F相等吗?试说明理由.
第二篇:平行线知识点归纳及典型题目练习(含答案)
第五章 相交线与平行线
1.两直线相交所成的四个角中,有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为_____________.2.两直线相交所成的四个角中,有一个公共顶点,并且一个角的两边分别是另一个角两边的反向延长线,具有这种关系的两个角,互为__________.对顶角的性质:______ _________.3.两直线相交所成的四个角中,如果有一个角是直角,那么就称这两条直线相互_______.垂线的性质:⑴过一点______________一条直线与已知直线垂直.⑵连接直线外一点与直线上各点的所在线段中,_______________.4.直线外一点到这条直线的垂线段的长度,叫做________________________.5.两条直线被第三条直线所截,构成八个角,在那些没有公共顶点的角中,⑴如果两个角分别在两条直线的同一方,并且都在第三条直线的同侧,具有这种关系的一对角叫做___________ ;⑵如果两个角都在两直线之间,并且分别在第三条直线的两侧,具有这种关系的一对角叫做____________ ;⑶如果两个角都在两直线之间,但它们在第三条直线的同一旁,具有这种关系的一对角叫做_______________.6.在同一平面内,不相交的两条直线互相___________.同一平面内的两条直线的位置关系只有________与_________两种.7.平行公理:经过直线外一点,有且只有一条直线与这条直线______.推论:如果两条直线都与第三条直线平行,那么_____________________.8.平行线的判定:⑴两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单说成:_____________________________________.⑵两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:___________________________.⑶两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单说成:
________________________________________.9.在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线_______.15.如图,已知AB、CD、EF相交于点O,AB⊥CD,OG平分∠AOE,∠FOD=28°,求∠COE、∠AOE、∠AOG的度数.
16.如图,AOC与BOC是邻补角,OD、OE分别是AOC与BOC的平分线,试判断OD与OE的位置关系,并说明理由.
17.如图,AB∥DE,试问∠B、∠E、∠BCE有什么关系.
解:∠B+∠E=∠BCE 过点C作CF∥AB,则B____()又∵AB∥DE,AB∥CF,∴____________()∴∠E=∠____()∴∠B+∠E=∠1+∠2 即∠B+∠E=∠BCE.
21.如图,已知ABC,ADBC于D,E为AB上一点,EFBC于F,DG//BA交CA于G.求证12.22.已知:如图∠1=∠2,∠C=∠D,问∠A与∠F相等吗?试说明理由.
第三篇:初一数学相交线与平行线典型题目练习
第五章 相交线与平行线
1.两直线相交所成的四个角中,有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为_____________.2.两直线相交所成的四个角中,有一个公共顶点,并且一个角的两边分别是另一个角两边的反向延长线,具有这种关系的两个角,互为__________.对顶角的性质:______ _________.3.两直线相交所成的四个角中,如果有一个角是直角,那么就称这两条直线相互_______.垂线的性质:⑴
过一点______________一条直线与已知直线垂直.⑵连接直线外一点与直线上各点的所在线段中,_______________.4.直线外一点到这条直线的垂线段的长度,叫做________________________.5.两条直线被第三条直线所截,构成八个角,在那些没有公共顶点的角中,⑴如果两个角分别在两条直
线的同一方,并且都在第三条直线的同侧,具有这种关系的一对角叫做___________ ;⑵如果两个角都在两直线之间,并且分别在第三条直线的两侧,具有这种关系的一对角叫做____________ ;⑶如果两个角都在两直线之间,但它们在第三条直线的同一旁,具有这种关系的一对角叫做_______________.6.在同一平面内,不相交的两条直线互相___________.同一平面内的两条直线的位置关系只有________
与_________两种.7.平行公理:经过直线外一点,有且只有一条直线与这条直线______.推论:如果两条直线都与第三条直线平行,那么_____________________.8.平行线的判定:⑴两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单说成:
_____________________________________.⑵两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:___________________________.⑶两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单说成:
________________________________________.9.在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线_______.10.平行线的性质:⑴两条平行直线被第三条直线所截,同位角相等.简单说成: __________
_______.⑵两条平行直线被第三条直线所截,内错角相等.简单说成:__________________________________.⑶两条平行直线被第三条直线所截,同旁内角互补.简单说成:____________________________________.11.判断一件事情的语句,叫做_______.命题由________和_________两部分组成.题设是已知事项,结论是
______________________.命题常可以写成“如果„„那么„„”的形式,这时“如果”后接的部分是_____,“那么”后接的部分是_________.如果题设成立,那么结论一定成立.像这样的命题叫做___________.如果题设成立时,不能保证结论一定成立,像这样的命题叫做___________.定理都是真命题.12.把一个图形整体沿某一方向移动,会得到一个新图形,图形的这种移动,叫做平移变换,简称_______.图形平移的方向不一定是水平的.平移的性质:⑴把一个图形整体平移得到的新图形与原图形的形状与大小完全______.⑵新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段_________________.熟悉以下各题:
13.如图,BCAC,CB8cm,AC6cm,AB10cm,那么点
是_____,点B到AC的距离是_______,点A、B两点的距离
到AB的距离是________.
14.设a、b、c为平面上三条不同直线,a)若a//b,b//c,则a与c的位置关系是_________;
b)若ab,bc,则a与c的位置关系是_________;
c)若a//b,bc,则a与c的位置关系是________.
15.如图,已知AB、CD、EF相交于点O,AB⊥CD,OG平分∠AOE,∠FOD=28°,求∠COE、∠AOE、∠AOG的度数.
16.如图,AOC与BOC是邻补角,OD、OE分别是AOC与BOC的平分线,试判断OD与OE的位置关系,并说明理由.
A到BC的距离是_____,点C
17.如图,AB∥DE,试问∠B、∠E、∠BCE有什么关系.
解:∠B+∠E=∠BCE
过点C作CF∥AB,则B____()
又∵AB∥DE,AB∥CF,∴____________()
∴∠E=∠____()
∴∠B+∠E=∠1+∠2
即∠B+∠E=∠BCE.
18.⑴如图,已知∠1=∠2 求证:a∥b.⑵直线a//b,求证:12.
19.阅读理解并在括号内填注理由:
如图,已知AB∥CD,∠1=∠2,试说明EP∥FQ.
证明:∵AB∥CD,∴∠MEB=∠MFD()
又∵∠1=∠2,∴∠MEB-∠1=∠MFD-∠2,即 ∠MEP=∠______
∴EP∥_____.()
20.已知DB∥FG∥EC,A是FG上一点,∠ABD=60°,∠ACE=36°,AP平分∠BAC,求:⑴∠BAC的大小;⑵∠PAG的大小
.21.如图,已知ABC,ADBC于D,E为AB上一点,EFBC于F,DG//BA交CA于G.求证
12.22.已知:如图∠1=∠2,∠C=∠D,问∠A与∠F相等吗?试说明理由.
第四篇:相交线与平行线知识点
第五章相交线与平行线知识点小结
● 相交线
1.相交线:在同一平面内,相交的两条直线。-----特点:有一个交点
2.对顶角----特点:(1)有一个公共定点(2)两边互为反向延长线
-----性质:对顶角相等
-----N条直线相交有N(N—1)对对顶角
3.邻补角----特点:(1)有一个公共定点(2)有一条公共边(3另一边互为反向延长线
-----性质:邻补角互补(和为180°)
-----N条直线相交有2N(N—1)对邻补角
4.垂线:同一平面内,两条直线相交,所成的夹角均为90°时,称这两条直线互相垂直。
---性质:(1)过直线外一点有且只有一条直线与已知直线垂直
(2)垂线段最短
----点到直线的距离:就是点到直线的垂线段的长度。
●平行线
1.平行线:在同一平面内,不相交的两条直线。-----特点:没有交点
2.平行公理:过直线外一点有且只有一条直线与已知直线平行。
推论----如果有一条直线与其它两条直线平行,那么另外两条直线也平行。
3.三线八角
形成方式-------两条直线被第三条直线所截(这两条直线不一定平行)名称-----同位角(4对)内错角(2对)同旁内角(2对)(成对出现)
4.平行线的判定方法----(1)同位角相等,两直线平行
(2)内错角相等,两直线平行
(3)同旁内角互补,两直线平行
(4)如果两条直线分别与第三条直线平行,那么这
两条直线也互相平行。
5.平行线的性质-------(1)两直线平行,同位角相等
(2)两直线平行,内错角相等
(3)两直线平行,同旁内角互补
6.两条平行线间的距离-----就是两条平行线间的垂线段的长度。
● 命题
1.定义:判断一件事情的语句
2.组成----(1)题设(如果……)(2)结论(那么……)
3.分类----(1)真命题(2)假命题
●平移
1.定义:一个图形沿着一定的方向平行移动。
2.特点----(1)平移后图形的形状、大小不变,位置改变
(2)对应点所连接的线段平行(或在同一直线上),对应角相等。
关键知识点:教你用倒推法做证明题
1.已知:如图,BAPAPD180,12。
求证:EF
ABE
F
CPD
CD,2,练习
已知:如图,12,3B,AC//DE,且B、C、D在一条直线上。求证:AE//BD
A
1E2
BCD
第五篇:相交线与平行线知识点归纳
相交线与平行线知识点小结
一、相交线
1.相交线:两条直线相交,有且只有一个交点。(反之,若两条直线只有一个交点,则这两条直线相交。)
2.对顶角----特点:(1)有一个公共定点(2)两边互为反向延长线-----性质:对顶角相等
3.邻补角:两条直线相交,产生邻补角和对顶角的概念。要注意区分互为邻补角与互为补角的异同。
----特点:(1)有一个公共定点(2)有一条公共边(3另一边互为反向延长线
-----性质:邻补角互补(和为180°)
4.垂线:同一平面内,两条直线相交,所成的夹角均为90°时,称这两条直线互相垂直。
垂直是两直线相交的特殊情况。注意:两直线垂直,是互相垂直,即:若线a垂直线b,则线b垂直线a。
垂足:两条互相垂直的直线的交点叫垂足。垂直时,一定要用直角符号表示出来。
---性质:(1)过直线外一点有且只有一条直线与已知直线垂直(2)垂线段最短
----点到直线的距离:就是点到直线的垂线段的长度。
注:①、同角或等角的余角相等;同角或等角的补角相等;等角的对顶角相等。反过来亦成立。
②、表述邻补角、对顶角时,要注意相对性,即“互为”,要讲清谁是谁的邻补角或对顶角。
二、平行线
1.平行线:在同一平面内,不相交的两条直线。-----特点:没有交点,平行线永不相交。
2.平行公理:过直线外一点有且只有一条直线与已知直线平行。
推论----如果有一条直线与其它两条直线平行,那么另外两条直线也平行。
3.三线六面八角:平面内,两条直线被第三条直线所截,将平面分成了六个部分,形成八个角
形成方式-------两条直线被第三条直线所截(这两条直线不一定平行,)
特别注意:① 三角形的三个内角均互为同旁内角;
② 同位角、内错角、同旁内角的称呼并不一定要建立在两条平行的直线被第三条直线所截的前提上才有的,这两条直线也可以不平行,也同样的有同位角、内错角、同旁内角。
名称-----同位角(4对)内错角(2对)同旁内角(2对)(成对出现)
4.平行线的判定方法----(1)同位角相等,两直线平行(2)内错角相等,两直线平行
(3)同旁内角互补,两直线平行(4)如果两条直线分别与第三条直线平行,那么这两条直线也互相平行。一个重要结论:同一平面内,垂直于同一直线的两条直线互相平行。
5.平行线的性质-------(1)两直线平行,同位角相等
(2)两直线平行,内错角相等(3)两直线平行,同旁内角互补
6.两条平行线间的距离-----就是两条平行线间的垂线段的长度。
一个结论:平行线间的距离处处相等。
三、命题
判断一件事情的语句叫命题。命题包括“题设”和“结论”两部分,可写成“如果„„那么„„”的形式。
1.2.3.四、平移
1.2.定义:一个图形沿着一定的方向平行移动。特点----(1)平移后图形的形状、大小不变,位置改变 定义:判断一件事情的语句 组成----(1)题设(如果„„)(2)结论(那么„„)分类----(1)真命题(2)假命题
(2)对应点所连接的线段平行(或在同一直线上),对应角相等。
特征:发生平移时,新图形与原图形的形状、大小完全相同(即:对应线段、对应角均相等); 对应点
之间的线段互相平行(或在同一直线上)且相等,均等于平移距离。
画法:掌握平移方向与平移距离,利用对应点(一般指图形的顶点)之间连线段平行、连线段相等性质
描出原图形顶点的对应点,再依次连接,就形成平移后的新图形。