2018年中考数学专题《四边形》复习试卷含答案解析

时间:2019-05-14 11:37:53下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《2018年中考数学专题《四边形》复习试卷含答案解析》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《2018年中考数学专题《四边形》复习试卷含答案解析》。

第一篇:2018年中考数学专题《四边形》复习试卷含答案解析

2018年中考数学专题复习卷: 四边形

一、选择题

1.下列命题正确的是()

A.对角线相等的四边形是平行四边形 B.对角线相等的四边形是矩形 C.对角线互相垂直的平行四边形是菱形 D.对角线互相垂直且相等的四边形是正方形

2.正十边形的每一个内角的度数为()

A.B.C.D.3.在四边形ABCD中,∠A,∠B,∠C,∠D度数之比为1:2:3:3,则∠B的度数为()

A.30° B.40° C.80° D.120°

4.如图,在▱ABCD中,对角线AC与BD交于点D,若增加一个条件,使▱ABCD成为菱形,下列给出的条件正确的是()

A.AB=AD B.AC=BD C.∠ABC=90° D.∠ABC=∠ADC 5.如图,三角板的直角顶点落在矩形纸片的一边上,若∠1=35°,则∠2的度数是()。

A.35°

B.45°

C.55°

D.65°

6.如图,菱形ABCD的对角线AC、BD的长分别为6和8,则这个菱形的周长是()。

A.20

B.24

C.40

D.48 7.如图,在矩形ACBO中,A(-2,0),B(0,1).若正比例函数y=kx的图像经过点C,则k的取值为()

A.- B.C.-2 D.2 8.如图,在菱形ABCD中,点E,F,G,H分别是边AB,BC,CD和DA的中点,连接EF,FG,GH和HE,若EH=2EF,则下列结论正确的是()

A.AB= EF B.AB=2EF C.AB= 的对角线,相交于点,EF D.AB=,EF 的周长9.如图,菱形 为(),则菱形

A.52 B.48 C.40 D.20 10.如图,将一张含有 大小为()角的三角形纸片的两个顶点叠放在矩形的两条对边上,若,则 的A.B.C.D.11.已知图2是由图1七巧板拼成的数字“0”,己知正方形ABCD的边长为4,则六边形EFGHMN的周长为()

A.B.C.D.12 12.如图,在正方形ABCD外侧,作等边△ADE,AC,BE相交于点F,则∠BFC为()

A.75° B.60° C.55° D.45°

二、填空题

13.四边形的外角和是________度.

14.如图,在边长为2的菱形ABCD中,∠D=60°,点E、F分别在边AB、BC上.将△BEF沿着直线EF翻折,点B恰好与边AD的中点G重合,则BE的长等于________

15.如图,在菱形ABCD中,AC=6cm,BD=8cm,则菱形ABCD的高AE为________cm.

16.如图,在▱ABCD中,AB=2,BC=3,∠BAD=120°,AE平分∠BAD,交BC于点E,过点C作CF∥AE,交AD于点F,则四边形AECF的面积为________.

17.如图,在平面直角坐标系中,菱形ABCD的顶点A在y轴上,且点A坐标为(0,4),BC在x轴正半轴上,点C在B点右侧,反比例函数 BC=k,AE=

(x>0)的图象分别交边AD,CD于E,F,连结BF,已知,CF,且S四边形ABFD=20,则k=________.

18.如图,在正五边形ABCDE中,AC与BE相交于点F,则 AFE的度数为________

19.如图,在平行四边形ABCD中,对角线AC、BD相交于点0,AB=OB,点E、点F分别是OA、OD的中点,连接EF,∠CEF=45°EM⊥BC于点M,EM交BD于点N,FN= ,则线段BC的长为________.20.如图,矩形ABCD中,BC=4,CD=2,以AD为直径的半圆O与BC相切于点E,连接BD,则阴影部分的面积为________.(结果保留π)

三、解答题 21.如图,四边形,,在一条直线上,已知,,连接.求证:是平行四边形.22.如图,等边△AEF的顶点E,F在矩形ABCD的边BC,CD上,且∠CEF=45°。

求证:矩形ABCD是正方形

23.已知:如图,□ABCD的对角线AC、BD相交于点O,过点O的直线分别与AD、BC相交于点E、F,求证:AE=CF.

24.已知四边形ABCD的对角线AC与BD交于点O,给出下列四个论断 ① OA=OC ② AB=CD ③ ∠BAD=∠DCB ④ AD∥BC 请你从中选择两个论断作为条件,以“四边形ABCD为平行四边形”作为结论,完成下列各题:

(1)构造一个真命题,画图并给出证明;

(2)构造一个假命题,举反例加以说明.25.如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE.

(1)求证:△ADE≌△CED;

(2)求证:△DEF是等腰三角形.

26.如图,矩形ABCD中,E是AD的中点,延长CE、BA交于点F,连接AC、DF.

(1)求证:四边形ACDF是平行四边形;

(2)当CF平分∠BCD时,写出BC与CD的数量关系,并说明理由.

答案解析

一、选择题 1.【答案】C

【解析】 :A.改成为:对角线“互相平分”的四边形是平行四边形,故A不符合题意;B.改成为:对角线相等的“平行四边形”是矩形,故B不符合题意; C.正确,故C符合题意;

D.改成为:对角线互相垂直且相等的“平行四边形”是正方形,故D不符合题意; 故答案为:C.【分析】特殊四边形的对角线是比较特殊的,当两条对角线具有如下性质“互相平分,相等,互相垂直”中的一个或二个或三个时,这个四边形或是平行四边形、或是矩形、或是菱形、或是正方形. 2.【答案】D

【解析】 :方法一: 故答案为:D.【分析】方法一:根据内角和公式180°×(n-2)求出内角和,再求每个内角的度数;方法二:根据外角和为360°,求出每个外角的度数,而每个外角与它相邻的内角是互补的,则可求出内角. 3.【答案】C

【解析】 :∵∠A,∠B,∠C,∠D度数之比为1:2:3:3,∴设∠A=x,∠B=2x,∠C=3x,∠D=3x ∴x+2x+3x+3x=360° 解之:x=40° ∴∠B=2×40°=80° 故答案为:C 【分析】根据已知条件设∠A=x,∠B=2x,∠C=3x,∠D=3x,利用四边形的内角和=360°,建立方程,就可求出∠B的度数。4.【答案】A

【解析】 :∵▱ABCD,AB=AD ∴四边形ABCD是菱形,因此A符合题意; B、∵▱ABCD,AC=BD ∴四边形ABCD是矩形,因此B不符合题意;

;方法二:

. C、▱ABCD,∠ABC=90°

∴四边形ABCD是矩形,因此C不符合题意; D、∵▱ABCD,∴∠ABC=∠ADC,因此D不符合题意; 故答案为:A 【分析】根据菱形的判定定理,对各选项逐一判断,即可得出答案。5.【答案】C

【解析】 :如图,依题可得:∠1=35°,∠ACB=90°,∴∠ECA+∠1=90°,∴∠ECA=55°,又∵纸片EFGD为矩形,∴DE∥FG,∴∠2=∠ECA=55°,故答案为:C.【分析】由补角定义结合已知条件得出∠ECA度数,再根据矩形性质和平行线性质得∠2度数.6.【答案】A

【解析】 :设对角线AC、BC交于点O,∵四边形ABCD是菱形,AC=6,BD=8 ∴A0=3,BO=4,AC⊥BC,∴AB=5, ∴C菱形ABCD=4×5=20.故答案为:A.【分析】根据菱形性质可得A0=3,BO=4,AC⊥BC,再由勾股定理可得菱形边长,根据周长公式即可得出答案.7.【答案】A

【解析】 ∵A(-2,0),B(0,1),∴OA=2,OB=1,∵四边形OACB是矩形,∴BC=OA=2,AC=OB=1,∵点C在第二象限,∴C点坐标为(-2,1),∵正比例函数y=kx的图像经过点C,∴-2k=1,∴k=-,故答案为:A.【分析】根据A,B两点的坐标,得出OA=2,OB=1,根据矩形的性质得出BC=OA=2,AC=OB=1,根据C点的位置得出C点的坐标,利用反比例函数图像上的点的坐标特点得出k的值。8.【答案】D

【解析】 连接AC、BD交于点O,∵四边形ABCD是菱形,∴OA= AC,OB= BD,AC⊥BD,∵E、F、G、H分别是边AB、BC、CD和DA的中点,∴EH= BD,EF= AC,∵EH=2EF,∴OA=EF,OB=2OA=2EF,在Rt△AOB中,AB= 故答案为:D.【分析】连接AC、BD交于点O,根据菱形的性质,得出OA= AC,OB= BD,AC⊥BD,根据三角形的中

=

EF,位线定理得出EH= BD,EF= AC,又EH=2EF,故OA=EF,OB=2OA=2EF,在Rt△AOB中,由勾股定理得出AB的长。9.【答案】A

【解析】 :∵菱形ABCD中,BD=24,AC=10,∴OB=12,OA=5,BD⊥AC 在Rt△ABO中,AB= ∴菱形ABCD的周长=4AB=52,故答案为:A.

【分析】根据菱形的对角线互相平分且垂直得出OB=12,OA=5,再根据勾股定理得出AB的长度,从而得出菱形的周长。10.【答案】A

【解析】 :如图,=13,∵矩形的对边平行,∴∠2=∠3=44°,根据三角形外角性质,可得:∠3=∠1+30°,∴∠1=44°﹣30°=14°. 故答案为:A.

【分析】根据矩形的对边平行及平行线的性质,可求出∠3的度数,再根据三角形外角的性质,可求出结果。

11.【答案】B

【解析】 ∵正方形的边长为4 ∴BD=∴MN=FG=GH=EN=∴EF=MH==EN,∴六边形EFGHMN的周长为:EF+EN+GH+MH+MN+FG =++++

+

=

【分析】根据正方形的性质和勾股定理,求出六边形EFGHMN的各边的长,再求出其周长即可。12.【答案】B

【解析】 :∵等边△ADE和正方形ABCD ∴AD=AE=AB,∠BAD=∠ABC=90°,∠DAE=60° ∴∠ABE=∠AEB,∠BAE=90°+60°=150° ∴∠ABE=(180°-150°)÷2=15° ∴∠CBF=90°-15°=75°

∵AC是正方形ABCD的对角线 ∴∠ACB=45°

∴∠BFC=180°-∠ACB-∠CBF=180°-45°-75°=60° 故答案为:B 【分析】根据等边三角形和正方形的性质,可证得AD=AE=AB,∠BAD=∠ABC=90°,∠DAE=60°及∠ACB的度数,可求得∠BAE,再利用三角形内角和定理求出∠CBF的度数,然后根据BFC=180°-∠ACB-∠CBF,就可求出结果。

二、填空题 13.【答案】360

【解析】 :四边形的外角和是360° 故答案为:360°

【分析】根据任意多边形的外角和都是360°,可得出答案。14.【答案】

【解析】 如图,作GH⊥BA交BA的延长线于H,EF交BG于O.

∵四边形ABCD是菱形,∠D=60°,∴△ABC,△ADC度数等边三角形,AB=BC=CD=AD=2,∴∠BAD=120°,∠HAG=60°,∵AG=GD=1,∴AH= AG=,HG=,在Rt△BHG中,BG= ∵△BEO∽△BGH,∴,∴,∴BE=,. 故答案为:

【分析】先根据题意作出图,先根据题目中的条件,解直角三角形AGH,从而求得AH与HG的长度,再解直角三角形BGH求得BG的长度,再由△BEO∽△BGH得到对应线段成比例,进而求得BE的值.15.【答案】

【解析】 :∵四边形ABCD是菱形,∴AC、BD互相垂直平分,∴BO= BD= ×8=4(cm),CO=

AC=

×6=3(cm),在△BCO中,由勾股定理,可得 BC= ∵AE⊥BC,∴AE•BC=AC•BO,∴AE===

(cm),= =5(cm)

即菱形ABCD的高AE为 故答案为: . cm.

【分析】根据菱形的两条对角线互相垂直平分,结合勾股定理求得BC的长度,再利用菱形的面积等于底乘以高,也等于两条对角线的乘积的一半,可以求得AE的长.16.【答案】

【解析】 :过点A作AG⊥BC于点G

∵▱ABCD ∴AD∥BC ∴∠DAE=∠AEB,∠BAD+∠B=180° ∴∠B=180°-120°=60° ∵AE平分∠BAD ∴∠DAE=∠BAE ∴∠BAE=∠AEB ∴AB=BE=2 ∴CE=3-2=1 ∴△ABE是等边三角形 ∴BG=1 AG=

∵CF∥AE,AD∥BC ∴四边形AECF是平行四边形 ∴四边形AECF的面积=CEAG=故答案为:

【分析】根据平行四边形的性质及角平分线的定义,证明AB=BE=2,求出CE的长,再证明△ABE是等边三角形,就可求出BG的长,利用勾股定理求出AG的长,然后证明四边形AECF是平行四边形,利用平行四边形的面积公式,可求解。17.【答案】 【解析】 :过点F作CH⊥x轴

∵菱形ABCD ∴AD∥x轴,AB=BC,AB∥DC ∴∠ABO=∠DCO,S菱形ABCD=4k ∴△ABO∽△FHC ∴

∵点A(0,4)∴OA=4 ∴点E∵AE=CF,∴解之CF=

∴FH=

∵S菱形ABCD=4k,S四边形ABFD=20,∴S△BFC=S菱形ABCD-S四边形ABFD=4k-20=∴

故答案为:【分析】根据菱形的性质得出AD∥x轴,AB=BC,AB∥DC,根据点A得出OA的长,表示出点E的坐标,再根据AE=CF,求出CF的长,证明△ABO∽△FHC,求出FH的长,然后根据S菱形ABCD=4k,S四边形ABFD=20,建立关于k的方程,求出k的值即可。18.【答案】72°

【解析】 ∵五边形ABCDE为正五边形,∴AB=BC=AE,∠ABC=∠BAE=108°,∴∠BAC=∠BCA=∠ABE=∠AEB=(180°−108°)÷2=36°,∴∠AFE=∠BAC+∠ABE=72°,故答案为:72°.

【分析】根据正五边形的性质得出AB=BC=AE,∠ABC=∠BAE=108°,根据等腰三角形的性质及三角形的内角和即可得出∠BAC=∠BCA=∠ABE=∠AEB=(180°−108°)÷2=36°,根据三角形的外角定理即可得出答案。19.【答案】

【解析】 :连接BE,∵平行四边形ABCD ∴AD∥BC,AD=BC ∵AB=OB,点E时OA的中点 ∴BE⊥OA ∵点E、点F分别是OA、OD的中点 ∴EF是△AOD的中位线 ∴

∴∠FEN=∠BMN=90° ∴∠CEF=∠ECB=45° ∴△BEC是等腰直角三角形

∵EM⊥BC即EM是斜边BC边上的高

∴EF=BM 在△FEN和△BMN中

∴△FEN≌△BMN

∴EN=MN即EF=2EN,BC=4EN 222在Rt△FEN中,EN+EF=FN 22∴EN+4EN=10,【分析】根据已知条件先证明BE⊥AC,再证EF是△AOD的中位线,根据∠CEF=45°,可证得△BEC是等腰直角三角形,可证得EF=BM,然后证明△FEN≌△BMN,证得EF=2EN,利用勾股定理求出EN的长,就可求出BC的长。20.【答案】π

【解析】 :连接OE,如图,∵以AD为直径的半圆O与BC相切于点E,∴OD=2,OE⊥BC,易得四边形OECD为正方形,∴由弧DE、线段EC、CD所围成的面积=S正方形OECD﹣S扇形EOD=2﹣ ∴阴影部分的面积= 故答案为:π.

【分析】连接OE,如图,根据题意得出OD=2,OE⊥BC,易得四边形OECD为正方形,由弧DE、线段EC、CD所围成的面积=S正方形OECD﹣S扇形EOD,又图中阴影部分的面积等于矩形面积的一半再减去由弧DE、线段EC、CD所围成的面积即可得出答案。

三、解答题

21.【答案】证明:∵AB∥DE,AC∥DF,∴∠B=∠DEF,∠ACB=∠F. ∵BE=CF,∴BE+CE=CF+CE,∴BC=EF. ×2×4﹣(4﹣π)=π.

=4﹣π,在△ABC和△DEF中,∴△ABC≌△DEF(ASA),∴AB=DE. 又∵AB∥DE,∴四边形ABED是平行四边形

【解析】【分析】根据二直线平行,同位角相等得出∠B=∠DEF,∠ACB=∠F.根据等式性质由BE=CF,得出BC=EF.然后用ASA判断出△ABC≌△DEF,根据全等三角形对应边相等得出AB=DE.根据一组对边平行且相等的四边形是平行四边形得出结论。22.【答案】∵四边形ABCD是矩形,∴∠B=∠D=∠C=90° ∵△AEF是等边三角形 ∴AE=AF,∠AEF=∠AFE=60°,又∠CEF=45°,∴∠CFE=∠CEF=45°,∴∠AFD=∠AEB=180°-45°-60°=75°,∴△AEB≌△AFD(AAS),∴AB=AD, ∴矩形ABCD是正方形。

【解析】【分析】证明矩形ABCD是正方形,根据有一组邻边相等的矩形是正方形,则可证一组邻边相等 23.【答案】证明:∵四边形ABCD是平行四边形,∴AO=CO,AD∥BC,∴∠DAO=∠BCO,在△AEO和△CFO中,∵ , ∴△AEO≌△CFO(ASA), ∴AE=CF.【解析】【分析】根据平行四边形性质可得AO=CO,AD∥BC,根据平行线性质可得∠DAO=∠BCO,再由全等三角形判定ASA得△AEO≌△CFO,由全等三角形性质即可得证.24.【答案】(1)解:①④作为条件时,如图,∵AD∥BC,∴∠ADB=∠DBC,在△AOD和△COB中,∵ , ∴△AOD≌△COB(AAS),∴AD=CB,∴四边形ABCD是平行四边形.(2)解:②④作为条件时,此时一组对边相等,一组对边平行,是等腰梯形.【解析】【分析】(1)如果①②作为条件,则两个三角形中的条件是SSA,不能证到三角形全等,就不能证明四边形是平行四边形;如果①③作为条件,也不能得到四边形是平行四边形;如果②③作为条件,也不能得到四边形是平行四边形;只有①④作为条件时,可根据全等三角形的判定AAS得两个三角形全等,总而得线段相等,再根据一组对边平行且相等的四边形是平行四边形;(2)如果②④作为条件时,根据梯形的定义,可知其为等腰梯形.25.【答案】(1)解:∵四边形ABCD是矩形,∴AD=BC,AB=CD.

由折叠的性质可得:BC=CE,AB=AE,∴AD=CE,AE=CD. 在△ADE和△CED中,∴△ADE≌△CED(SSS)

(2)解:由(1)得△ADE≌△CED,∴∠DEA=∠EDC,即∠DEF=∠EDF,∴EF=DF,∴△DEF是等腰三角形,【解析】【分析】(1)根据矩形的性质得出AD=BC,AB=CD.由折叠的性质可得:BC=CE,AB=AE,从而得出AD=CE,AE=CD.然后利用SSS判断出△ADE≌△CED;

(2)根据全等三角形对应角相等由△ADE≌△CED,得出∠DEA=∠EDC,根据等角对等边即可得出结论。26.【答案】(1)证明:∵四边形ABCD是矩形,∴AB∥CD,∴∠FAE=∠CDE.∵E是AD的中点,∴AE=DE.又∵∠FEA=∠CED,∴△FAE≅△CDE(AAS),∴CD=FA.又∵CD∥AF,∴四边形ACDF是平行四边形.(2)BC=2CD.理由如下:

∵CF平分∠BCD,∴∠DCE=45°.∵∠CDE=90°,∴△CDE是等腰直角三角形,∴CD=DE,∵E是AD的中点,∴AD=2CD.∵AD=BC,∴BC=2CD.【解析】【分析】(1)此题方法不唯一,例如:证明△FAE≅△CDE,则CD=FA,又由CD∥FA即可判定,依据是:有一组对边平行且相等的四边形是平行四边形;(2)由CF平分∠BCD,得∠DCE=45°,则CD=DE,而BC=AD=2DE,从而可证明.

第二篇:2012中考数学四边形经典证明题含答案

1.如图,正方形ABCD和正方形A′OB′C′是全等图形,则当正方形A•′OB′C′绕正方形

ABCD的中心O顺时针旋转的过程中.

(1)四边形OECF的面积如何变化.

(2)若正方形ABCD的面积是4,求四边形OECF的面积.

解:在梯形ABCD中由题设易得到:

△ABD是等腰三角形,且∠ABD=∠CBD=∠ADB=30°.

过点D作DE⊥BC,则DE=1BE=6.

2过点A作AF⊥BD于F,则AB=AD=4.

故S梯形ABCD

2.如图,ABCD中,O是对角线AC的中点,EF⊥AC交CD于E,交AB于F,问四边形AFCE是菱形吗?请说明理由.

解:四边形AFCE是菱形.

∵四边形ABCD是平行四边形.

∴OA=OC,CE∥AF.

∴∠ECO=∠FAO,∠AFO=∠CEO.

∴△EOC≌△FOA,∴CE=AF.

而CE∥AF,∴四边形AFCE是平行四边形.

又∵EF是垂直平分线,∴AE=CE.

∴四边形AFCE是菱形.

3.如图,在△ABC中,∠B=∠C,D是BC的中点,DE⊥AB,DF⊥AC,•垂足分别为E、F.求证:(1)△BDE≌CDF.(2)△ABC是直角三角形时,四边形AEDF是正方形.



19.证明:(1)DEAB,DFACBEDCFD90

BC

△BDE≌△CDF.

(2)由∠A=90°,DE⊥AB,DF⊥AC知:

D是BC的中点BDCD

四边形AEDF是矩形

矩形AEDF是正方形.

BEDCFEDEDF

4.如图,ABCD中,E、F为对角线AC上两点,且AE=CF,问:四边形EBFD是平行四边形吗?为什么?

解:四边形EBFD是平行四边形.在ABCD中,连结BD交AC于点O,则OB=OD,OA=OC.又∵AE=CF,∴OE=OF.

∴四边形EBFD是平行四边形.

5.如图,矩形纸片ABCD中,AB=3 cm,BC=4 cm.现将A,C重合,使纸片

折叠压平,设折痕为EF,试求AF的长和重叠部分△AEF的面积.

【提示】把AF取作△AEF的底,AF边上的高等于AB=3.

由折叠过程知,EF经过矩形的对称中心,FD=BE,AE=CE=AF.由此可以在 △ABE中使用勾股定理求AE,即求得AF的长.

【答案】如图,连结AC,交EF于点O,由折叠过程可知,OA=OC,∴O点为矩形的对称中心.E、F关于O点对称,B、D也关于O点对称. ∴BE=FD,EC=AF,由EC折叠后与EA重合,∴EC=EA.

设AF=x,则BE=FD=AD-AF=4-x,AE=AF=x. 在Rt△ABE中,由勾股定理,得

AB2+BE2=AE2,即32+(4-x)2=x2.

25. 81257

52∴S△AEF=×3×=(cm)

281625752

故AF的长为cm,△AEF的面积为cm.

816

解得x=

6.如图,E是矩形ABCD的边AD上一点,且BE=ED,P是对角线BD上任意一点,PF⊥BE,PG⊥AD,垂足分别为F、G.求证:PF+PG=AB.

【提示】延长GP交BC于H,只要证PH=PF即可,所以只要证∠PBF=∠PBH. 【答案】∵BE=DE,∴∠EBD=∠EDB.

∵在矩形ABCD中,AD∥BC,∴∠DBC=∠ADB,∴∠EBD=∠CBD. 延长GP交BC于H点. ∵PG⊥AD,∴PH⊥BC.

∵PF⊥BE,P是∠EBC的平分线上.

∴PF=PH.

∵四边形ABHG中,∠A=∠ABH=∠BHG=∠HGA=90°. ∴四边形ABHG为矩形,∴AB=GH=GP+PH=GP+PF 故PF+PG=AB.

7.已知:如图,以正方形ABCD的对角线为边作菱形AEFC,B在FE的延长线上.

求证:AE、AF把∠BAC三等分.

【提示】证出∠CAE=30°即可.

【答案】连结BD,交AC于点O,作EG⊥AC,垂足为G点.

∵四边形AEFC为菱形,∴EF∥AC. ∴GE=OB.

∵四边形ABCD为正方形,∴OB⊥AC,∴OB

GE,∵AE=AC,OB=

1BD=AC,2

2∴EG=AE,∴∠EAG=30°. ∴∠BAE=15°.

在菱形AEFC中,AF平分∠EAC,∴∠EAF=∠FAC=

∠EAC=15° 2

∴∠EAB=∠FAE=∠FAC. 即AE、AF将∠BAC三等分.

8.如图,已知M、N两点在正方形ABCD的对角线BD上移动,∠MCN为定角,连结AM、AN,并延长分别交BC、CD于E、F两点,则∠CME与∠CNF在M、N两点移动过程,它们的和是否有变化?证明你的结论.

【提示】BD为正方形ABCD的对称轴,∴∠1=∠3,∠2=∠4,用∠1和∠2表示∠MCN以及∠EMC+∠FNC. 【答案】∵BD为正方形ABCD的对称轴,∴∠1=∠3,∠2=∠4,∴∠EMC=180°-∠1-∠3=180°-2∠1. 同理∠FNC=180°-2∠2.

∴∠EMC+∠FNC=360°-2(∠1+∠2). ∵∠MCN=180°-(∠1+∠2),∴∠EMC+∠FNC总与2∠MCN相等.

因此∠EMC+∠FNC始终为定角,这定角为∠MCN的2倍.

9.如图(1),AB、CD是两条线段,M是AB的中点,S△DMC、S△DAC和S△DBC分别

表示△DMC、△DAC、△DBC的面积.当AB∥CD时,有

S△DMC=

SDACSDBC

(1)如图(2),若图(1)中AB

时,①式是否成立?请说明理由.

(2)如图(3),若图(1)中AB与CD相交于点O时,S△DMC与S△DAC和S△DBC有何种相等关系?证明你的结论.

图(1)图(2)图(3)

【提示】△DAC,△DMC 和△DBC 同底CD,通过它们在CD 边上的高的关系,来确定它们面积的关系. 【答案】(1)当AB时,①式仍成立.

分别过A、M、B作CD的垂线,AE、MN、BF的垂足分别为E、N、F. ∵M为AB的中点,(AE+BF).

211

1∴S△DAC+S△DBC=DC·AE+DC·BF=DC·(AE+BF)=2 S△DMC.

222SSDAC

∴S△DMC=DBC

∴MN=

(2)对于图(3)有S△DMC=

SDBCSDAC

证法一:∵M是AB的中点,S△ADM=S△BDM,S△ACM=S△BCM,S△DBC=S△BDM+S△BCM+S△DMC,① S△DAC=S△ADM+S△ACM-S△DMC②

①-②得:S△DBC-S△DAC=2 S△DMC

∴S△DMC=

SDBCSDAC

证法二:如右图,过A作CD的平行线l,MN⊥l,垂足为N,BE⊥l,垂足为E.设A、M、B到CD的距离分别h1、h0、h2.则MN=h1+h0,BE=h2+h1.

∵AM=BM,∴BE=2 MN.

∴h2+h1=2(h1+h0),h2h

1. 2SSDAC

∴S△DMC=DBC.

∴h0=

10.已知:如图,△ABC中,点O是AC上边上一个动点,过点O作直线MN∥BC,MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.(1)求证EO=FO.

(2)当点O运动到何处时,四边形AECF是矩形?证明你的结论.

【提示】(1)证明OE=OC=OF;

(2)O点的位置首先满足四边形AECF是平行四边形,然后证明它此时也是矩形. 【答案】(1)∵CE平分∠BCA,∴∠BCE=∠ECO. 又MN∥BC,∴∠BCE=∠CEO. ∴∠ECO=∠CEO. ∴OE=OC. 同理OC=OF. ∴OE=OF.

(2)当点O运动到AC边的中点时,四边形AECF是矩形,证明如下: ∵OE=OF,又O是AC的中点,即OA=OC,∴四边形AECF是平行四边形.

∵CE、CF分别平分∠BCA、∠ACD,且∠BCA+∠ACD=180°,∴∠ECF=∠ECO+∠OCF=∴□AECF是矩形.

(∠BCA+∠ACD)=90°. 2

第三篇:2018年中考数学专题复习卷《四边形》含解析

2018年中考数学专题复习卷含解析

四边形

一、选择题

1.下列命题正确的是()A.对角线相等的四边形是平行四边形 B.对角线相等的四边形是矩形 C.对角线互相垂直的平行四边形是菱形 D.对角线互相垂直且相等的四边形是正方形

2.正十边形的每一个内角的度数为()A.B.C.D.3.在四边形ABCD中,∠A,∠B,∠C,∠D度数之比为1:2:3:3,则∠B的度数为()A.30°

B.40°

C.80°

D.120° 4.如图,在▱ABCD中,对角线AC与BD交于点D,若增加一个条件,使▱ABCD成为菱形,下列给出的条件正确的是()

A.AB=AD

B.AC=BD

C.∠ABC=90°

D.∠ABC=∠ADC 5.如图,三角板的直角顶点落在矩形纸片的一边上,若∠1=35°,则∠2的度数是()。

A.35° B.45° C.55° D.65°

2018年中考数学专题复习卷含解析

6.如图,菱形ABCD的对角线AC、BD的长分别为6和8,则这个菱形的周长是()。

A.20 B.24 C.40 D.48 7.如图,在矩形ACBO中,A(-2,0),B(0,1).若正比例函数y=kx的图像经过点C,则k的取值为()

A.-

B.C.-2

D.2 8.如图,在菱形ABCD中,点E,F,G,H分别是边AB,BC,CD和DA的中点,连接EF,FG,GH和HE,若EH=2EF,则下列结论正确的是()

A.AB= EF

B.AB=2EF

C.AB= EF

D.AB=

EF 2

2018年中考数学专题复习卷含解析

9.如图,菱形 为()的对角线,相交于点,,则菱形 的周长

A.52

B.48

C.40

D.20 10.如图,将一张含有 大小为()角的三角形纸片的两个顶点叠放在矩形的两条对边上,若,则 的A.B.C.D.11.已知图2是由图1七巧板拼成的数字“0”,己知正方形ABCD的边长为4,则六边形EFGHMN的周长为()

A.B.C.D.12

2018年中考数学专题复习卷含解析

12.如图,在正方形ABCD外侧,作等边△ADE,AC,BE相交于点F,则∠BFC为()

A.75°

B.60°

C.55°

D.45°

二、填空题

13.四边形的外角和是________度.

14.如图,在边长为2的菱形ABCD中,∠D=60°,点E、F分别在边AB、BC上.将△BEF沿着直线EF翻折,点B恰好与边AD的中点G重合,则BE的长等于________

15.如图,在菱形ABCD中,AC=6cm,BD=8cm,则菱形ABCD的高AE为________cm.

16.如图,在▱ABCD中,AB=2,BC=3,∠BAD=120°,AE平分∠BAD,交BC于点E,过点C作CF∥AE,交AD于点F,则四边形AECF的面积为________.

2018年中考数学专题复习卷含解析

17.如图,在平面直角坐标系中,菱形ABCD的顶点A在y轴上,且点A坐标为(0,4),BC在x轴正半轴上,点C在B点右侧,反比例函数

(x>0)的图象分别交边AD,CD于E,F,连结BF,已知,BC=k,AE= CF,且S四边形ABFD=20,则k=________.

18.如图,在正五边形ABCDE中,AC与BE相交于点F,则 AFE的度数为________

19.如图,在平行四边形ABCD中,对角线AC、BD相交于点0,AB=OB,点E、点F分别是OA、OD的中点,连接EF,∠CEF=45°EM⊥BC于点M,EM交BD于点N,FN= ,则线段BC的长为________.20.如图,矩形ABCD中,BC=4,CD=2,以AD为直径的半圆O与BC相切于点E,连接BD,则阴影部分的面积为________.(结果保留π)

三、解答题

2018年中考数学专题复习卷含解析

21.如图,,在一条直线上,已知 证:四边形 是平行四边形.,,连接.求

22.如图,等边△AEF的顶点E,F在矩形ABCD的边BC,CD上,且∠CEF=45°。

求证:矩形ABCD是正方形

23.已知:如图,□ABCD的对角线AC、BD相交于点O,过点O的直线分别与AD、BC相交于点E、F,求证:AE=CF.

24.已知四边形ABCD的对角线AC与BD交于点O,给出下列四个论断

① OA=OC

② AB=CD

∠BAD=∠DCB

④ AD∥BC 请你从中选择两个论断作为条件,以“四边形ABCD为平行四边形”作为结论,完成下列各题:(1)构造一个真命题,画图并给出证明;(2)构造一个假命题,举反例加以说明.6

2018年中考数学专题复习卷含解析

25.如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE.

(1)求证:△ADE≌△CED;(2)求证:△DEF是等腰三角形.

26.如图,矩形ABCD中,E是AD的中点,延长CE、BA交于点F,连接AC、DF.

(1)求证:四边形ACDF是平行四边形;

(2)当CF平分∠BCD时,写出BC与CD的数量关系,并说明理由.

2018年中考数学专题复习卷含解析

答案解析

一、选择题 1.【答案】C 【解析】 :A.改成为:对角线“互相平分”的四边形是平行四边形,故A不符合题意;B.改成为:对角线相等的“平行四边形”是矩形,故B不符合题意; C.正确,故C符合题意;

D.改成为:对角线互相垂直且相等的“平行四边形”是正方形,故D不符合题意; 故答案为:C.【分析】特殊四边形的对角线是比较特殊的,当两条对角线具有如下性质“互相平分,相等,互相垂直”中的一个或二个或三个时,这个四边形或是平行四边形、或是矩形、或是菱形、或是正方形. 2.【答案】D 【解析】 :方法一: 故答案为:D.【分析】方法一:根据内角和公式180°×(n-2)求出内角和,再求每个内角的度数;方法二:根据外角和为360°,求出每个外角的度数,而每个外角与它相邻的内角是互补的,则可求出内角. 3.【答案】C 【解析】 :∵∠A,∠B,∠C,∠D度数之比为1:2:3:3,∴设∠A=x,∠B=2x,∠C=3x,∠D=3x ∴x+2x+3x+3x=360° 解之:x=40° ∴∠B=2×40°=80° 故答案为:C 【分析】根据已知条件设∠A=x,∠B=2x,∠C=3x,∠D=3x,利用四边形的内角和=360°,建立方程,就可求出∠B的度数。4.【答案】A 【解析】 :∵▱ABCD,AB=AD ∴四边形ABCD是菱形,因此A符合题意; B、∵▱ABCD,AC=BD ∴四边形ABCD是矩形,因此B不符合题意;

;方法二:

2018年中考数学专题复习卷含解析

C、▱ABCD,∠ABC=90°

∴四边形ABCD是矩形,因此C不符合题意; D、∵▱ABCD,∴∠ABC=∠ADC,因此D不符合题意; 故答案为:A 【分析】根据菱形的判定定理,对各选项逐一判断,即可得出答案。5.【答案】C 【解析】 :如图,依题可得:∠1=35°,∠ACB=90°,∴∠ECA+∠1=90°,∴∠ECA=55°,又∵纸片EFGD为矩形,∴DE∥FG,∴∠2=∠ECA=55°,故答案为:C.【分析】由补角定义结合已知条件得出∠ECA度数,再根据矩形性质和平行线性质得∠2度数.6.【答案】A 【解析】 :设对角线AC、BC交于点O,∵四边形ABCD是菱形,AC=6,BD=8 ∴A0=3,BO=4,AC⊥BC,∴AB=5, 9

2018年中考数学专题复习卷含解析

∴C菱形ABCD=4×5=20.故答案为:A.【分析】根据菱形性质可得A0=3,BO=4,AC⊥BC,再由勾股定理可得菱形边长,根据周长公式即可得出答案.7.【答案】A 【解析】 ∵A(-2,0),B(0,1),∴OA=2,OB=1,∵四边形OACB是矩形,∴BC=OA=2,AC=OB=1,∵点C在第二象限,∴C点坐标为(-2,1),∵正比例函数y=kx的图像经过点C,∴-2k=1,∴k=-,故答案为:A.【分析】根据A,B两点的坐标,得出OA=2,OB=1,根据矩形的性质得出BC=OA=2,AC=OB=1,根据C点的位置得出C点的坐标,利用反比例函数图像上的点的坐标特点得出k的值。8.【答案】D 【解析】 连接AC、BD交于点O,∵四边形ABCD是菱形,∴OA= AC,OB= BD,AC⊥BD,∵E、F、G、H分别是边AB、BC、CD和DA的中点,∴EH= BD,EF= AC,∵EH=2EF,∴OA=EF,OB=2OA=2EF,在Rt△AOB中,AB= 故答案为:D.【分析】连接AC、BD交于点O,根据菱形的性质,得出OA=

AC,OB= BD,AC⊥BD,根据三角形的中

=

EF,2018年中考数学专题复习卷含解析

位线定理得出EH= BD,EF= 出AB的长。9.【答案】A

AC,又EH=2EF,故OA=EF,OB=2OA=2EF,在Rt△AOB中,由勾股定理得【解析】 :∵菱形ABCD中,BD=24,AC=10,∴OB=12,OA=5,BD⊥AC 在Rt△ABO中,AB= ∴菱形ABCD的周长=4AB=52,故答案为:A.

【分析】根据菱形的对角线互相平分且垂直得出OB=12,OA=5,再根据勾股定理得出AB的长度,从而得出菱形的周长。10.【答案】A 【解析】 :如图,=13,∵矩形的对边平行,∴∠2=∠3=44°,根据三角形外角性质,可得:∠3=∠1+30°,∴∠1=44°﹣30°=14°. 故答案为:A.

【分析】根据矩形的对边平行及平行线的性质,可求出∠3的度数,再根据三角形外角的性质,可求出结果。

11.【答案】B 【解析】 ∵正方形的边长为4 ∴BD=∴MN=FG=GH=EN=∴EF=MH==EN,∴六边形EFGHMN的周长为:EF+EN+GH+MH+MN+FG =++++

+

2018年中考数学专题复习卷含解析

=

【分析】根据正方形的性质和勾股定理,求出六边形EFGHMN的各边的长,再求出其周长即可。12.【答案】B 【解析】 :∵等边△ADE和正方形ABCD ∴AD=AE=AB,∠BAD=∠ABC=90°,∠DAE=60° ∴∠ABE=∠AEB,∠BAE=90°+60°=150° ∴∠ABE=(180°-150°)÷2=15° ∴∠CBF=90°-15°=75° ∵AC是正方形ABCD的对角线 ∴∠ACB=45°

∴∠BFC=180°-∠ACB-∠CBF=180°-45°-75°=60° 故答案为:B 【分析】根据等边三角形和正方形的性质,可证得AD=AE=AB,∠BAD=∠ABC=90°,∠DAE=60°及∠ACB的度数,可求得∠BAE,再利用三角形内角和定理求出∠CBF的度数,然后根据BFC=180°-∠ACB-∠CBF,就可求出结果。

二、填空题 13.【答案】360 【解析】 :四边形的外角和是360° 故答案为:360°

【分析】根据任意多边形的外角和都是360°,可得出答案。14.【答案】

【解析】 如图,作GH⊥BA交BA的延长线于H,EF交BG于O.

∵四边形ABCD是菱形,∠D=60°,2018年中考数学专题复习卷含解析

∴△ABC,△ADC度数等边三角形,AB=BC=CD=AD=2,∴∠BAD=120°,∠HAG=60°,∵AG=GD=1,∴AH= AG=,HG=,在Rt△BHG中,BG= ∵△BEO∽△BGH,∴,∴,∴BE=,故答案为: .

【分析】先根据题意作出图,先根据题目中的条件,解直角三角形AGH,从而求得AH与HG的长度,再解直角三角形BGH求得BG的长度,再由△BEO∽△BGH得到对应线段成比例,进而求得BE的值.15.【答案】

【解析】 :∵四边形ABCD是菱形,∴AC、BD互相垂直平分,∴BO= BD= ×8=4(cm),CO= AC= ×6=3(cm),在△BCO中,由勾股定理,可得 BC= ∵AE⊥BC,∴AE•BC=AC•BO,∴AE===

(cm),= =5(cm)

即菱形ABCD的高AE为 故答案为: . cm.

【分析】根据菱形的两条对角线互相垂直平分,结合勾股定理求得BC的长度,再利用菱形的面积等于底乘以高,也等于两条对角线的乘积的一半,可以求得AE的长.13

2018年中考数学专题复习卷含解析

16.【答案】

【解析】 :过点A作AG⊥BC于点G

∵▱ABCD ∴AD∥BC ∴∠DAE=∠AEB,∠BAD+∠B=180° ∴∠B=180°-120°=60° ∵AE平分∠BAD ∴∠DAE=∠BAE ∴∠BAE=∠AEB ∴AB=BE=2 ∴CE=3-2=1 ∴△ABE是等边三角形 ∴BG=1 AG=

∵CF∥AE,AD∥BC ∴四边形AECF是平行四边形 ∴四边形AECF的面积=CEAG=故答案为:

【分析】根据平行四边形的性质及角平分线的定义,证明AB=BE=2,求出CE的长,再证明△ABE是等边三角形,就可求出BG的长,利用勾股定理求出AG的长,然后证明四边形AECF是平行四边形,利用平行四边形的面积公式,可求解。17.【答案】

2018年中考数学专题复习卷含解析

【解析】 :过点F作CH⊥x轴

∵菱形ABCD ∴AD∥x轴,AB=BC,AB∥DC ∴∠ABO=∠DCO,S菱形ABCD=4k ∴△ABO∽△FHC ∴

∵点A(0,4)∴OA=4 ∴点E∵AE=CF,∴解之CF=

∴FH=

∵S菱形ABCD=4k,S四边形ABFD=20,∴S△BFC=S菱形ABCD-S四边形ABFD=4k-20=∴

故答案为:【分析】根据菱形的性质得出AD∥x轴,AB=BC,AB∥DC,根据点A得出OA的长,表示出点E的坐标,再根据AE=CF,求出CF的长,证明△ABO∽△FHC,求出FH的长,然后根据S菱形ABCD=4k,S四边形ABFD=20,建立关于k的方程,求出k的值即可。18.【答案】72°

2018年中考数学专题复习卷含解析

【解析】 ∵五边形ABCDE为正五边形,∴AB=BC=AE,∠ABC=∠BAE=108°,∴∠BAC=∠BCA=∠ABE=∠AEB=(180°−108°)÷2=36°,∴∠AFE=∠BAC+∠ABE=72°,故答案为:72°.

【分析】根据正五边形的性质得出AB=BC=AE,∠ABC=∠BAE=108°,根据等腰三角形的性质及三角形的内角和即可得出∠BAC=∠BCA=∠ABE=∠AEB=(180°−108°)÷2=36°,根据三角形的外角定理即可得出答案。19.【答案】

【解析】 :连接BE,∵平行四边形ABCD ∴AD∥BC,AD=BC ∵AB=OB,点E时OA的中点 ∴BE⊥OA ∵点E、点F分别是OA、OD的中点 ∴EF是△AOD的中位线 ∴

∴∠FEN=∠BMN=90° ∴∠CEF=∠ECB=45° ∴△BEC是等腰直角三角形 ∵EM⊥BC即EM是斜边BC边上的高

∴EF=BM 在△FEN和△BMN中

2018年中考数学专题复习卷含解析

∴△FEN≌△BMN ∴EN=MN即EF=2EN,BC=4EN 在Rt△FEN中,EN2+EF2=FN2 ∴EN2+4EN2=10,【分析】根据已知条件先证明BE⊥AC,再证EF是△AOD的中位线,根据∠CEF=45°,可证得△BEC是等腰直角三角形,可证得EF=BM,然后证明△FEN≌△BMN,证得EF=2EN,利用勾股定理求出EN的长,就可求出BC的长。20.【答案】π

【解析】 :连接OE,如图,∵以AD为直径的半圆O与BC相切于点E,∴OD=2,OE⊥BC,易得四边形OECD为正方形,∴由弧DE、线段EC、CD所围成的面积=S正方形OECD﹣S扇形EOD=22﹣ ∴阴影部分的面积= ×2×4﹣(4﹣π)=π. 故答案为:π.

【分析】连接OE,如图,根据题意得出OD=2,OE⊥BC,易得四边形OECD为正方形,由弧DE、线段EC、CD所围成的面积=S正方形OECD﹣S扇形EOD,又图中阴影部分的面积等于矩形面积的一半再减去由弧DE、线段EC、CD所围成的面积即可得出答案。

三、解答题

21.【答案】证明:∵AB∥DE,AC∥DF,∴∠B=∠DEF,∠ACB=∠F. ∵BE=CF,∴BE+CE=CF+CE,=4﹣π,2018年中考数学专题复习卷含解析

∴BC=EF.

在△ABC和△DEF中,∴△ABC≌△DEF(ASA),∴AB=DE. 又∵AB∥DE,∴四边形ABED是平行四边形

【解析】【分析】根据二直线平行,同位角相等得出∠B=∠DEF,∠ACB=∠F.根据等式性质由BE=CF,得出BC=EF.然后用ASA判断出△ABC≌△DEF,根据全等三角形对应边相等得出AB=DE.根据一组对边平行且相等的四边形是平行四边形得出结论。22.【答案】∵四边形ABCD是矩形,∴∠B=∠D=∠C=90° ∵△AEF是等边三角形 ∴AE=AF,∠AEF=∠AFE=60°,又∠CEF=45°,∴∠CFE=∠CEF=45°,∴∠AFD=∠AEB=180°-45°-60°=75°,∴△AEB≌△AFD(AAS),∴AB=AD, ∴矩形ABCD是正方形。

【解析】【分析】证明矩形ABCD是正方形,根据有一组邻边相等的矩形是正方形,则可证一组邻边相等 23.【答案】证明:∵四边形ABCD是平行四边形,∴AO=CO,AD∥BC,∴∠DAO=∠BCO,在△AEO和△CFO中,∵ , ∴△AEO≌△CFO(ASA), ∴AE=CF.【解析】【分析】根据平行四边形性质可得AO=CO,AD∥BC,根据平行线性质可得∠DAO=∠BCO,再由全等三角形判定ASA得△AEO≌△CFO,由全等三角形性质即可得证.18

2018年中考数学专题复习卷含解析

24.【答案】(1)解:①④作为条件时,如图,∵AD∥BC,∴∠ADB=∠DBC,在△AOD和△COB中,∵ , ∴△AOD≌△COB(AAS),∴AD=CB,∴四边形ABCD是平行四边形.(2)解:②④作为条件时,此时一组对边相等,一组对边平行,是等腰梯形.【解析】【分析】(1)如果①②作为条件,则两个三角形中的条件是SSA,不能证到三角形全等,就不能证明四边形是平行四边形;如果①③作为条件,也不能得到四边形是平行四边形;如果②③作为条件,也不能得到四边形是平行四边形;只有①④作为条件时,可根据全等三角形的判定AAS得两个三角形全等,总而得线段相等,再根据一组对边平行且相等的四边形是平行四边形;(2)如果②④作为条件时,根据梯形的定义,可知其为等腰梯形.25.【答案】(1)解:∵四边形ABCD是矩形,∴AD=BC,AB=CD.

由折叠的性质可得:BC=CE,AB=AE,∴AD=CE,AE=CD. 在△ADE和△CED中,∴△ADE≌△CED(SSS)

(2)解:由(1)得△ADE≌△CED,∴∠DEA=∠EDC,即∠DEF=∠EDF,∴EF=DF,∴△DEF是等腰三角形,2018年中考数学专题复习卷含解析

【解析】【分析】(1)根据矩形的性质得出AD=BC,AB=CD.由折叠的性质可得:BC=CE,AB=AE,从而得出AD=CE,AE=CD.然后利用SSS判断出△ADE≌△CED;

(2)根据全等三角形对应角相等由△ADE≌△CED,得出∠DEA=∠EDC,根据等角对等边即可得出结论。26.【答案】(1)证明:∵四边形ABCD是矩形,∴AB∥CD,∴∠FAE=∠CDE.∵E是AD的中点,∴AE=DE.又∵∠FEA=∠CED,∴△FAE≅△CDE(AAS),∴CD=FA.又∵CD∥AF,∴四边形ACDF是平行四边形.(2)BC=2CD.理由如下:

∵CF平分∠BCD,∴∠DCE=45°.∵∠CDE=90°,∴△CDE是等腰直角三角形,∴CD=DE,∵E是AD的中点,∴AD=2CD.∵AD=BC,∴BC=2CD.【解析】【分析】(1)此题方法不唯一,例如:证明△FAE≅△CDE,则CD=FA,又由CD∥FA即可判定,依据是:有一组对边平行且相等的四边形是平行四边形;(2)由CF平分∠BCD,得∠DCE=45°,则CD=DE,而BC=AD=2DE,从而可证明.20

第四篇:2012年中考数学一轮精品复习教案:四边形

初中数学辅导网:http://www.xiexiebang.com/

初中数学辅导网:http://www.xiexiebang.com/

初中数学辅导网:http://www.xiexiebang.com/

BH8-9ECAD初中数学辅导网:http://www.xiexiebang.com/

第五篇:中考数学学业质量检测试卷(含答案解析)

中考数学学业质量检测试卷 一.选择题(共10小题,满分40分,每小题4分)1.|﹣2|=()A.0 B.﹣2 C.2 D.1 2.计算(﹣p)8•(﹣p2)3•[(﹣p)3]2的结果是()A.﹣p20 B.p20 C.﹣p18 D.p18 3.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为()A.8×1012 B.8×1013 C.8×1014 D.0.8×1013 4.从图1的正方体上截去一个三棱锥,得到一个几何体,如图2.从正面看图2的几何体,得到的平面图形是()A. B. C. D. 5.下列因式分解正确的是()A.x2﹣xy+x=x(x﹣y)B.a3+2a2b+ab2=a(a+b)2 C.x2﹣2x+4=(x﹣1)2+3 D.ax2﹣9=a(x+3)(x﹣3)6.一元二次方程2x2﹣2x﹣1=0的较大实数根在下列哪两个相邻的整数之间()A.4,3 B.3,2 C.2,1 D.1,0 7.如图是某班学生外出乘车、步行、骑车的人数条形统计图和扇形统计图,则该班共有学生人数是()A.8 B.10 C.12 D.40 8.如图,△ABC中,BC=4,⊙P与△ABC的边或边的延长线相切.若⊙P半径为2,△ABC的面积为5,则△ABC的周长为()A.8 B.10 C.13 D.14 9.等腰三角形一腰上的高与另一腰所在直线的夹角为30°,则这个等腰三角形的顶角为()A.60°或120° B.30°或150° C.30°或120° D.60° 10.如图,一次函数y1=ax+b图象和反比例函数y2=图象交于A(1,2),B(﹣2,﹣1)两点,若y1<y2,则x的取值范围是()A.x<﹣2 B.x<﹣2或0<x<1 C.x<1 D.﹣2<x<0或x>1 二.填空题(共4小题,满分20分,每小题5分)11.已知a为实数,那么等于   . 12.化简:=   . 13.如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC,若∠ABC=120°,OC=3,则弧BC的长为(结果保留π). 14.如图,在△ABC中,若AB=AC,BC=2BD=6,DE⊥AC,则AC•EC的值是   . 三.解答题(共2小题,满分16分,每小题8分)15.计算:(x﹣2)2﹣(x+3)(x﹣3)16.桑植县为践行“绿水青山就是金山银山”的理念,保护生态环境,某村计划在荒山上植树1200棵,实际每天植树的数量是原计划的1.5倍,结果比原计划提前了5天完成任务,求原计划每天植树多少棵? 四.解答题(共2小题,满分16分,每小题8分)17.在4×4的方格中,△ABC的三个顶点都在格点上.(1)在图1中画出与△ABC成轴对称且与△ABC有公共边的格点三角形(画出一个即可);

(2)在图2、图3中各作一格点D,使得△ACD∽△DCB,并请连结AD、CD、BD. 18.如图,吊车在水平地面上吊起货物时,吊绳BC与地面保持垂直,吊臂AB与水平线的夹角为64°,吊臂底部A距地面1.5m.(计算结果精确到0.1m,参考数据sin64°≈0.90,cos64°≈0.44,tan64°≈2.05)(1)当吊臂底部A与货物的水平距离AC为5m时,吊臂AB的长为   m.(2)如果该吊车吊臂的最大长度AD为20m,那么从地面上吊起货物的最大高度是多少?(吊钩的长度与货物的高度忽略不计)五.解答题(共2小题,满分20分,每小题10分)19.如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=24cm,BC=26cm,动点P从点A出发,以1cm/s的速度向点D运动;

动点Q从点C同时出发,以3cm/s的速度向点B运动.规定当其中一个动点到达端点时,另一个动点也随之停止运动.设运动时间为t,求:

(1)当t为何值时,PQ∥CD?(2)当t为何值时,PQ=CD? 20.矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(6,8),D是OA的中点,点E在AB上,当△CDE的周长最小时,求点E的坐标. 六.解答题(共1小题,满分12分,每小题12分)21.钦州市某中学为了解本校学生阅读教育、科技、体育、艺术四类课外书的喜爱情况,随机抽取了部分学生进行问卷调查,在此次调查中,甲、乙两班分别有2人特别喜爱阅读科技书报,若从这4人中随机抽取2人去参加科普比赛活动,请用列表法或画树状图的方法,求所抽取的2人来自不同班级的概率. 七.解答题(共1小题,满分12分,每小题12分)22.某公司生产的某种产品每件成本为40元,经市场调查整理出如下信息:

①该产品90天内日销售量(m件)与时间(第x天)满足一次函数关系,部分数据如下表:

时间(第x天)1 3 6 10 … 日销售量(m件)198 194 188 180 … ②该产品90天内每天的销售价格与时间(第x天)的关系如下表:

时间(第x天)1≤x<50 50≤x≤90 销售价格(元/件)x+60 100(1)求m关于x的一次函数表达式;

(2)设销售该产品每天利润为y元,请写出y关于x的函数表达式,并求出在90天内该产品哪天的销售利润最大?最大利润是多少?(3)在该产品销售的过程中,共有多少天销售利润不低于5400元,请直接写出结果. 八.解答题(共1小题,满分14分,每小题14分)23.如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想:

图1中,线段PM与PN的数量关系是,位置关系是   ;

(2)探究证明:

把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;

(3)拓展延伸:

把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值. 参考答案与试题解析 一.选择题(共10小题,满分40分,每小题4分)1.【分析】根据绝对值的定义进行填空即可. 【解答】解:|﹣2|=2,故选:C. 【点评】本题考查了绝对值,掌握绝对值的定义是解题的关键. 2.【分析】直接利用积的乘方运算法则以及幂的乘方运算法则计算得出答案. 【解答】解:(﹣p)8•(﹣p2)3•[(﹣p)3]2 =p8•(﹣p6)•p6 =﹣p20. 故选:A. 【点评】此题主要考查了积的乘方运算以及幂的乘方运算,正确掌握相关运算法则是解题关键. 3.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;

当原数的绝对值<1时,n是负数. 【解答】解:80万亿用科学记数法表示为8×1013. 故选:B. 【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值. 4.【分析】根据从正面看得到的图形是主视图,可得答案. 【解答】解:从正面看是,故选:D. 【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图. 5.【分析】直接利用提取公因式法以及公式法分解因式,进而分析即可. 【解答】解:A、x2﹣xy+x=x(x﹣y+1),故此选项错误;

B、a3+2a2b+ab2=a(a+b)2,正确;

C、x2﹣2x+4=(x﹣1)2+3,不是因式分解,故此选项错误;

D、ax2﹣9,无法分解因式,故此选项错误;

故选:B. 【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键. 6.【分析】先求出方程的解,再求出的范围,最后即可得出答案. 【解答】解:解方程2x2﹣2x﹣1=0得:x=,设a是方程2x2﹣2x﹣1=0较大的根,∴a=,∵1<<2,∴2<1+<3,即1<a<. 故选:C. 【点评】本题考查了解一元二次方程,估算无理数的大小的应用,题目是一道比较典型的题目,难度适中. 7.【分析】此题首先根据乘车人数和所占总数的比例,求出总人数. 【解答】解:该班的学生总人数为20÷50%=40(人),故选:D. 【点评】本题考查扇形统计图及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比. 8.【分析】根据三角形的面积公式以及切线长定理即可求出答案. 【解答】解:连接PE、PF、PG,AP,由题意可知:∠PEC=∠PFA=PGA=90°,∴S△PBC=BC•PE=×4×2=4,∴由切线长定理可知:S△PFC+S△PBG=S△PBC=4,∴S四边形AFPG=S△ABC+S△PFC+S△PBG+S△PBC=5+4+4=13,∴由切线长定理可知:S△APG=S四边形AFPG=,∴=×AG•PG,∴AG=,由切线长定理可知:CE=CF,BE=BG,∴△ABC的周长为AC+AB+CE+BE =AC+AB+CF+BG =AF+AG =2AG =13,故选:C. 【点评】本题考查切线长定理,解题的关键是画出辅助线,熟练运用切线长定理,本题属于中等题型. 9.【分析】等腰三角形的高相对于三角形有三种位置关系,三角形内部,三角形的外部,三角形的边上.根据条件可知第三种高在三角形的边上这种情况不成了,因而应分两种情况进行讨论. 【解答】解:当高在三角形内部时(如图1),顶角是60°;

当高在三角形外部时(如图2),顶角是120°. 故选:A. 【点评】此题主要考查等腰三角形的性质,熟记三角形的高相对于三角形的三种位置关系是解题的关键,本题易出现的错误是只是求出60°一种情况,把三角形简单的认为是锐角三角形.因此此题属于易错题. 10.【分析】当y1<y2时,存在不等式ax+b<,不等式的解集即为一次函数图象在反比例函数图象下方时,所对应的自变量x的取值范围. 【解答】解:∵A(1,2),B(﹣2,﹣1),∴由图可得,当y1<y2时,x的取值范围是x<﹣2或0<x<1,故选:B. 【点评】本题主要考查了反比例函数与一次函数交点问题,从函数的角度看,就是寻求使一次函数值大于(或小于)反比例函数值的自变量x的取值范围;

从函数图象的角度看,就是确定直线在双曲线上方(或下方)部分所有的点的横坐标所构成的集合. 二.填空题(共4小题,满分20分,每小题5分)11.【分析】根据非负数的性质,只有a=0时,有意义,可求根式的值. 【解答】解:根据非负数的性质a2≥0,根据二次根式的意义,﹣a2≥0,故只有a=0时,有意义,所以,=0. 故填:0. 【点评】本题考查了算术平方根.注意:平方数和算术平方根都是非负数,这是解答此题的关键. 12.【分析】先计算括号内的加法、将除法转化为乘法,继而约分即可得. 【解答】解:原式=(﹣)• =• =• =x﹣1,故答案为:x﹣1. 【点评】本题主要考查分式的混合运算,解题的关键是熟练掌握分式的混合运算顺序和运算法则. 13.【分析】根据切线的性质得到∠OBA=90°,求出∠OBC,根据三角形内角和定理求出∠BOC=120°,根据弧长公式计算即可. 【解答】解:连接OB,∵AB与⊙O相切于点B,∴∠OBA=90°,∴∠OBC=∠ABC﹣∠ABO=30°,∵OB=OC,∴∠C=∠B=30°,∴∠BOC=120°,∴弧BC的长==2π,故答案为:2π. 【点评】本题考查的是切线的性质、弧长的计算,掌握圆的切线垂直于经过切点的半径、弧长的计算公式是解题的关键. 14.【分析】由等腰三角形的性质得到AD⊥BC,然后根据“两角法”证得△CDE∽△CAD,所以由该相似三角形的对应边成比例求得答案. 【解答】解:如图,∵在△ABC中,若AB=AC,BC=2BD=6,∴AD⊥BC,CD=BD=3. 又DE⊥AC,∴∠CED=∠CDA=90°. ∵∠C=∠C,∴△CDE∽△CAD. ∴=,即AC•EC=CD2=9. 故答案是:9. 【点评】考查了相似三角形的判定与性质,等腰三角形性质.本题关键是要懂得找相似三角形,利用相似三角形的性质求解. 三.解答题(共2小题,满分16分,每小题8分)15.【分析】原式利用完全平方公式,以及平方差公式计算即可求出值. 【解答】解:(x﹣2)2﹣(x+3)(x﹣3)=x2﹣4x+4﹣(x2﹣9)=x2﹣4x+4﹣x2+9 =﹣4x+13. 【点评】此题考查了平方差公式,以及完全平方公式,熟练掌握公式是解本题的关键. 16.【分析】设原计划每天植树x棵,则实际每天植树1.5x棵,根据工作时间=工作总量÷工作效率结合实际比原计划提前了5天完成任务,即可得出关于x的分式方程,解之经检验后即可得出结论. 【解答】解:设原计划每天植树x棵,则实际每天植树1.5x棵,根据题意得:﹣=5,解得:x=80,经检验,x=80是所列分式方程的解,且符合题意. 答:原计划每天植树80棵. 【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键. 四.解答题(共2小题,满分16分,每小题8分)17.【分析】(1)利用相似三角形的性质得出答案;

(2)利用相似三角形的性质得出D点位置. 【解答】解:(1)如图所示:

(2)如图所示:△ACD∽△DCB. 【点评】此题主要考查了相似变换,正确得出对应点位置是解题关键. 18.【分析】(1)根据直角三角形的性质和三角函数解答即可;

(2)过点D作DH⊥地面于H,利用直角三角形的性质和三角函数解答即可. 【解答】解:(1)在Rt△ABC中,∵∠BAC=64°,AC=5m,∴AB=(m);

故答案为:11.4;

(2)过点D作DH⊥地面于H,交水平线于点E,在Rt△ADE中,∵AD=20m,∠DAE=64°,EH=1.5m,∴DE=sin64°×AD≈20×0.9≈18(m),即DH=DE+EH=18+1.5=19.5(m),答:如果该吊车吊臂的最大长度AD为20m,那么从地面上吊起货物的最大高度是19.5m. 【点评】本题考查解直角三角形、锐角三角函数等知识,解题的关键是添加辅助线,构造直角三角形,记住锐角三角函数的定义,属于中考常考题型. 五.解答题(共2小题,满分20分,每小题10分)19.【分析】(1)由当PQ∥CD时,四边形PQCD为平行四边形,可得方程24﹣t=3t,解此方程即可求得答案;

(2)根据PQ=CD,一种情况是:四边形PQCD为平行四边形,可得方程24﹣t=3t,一种情况是:四边形PQCD为等腰梯形,可求得当QC﹣PD=QC﹣EF=QF+EC=2CE,即3t=(24﹣t)+4时,四边形PQCD为等腰梯形,解此方程即可求得答案. 【解答】解:根据题意得:PA=t,CQ=3t,则PD=AD﹣PA=24﹣t,(1)∵AD∥BC,即PD∥CQ,∴当PD=CQ时,四边形PQCD为平行四边形,∴PQ∥CD,即24﹣t=3t,解得:t=6,即当t=6时,PQ∥CD;

(2)若要PQ=CD,分为两种情况:

①当四边形PQCD为平行四边形时,即PD=CQ 24﹣t=3t,解得:t=6,②当四边形PQCD为等腰梯形时,即CQ=PD+2(BC﹣AD)3t=24﹣t+4 解得:t=7,即当t=6或t=7时,PQ=CD. 【点评】此题考查了直角梯形的性质、平行四边形的判定、等腰梯形的判定以及全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想与方程思想的应用. 20.【分析】如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小,先求出直线CH解析式,再求出直线CH与AB的交点即可解决问题. 【解答】解:如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小. ∵D(3,0),A(6,0),∴H(9,0),∴直线CH解析式为y=﹣x+8,∴x=6时,y=,∴点E坐标(6,). 【点评】本题考查矩形的性质、坐标与图形的性质、轴对称﹣最短问题、一次函数等知识,解题的关键是利用轴对称找到点E位置,学会利用一次函数解决交点问题,属于中考常考题型. 六.解答题(共1小题,满分12分,每小题12分)21.【分析】根据题意先画出树状图,得出所有情况数,再根据概率公式即可得出答案. 【解答】解:将两班报名的学生分别记为甲1、甲2、乙1、乙2,树状图如图所示:

由树状图知共有12种等可能结果,其中抽取的2人来自不同班级的有8种结果,所以抽取的2人来自不同班级的概率为=. 【点评】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率. 七.解答题(共1小题,满分12分,每小题12分)22.【分析】(1)根据待定系数法解出一次函数解析式即可;

(2)设利润为y元,则当1≤x<50时,y=﹣2x2+160x+4000;

当50≤x≤90时,y=﹣120x+12000,分别求出各段上的最大值,比较即可得到结论;

(3)根据1≤x<50和50≤x≤90时,由y≥5400求得x的范围,据此可得销售利润不低于5400元的天数. 【解答】解:(1)∵m与x成一次函数,∴设m=kx+b,将x=1,m=198,x=3,m=194代入,得:,解得:. 所以m关于x的一次函数表达式为m=﹣2x+200;

(2)设销售该产品每天利润为y元,y关于x的函数表达式为:

y=,当1≤x<50时,y=﹣2x2+160x+4000=﹣2(x﹣40)2+7200,∵﹣2<0,∴当x=40时,y有最大值,最大值是7200;

当50≤x≤90时,y=﹣120x+12000,∵﹣120<0,∴y随x增大而减小,即当x=50时,y的值最大,最大值是6000;

综上所述,当x=40时,y的值最大,最大值是7200,即在90天内该产品第40天的销售利润最大,最大利润是7200元;

(3)当1≤x<50时,由y≥5400可得﹣2x2+160x+4000≥5400,解得:10≤x≤70,∵1≤x<50,∴10≤x<50;

当50≤x≤90时,由y≥5400可得﹣120x+12000≥5400,解得:x≤55,∵50≤x≤90,∴50≤x≤55,综上,10≤x≤55,故在该产品销售的过程中,共有46天销售利润不低于5400元. 【点评】本题主要考查二次函数的应用,解题的关键是理解题意根据销售问题中总利润的相等关系,结合x的取值范围列出分段函数解析式及二次函数和一次函数的性质. 八.解答题(共1小题,满分14分,每小题14分)23.【分析】(1)利用三角形的中位线得出PM=CE,PN=BD,进而判断出BD=CE,即可得出结论,再利用三角形的中位线得出PM∥CE得出∠DPM=∠DCA,最后用互余即可得出结论;

(2)先判断出△ABD≌△ACE,得出BD=CE,同(1)的方法得出PM=BD,PN=BD,即可得出PM=PN,同(1)的方法即可得出结论;

(3)方法1:先判断出MN最大时,△PMN的面积最大,进而求出AN,AM,即可得出MN最大=AM+AN,最后用面积公式即可得出结论.方法2:先判断出BD最大时,△PMN的面积最大,而BD最大是AB+AD=14,即可得出结论. 【解答】解:(1)∵点P,N是BC,CD的中点,∴PN∥BD,PN=BD,∵点P,M是CD,DE的中点,∴PM∥CE,PM=CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∵PN∥BD,∴∠DPN=∠ADC,∵PM∥CE,∴∠DPM=∠DCA,∵∠BAC=90°,∴∠ADC+∠ACD=90°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,∴PM⊥PN,故答案为:PM=PN,PM⊥PN;

(2)△PMN是等腰直角三角形. 由旋转知,∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,利用三角形的中位线得,PN=BD,PM=CE,∴PM=PN,∴△PMN是等腰三角形,同(1)的方法得,PM∥CE,∴∠DPM=∠DCE,同(1)的方法得,PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC =∠BCE+∠DBC=∠ACB+∠ACE+∠DBC =∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=90°,∴∠ACB+∠ABC=90°,∴∠MPN=90°,∴△PMN是等腰直角三角形;

(3)方法1:如图2,同(2)的方法得,△PMN是等腰直角三角形,∴MN最大时,△PMN的面积最大,∴DE∥BC且DE在顶点A上面,∴MN最大=AM+AN,连接AM,AN,在△ADE中,AD=AE=4,∠DAE=90°,∴AM=2,在Rt△ABC中,AB=AC=10,AN=5,∴MN最大=2+5=7,∴S△PMN最大=PM2=×MN2=×(7)2=. 方法2:由(2)知,△PMN是等腰直角三角形,PM=PN=BD,∴PM最大时,△PMN面积最大,∴点D在BA的延长线上,∴BD=AB+AD=14,∴PM=7,∴S△PMN最大=PM2=×72=. 【点评】此题属于几何变换综合题,主要考查了三角形的中位线定理,等腰直角三角形的判定和性质,全等三角形的判断和性质,直角三角形的性质的综合运用;

解(1)的关键是判断出PM=CE,PN=BD,解(2)的关键是判断出△ABD≌△ACE,解(3)的关键是判断出MN最大时,△PMN的面积最大.

下载2018年中考数学专题《四边形》复习试卷含答案解析word格式文档
下载2018年中考数学专题《四边形》复习试卷含答案解析.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    中考数学考前适应性模拟检测试卷(含答案解析)[5篇范文]

    2020年中考数学考前适应性模拟检测试卷 一.选择题(共10小题,满分30分,每小题3分) 1.下列说法正确的是 A.负数没有倒数 B.正数的倒数比自身小 C.任何有理数都有倒数 D.﹣1的倒数是﹣1 2.如......

    「中考数学」四边形:真题专项突破冲刺提分60题(含答案解析)

    【中考数学】四边形:精选真题专项打破冲刺提分60题(含答案解析)一、解答题(共60小题)1.(2014•遵义)如图,▱ABCD中,BD⊥AD,∠A=45°,E、F分别是AB,CD上的点,且BE=DF,连接EF交BD于O.(1)求证:BO=D......

    2011年重庆市中考化学试卷(含答案和解析)(精选5篇)

    重庆市2011年初中毕业暨高中招生考试 化学 本卷共四个大题,满分70分,与物理共用120分钟。 可能用到的相对原子质量:H-1 C-12 O-16 C1-35.5 Ca-40 一、选择题(本大题包括15个小题,......

    2017年河南省中考语文试卷含答案及详细解析

    2017年河南省中考语文试卷 一、积累与运用(共28分) 1.(2分)(2017•河南)下列词语中加点的字,每对读音都不同的一项是 A.踏实/踏青奢靡/风靡一时 低声悄语/悄然泪下 ......B.孵化/浮雕鞠躬/笑......

    中考模拟试卷(含答案)

    中考语文模拟试卷 一、积累与运用(36分) 1、古诗文名句默写(10分) (1)非学无以广才, 。(诸葛亮《诫子书》) (2) ,乌蒙磅礴走泥丸。(毛泽东《长征》) (3)海内存知己, 。(王勃《送杜少府之任蜀川......

    2021年中考数学:几何专题复习之特殊四边形专题(较难)

    2021年中考数学:几何专题复习之特殊四边形专题(较难)一.选择题1.如图,在▱ABCD中,AB=6,AD=8,将△ACD沿对角线AC折叠得到△ACE,AE与BC交于点F,则下列说法正确的是(  )A.当∠B=90°时,则EF=2B.当......

    中考数学复习圆精讲(含答案)

    圆知识点一、圆的定义及有关概念[来源:学&科&网Z&X&X&K]1、圆的定义:平面内到定点的距离等于定长的所有点组成的图形叫做圆。2、有关概念:弦、直径;弧、等弧、优弧、劣弧、半......

    八年级上期期末数学复习试卷(含答案)

    亿库教育网http://www.xiexiebang.com 百万教学资源免费下载 八年级上期期末数学复习试卷 一、选择题: 1.要画一个面积为20cm2的长方形,其长为xcm,宽为ycm,在这一变化过程中,常......