中考第一轮复习:简单的几何证明(四边形)

时间:2019-05-13 08:38:04下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《中考第一轮复习:简单的几何证明(四边形)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《中考第一轮复习:简单的几何证明(四边形)》。

第一篇:中考第一轮复习:简单的几何证明(四边形)

2012年初三数学中考备考复习资料

5几何证明(四边形2)专题

学校:___________姓名:______________评价:_________________ 【知识归纳】

观察下图,回答下列问题

直角梯形

菱形

思考1——特殊四边形性质的角度

1、对角线互相平分的特殊四边形有______________________________________________

2、对角线相等特殊四边形的有__________________________________________________

3、对角线互相垂直的特殊四边形有______________________________________________

【巩固训练】

1、如图,在□ABCD中,E,F为BC上两点,且BE=CF,AF=DE.求证:△ABF≌△DCE;

A

D

B E F C/

42、如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连结BF。(1)求证:BD=CD;

(2)如果AB=AC,试判断四边形AFBD的形状,并证明你的结论。

3、如图,在四边形ABCD中,点E是线段AD上的任意一点(E 与A,D不重合),G,F,H

分别是BE,BC,CE的中点.(1)证明四边形EGFH是平行四边形;

(2)在(1)的条件下,若EFBC,且EF1BC,证明平行四边形EGFH 是正方形.

B

E

H

D

F4、已知,如图,梯形ABCD中,AD∥BC,∠B=60°,∠C=30°,AD=2,BC=8.求梯形两腰AB、CD的长.2 /

4B

C

【基础检测】

一、选择题(每小题5分,共25分)

1、下列事件中是必然事件的是()A.打开电视机,正在播广告.B.从一个只装有白球的缸里摸出一个球,摸出的球是白球.C.从一定高度落下的图钉,落地后钉尖朝上.D.今年10月1日,厦门市的天气一定是晴天.2、如图1,在直角△ABC中,∠C=90°,若AB=5,AC=4,则sin∠B=()343

4D.55433、“比a的1的数”用代数式表示是()

53+1B.a+1C.aD.-

123224、已知:如图2,在△ABC中,∠ADE=∠C,则下列等式成立的是()ADAEAEAD

B.=

ABACBCBDDEAEDEAD

C.=D.=

BCABBCAB5、已知:a+b=m,ab=-4, 化简(a-2)(b-2)的结果是()A.6B.2 m-8C.2 mD.-2 m

二、填空题(本大题共10小题,每小题4分,共40分)

6、-3的相反数是.7、分解因式:5x+5y=.8、如图3,已知:DE∥BC,∠ABC=50°,则∠ADE=度.9、2÷2=.10、某班有49位学生,其中有23位女生.在一次活动中,班上每一位学生的名字都各自写在一张小纸条上,放入一盒中搅匀.如果老师闭上眼睛从盒中随机抽出一张纸条,那么抽到写有女生名字纸条的概率是.11、如图4,⊙O的直径AB垂直于弦CD,垂足为E,若∠COD=120°,OE=3厘米,则OD=厘米.12、如果甲邀请乙玩一个同时抛掷两枚硬币的游戏,游戏的规则如下:同时抛出两个正面,乙得1分;抛出其他结果,甲得1分.谁先累积到10分,谁就获胜.你认为(填“甲”或“乙”)获胜的可能性更大.1113、一根蜡烛在凸透镜下成一实像,物距u,像距v和凸透镜的焦距f满足关系式:图

4B

1C

ADB

EC

3uv

f

若f=6厘米,v=8厘米,则物距u=厘米.14、已知函数y-3x-1-2,则x的取值范围是.若x是整数,则此函数的最小值是./

415、已知平面直角坐标系上的三个点O(0,0)、A(-1,1)、B(-1,0),将△ABO绕点O按顺时针方向旋转135°,则点A、B的对应点A1、B1的坐标分别是A(),B1(,).1,三、解答题

16、先化简,再求值:1212x1,其中x

1x1x1x2x

17、我们知道,当一条直线与一个圆有两个公共点时,称这条直线与这个圆相交.类似地,我们定义:当一条直线与一个正方形有两个公共点时,称这条直线与这个正方形相交. 如图,在平面直角坐标系中,正方形OABC的顶点为O(0,0)、A(1,0)、B(1,1)、C(0,1).15

(1)判断直线y=+与正方形OABC是否相交,并说明理由;

(2)设d是点O到直线y3x+b的距离,若直线y3x+b与正方形OABC相交,求

d的取值范围./ 4

第二篇:四边形几何证明综合应用

1.已知:如图,E、F在ABCD的对角线BD上,BF=DE,B

求证:四边形AECF是平行四边形.

C

2.如图,P是边长为1的正方形ABCD对角线AC上一动点(P与A、C不重合),点E在射线BC上,且PE=PB.(1)求证:① PE=PD ; ② PE⊥PD;(2)设AP=x, △PBE的面积为y.① 求出y关于x的函数关系式,并写出x的取值范围; ② 当x取何值时,y取得最大值,并求出这个最大值.B

E

D

3.如图,在四边形ABCD中,点E是线段AD上的任意一点(E 与A,D不重合),G,F,H分别是BE,BC,CE的中点.

(1)证明四边形EGFH是平行四边形;(2)在(1)的条件下,若EFBC,且EF证明平行四边形EGFH 是正方形.

E

H

D

BC,2B

F

C

4.如图,在直角梯形ABCD中,AD//BC,∠B=900,AB=8cm,AD=24cm,BC=26cm,动点P从点A开始沿AD边向点D以1cm/s的速度运动,动点Q从点C开始沿CB边向点B以3cm/s的速度运动.点P、Q分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动.设运动时间为t秒.求:

(1).t为何值时,四边形PQCD为平行四边形?(2).t为何值时,四边形ABQP为矩形?

5.如图,在矩形ABCD中,AE平分∠BAD,∠1=15°.(1)求∠2的度数.(2)求证:BO=BE.

A

B

C

6.已知:如图,D是△ABC的边BC上的中点,DE⊥AC,DF⊥AB,垂足分别为E、F,且BF=CE.当∠A满足什么条件时,四边形AFDE是正方形?请证明你的结论.

7.如图,在平行四边形ABCD中,O是对角线AC的中点,过点O作AC的垂线与边AD、BC分别交于E、F.求证:四边形AFCE是菱形.

8.已知:如图,在正方形ABCD中,AC、BD交于点O,延长CB到点F,使

BF=BC,连结DF交AB于E.求证:OE=()BF(在括号中填人一个适当的常数,再证明).

9.(12分)已知:如图,在△ABC中,AB=AC,若将△ABC绕点C顺时针旋转180°得

到△FEC.

(1)试猜想线段AE与BF有何关系?说明理由.

(2)若△ABC的面积为3 cm2,请求四边形ABFE的面积.(3)当∠ACB为多少度时,四边形ABFE为矩形?说明理由.

10.已知:等腰梯形ABCD中,AD∥BC,AB=CD,对角线AC、BD相交与点O。求证:OB=OC11、如图,△ABC中,AD是角平分线,DE∥AC,求证:四边形AEDF是菱形。

12、如图所示,将矩形ABCD沿着直线BD折叠,使点C

′′于E,AD=8,AB=4,求△BED的面积。

13、如图,正方形ABCD的边长为1,G为CD边上的一个动点(点G

与C、D

不重合),以CG为一边向正方形ABCD外作正方形GCEF,连结DE交BG的延长线于H。

(1)求证:①△BCG≌△DCE。②BH⊥DE.(2)试问当点G运动到什么位置时,BH垂直平分DE?请说明理由。

14.四边形ABCD是平行四边形,AB=10,AD=8,AC⊥和□ABCD的面积。

15.□ABCD的对角线AC,BD相交于点O,△OAB是等边三角形,且AB=4,求□ABCD的面积。(10分)

16.AE//BF,AC平分∠BAD,且交BF于点C,BD平分∠ABC,且交AE于点D,连接CD.求证:四边形ABCD是菱形。

17.等腰梯形ABCD中,它的周长为29,AD//BC,∠1=∠C,AD=5,△ABE的周长是多少?

18.直线l是线段AB的垂直平分线,C是直线l上一动点,DE⊥AC于点E,DF⊥BC于点F。(1)求证:CE = CF;

(2)当C运动到什么位置时,四边形CEDF成为正方形?请说明理由。(11分)

19.梯形ABCD中,AD//CB,AD=2,BC=8,AC=6,BD=8,求梯形ABCD的面积。

20.四边形ABCD是矩形,AB=4,AD=3,把矩形沿直线AC折叠,点B落在点E处,连接DE.(1)求证:四边形ACED是等腰梯形;(2)求梯形ACED的周长和面积。

21、如图,在平行四边形ABCD中,E、A、C、F四点在一条直线,且AE=CF 求证:DE=BF

E22、在等腰梯形ABCD中,AD∥BC,M、N分别为AD、BC的中点,E、F分别为BM、CM的中点。

(1)求证:四边形MENF是菱形(2)若四边形MENF是正方形,则梯形ABCD的高与底边BC有何关系?

23、平行四边形的周长为20cm,AE⊥BC于E,AF⊥CD于F,AE=2 cm,AF=3 cm,求

平行四边形ABCD的面积。(5分)

24、如图,菱形ABCD中,BE⊥AD,BF⊥CD,E、F为垂足,AE=ED,求∠EBF的度数。

(5分)

25、在梯形ABCD中,DC∥AB,E是DC延长线上一点,BE∥AD,BE=BC,∠E=50o,试求梯形ABCD的各角的度数。请问此时梯形ABCD是等腰梯形吗?为什么?(5分)

26、如图,已知在直角梯形ABCD中,BC∥AD,AB⊥AD,底AD=6,斜腰CD的垂直平分线EF交AD于G,交BA的延长线于F,连结CG,且∠D=45o,(1)试说明ABCG为矩形;(2)求BF的长度。(6分)

27、已知:如图,梯形ABCD中,AD∥BC,∠B=60°,∠C=30°,AD=2,BC=8。求:梯形两腰AB、CD的长。

B

第15题图形

A

D

C28、已知:如图,四边形ABCD是平行四边形,DE//AC,交BC的延长线于点E,EF⊥AB于点F,求证:AD=CF。

B29、如图已知△ABC,过顶点A作∠B、∠C的平分线的垂线,AF⊥BF于F,AE⊥CE于E.

求证:EF//BC.

30、四边形ABCD、DEFG都是正方形,连接AE、CG.(1)求证:AE=CG;

(2)观察图形,猜想AE与CG之间的位置关系,并证明你的猜想.

31、已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E,(1)求证:四边形ADCE为矩形;

(2)当△ABC满足什么条件时,四边形ADCE是一个正方形? 并给出证明.

N32、等腰梯形ABCD中,AD∥BC,AB=CD,DE⊥BC于E,AE=BE.BF⊥AE于F,请你

判断线段BF与图中的哪条线段相等,先写出你的猜想,再加以证明.(6分)(1)猜想:BF=______.

(2)证明:

33、矩形ABCD中,O是AC与BD的交点,过O点的直EF与AB、CD的延长线分别交于E、F。

(1)求证:△BOE≌△DOF;

(2)EF

与AC

满足么条件时,四边形AECF

第三篇:2021年中考数学:几何专题复习之特殊四边形专题(较难)

2021年中考数学:几何专题复习之

特殊四边形专题(较难)

一.选择题

1.如图,在▱ABCD中,AB=6,AD=8,将△ACD沿对角线AC折叠得到△ACE,AE与BC交于点F,则下列说法正确的是()

A.当∠B=90°时,则EF=2

B.当F恰好为BC的中点时,则▱ABCD的面积为12

C.在折叠的过程中,△ABF的周长有可能是△CEF的2倍

D.当AE⊥BC时,连接BE,四边形ABEC是菱形

2.如图,E为正方形ABCD边CD上一点,连接BE,AC.若EC=1,2∠ABE=3∠ACB,则AB=()

A.

B.

C.

D.

3.如图,点A、B在函数y=(x>0,k>0且k是常数)的图象上,且点A在点B的左侧过点A作AM⊥x轴,垂足为M,过点B作BN⊥y轴,垂足为N,AM与BN的交点为C,连接AB、MN.若△CMN和△ABC的面积分别为1和4,则k的值为()

A.4

B.4

C.

D.6

4.如图,分别以Rt△ABC的斜边AB,直角边AC为边向外作等边△ABD和△ACE,F为AB的中点,DE,AB相交于点G.连接EF,若∠BAC=30°,下列结论:①EF⊥AC;②四边形ADFE为菱形;③AD=4AG;④△DBF≌△EFA.则正确结论的序号是()

A.①③

B.②④

C.①③④

D.②③④

5.如图,在正方形ABCD中,AB=4,E为边BC的中点,P为BD的一个动点,则PC+PE的最小值是()

A.

B.

C.

D.

6.已知点M是平行四边形ABCD内一点(不含边界),设∠MAD=θ1,∠MBA=θ2,∠MCB=θ3,∠MDC=θ4.若∠AMB=110°,∠CMD=90°,∠BCD=60°.则()

A.θ1+θ4﹣θ2﹣θ3=10°

B.θ2+θ4﹣θ1﹣θ3=30°

C.θ1+θ4﹣θ2﹣θ3=30°

D.θ2+θ4﹣θ1﹣θ3=40°

7.如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于E、F,连接PB、PD.若AE=2,PF=8.则图中阴影部分的面积为()

A.10

B.12

C.16

D.18

8.矩形ABCD与矩形CEFG如图放置,点B、C、E共线,点C、D、G共线,连接AF,取AF的中点H,连接GH.若BC=EF=3,CD=CE=1,则GH=()

A.

B.

C.2

D.

二.填空题

9.如图,▱ABCD的面积为32,E,F分别为AB、AD的中点,则△CEF的面积为

10.如图,正方形ABCD的边长为4,E为边AD上一动点,连接BE,CE,以CE为边向右侧作正方形CEFG.

(1)若BE=5,则正方形CEFG的面积为;

(2)连接DF,DG,则△DFG面积的最小值为

11.如图,菱形ABCD的边长为2,点E,F分别是边AD,CD上的两个动点,且满足AE+CF=BD=2,设△BEF的面积为S,则S的取值范围是

12.如图,在四边形ABCD中,AB=2,CD=6,E,F,M分别为边BC,AD和对角线BD的中点.连接EF,FM,则FM=

;线段EF的最大值为

13.如图,在矩形ABCD中,AB=5,AD=7,连接BD,把线段BD绕点D逆时针方向旋转90°得线段DQ.在BC边上取点P,使BP=2,连接PQ交DC延长线于点E,则线段DE长为

14.在三角形ABC中,点D,E,F分别是BC,AB,AC的中点,AH⊥BC于点H,若∠DEF=50°,则∠CFH=

15.如图是一张三角形纸片,其中∠C=90°,∠A=30°,BC=3,从纸片上裁出一矩形,要求裁出的矩形的四个顶点都在三角形的边上,其面积为2,则该矩形周长的最小值=

16.已知:如图,在△ABC中,∠ACB=60°,AC=3,BC=5,分别以AB,AC为边向外侧作等边三角形ABM和等边三角形ACN,连接MN,D,E,F,G分别是MB,BC,CN,MN的中点,则四边形DEFG的周长为

17.如图的七边形ABCDEFG中,AB、ED的延长线相交于O点.若图中∠1、∠2、∠3、∠4的外角的角度和为220°,则∠BOD的度数为

18.直线y=a分别与直线y=x和双曲线y=交于D、A两点,过点A、D分别作x轴的垂线段,垂足为点B,C.若四边形ABCD是正方形,则a的值为

19.如图,矩形ABCD中,E为CD上一点,F为AB上一点,分别沿AE,CF折叠,D,B两点刚好都落在矩形内一点P,且∠APC=120°,则AB:AD=

20.如图,矩形ABCD中,点G是AD的中点,GE⊥CG交AB于E,BE=BC,连接CE交BG于F,则∠BFC等于

三.解答题

21.如图①,已知正方形ABCD中,E,F分别是边AD,CD上的点(点E,F不与端点重合),且AE=DF,BE,AF交于点P,过点C作CH⊥BE交BE于点H.

(1)求证:AF∥CH.

(2)若AB=2,AE=2,试求线段PH的长.

(3)如图②,连接CP并延长交AD于点Q,若点H是BP的中点,试求的值.

22.如图,在矩形ABCD中,已知AB=4,BC=2,E为AB的中点,设点P是∠DAB平分线上的一个动点(不与点A重合).

(1)证明:PD=PE.

(2)连接PC,求PC的最小值.

(3)设点O是矩形ABCD的对称中心,是否存在点P,使∠DPO=90°?若存在,请直接写出AP的长.

23.当k值相同时,我们把正比例函数y=x与反比例函数y=叫做“关联函数”.

(1)如图,若k>0,这两个函数图象的交点分别为A,B,求点A,B的坐标(用k表示);

(2)若k=1,点P是函数y=在第一象限内的图象上的一个动点(点P不与B重合),设点P的坐标为(m,),其中m>0且m≠2.作直线PA,PB分别与x轴交于点C,D,则△PCD是等腰三角形,请说明理由;

(3)在(2)的基础上,是否存在点P使△PCD为直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.

24.如图,矩形ABCD中,BC>AB,E是AD上一点,△ABE沿BE折叠,点A恰好落在线段CE上的点F处.

(1)求证:CF=DE.

(2)设=m.

①若m=,试求∠ABE的度数;

②设=k,试求m与k满足的关系.

25.如图,正方形ABCD中,G是对角线BD上一个动点,连接AG,过G作GE⊥CD,GF⊥BC,E、F分别为垂足

(1)求证:GE+GF=AB;

(2)①写出GE、GF、AG三条线段满足的等量关系,并证明;

②求当AB=6,AG=时,BG的长.

26.如图,E是正方形ABCD的对角线BD上的一个动点(不与B、D两点重合),连接AE,作EF⊥AE于E,交直线CB于F.

(1)如图1,当点F在线段CB上时,通过观察或测量,猜想△AEF的形状,并证明你的猜想;

(2)如图2,当点F在线段CB的延长线上时,其它条件不变,(1)中的结论还成立吗?若成立,请给出证明;若不成立,请说明理由;

(3)若AE将△ABD的面积分成1:2的两部分,求AF:CF的值.

27.如图,在正方形ABCD中,对角线AC上有一点E,连接BE,作EF⊥BE交AD于点F.过点E作直线CD的对称点G,连接CG,DG,EG.

(1)求证:△BEC≌△DGC;

(2)求证:四边形FEGD为平行四边形;

(3)若AB=4,▱FEGD有可能成为菱形吗?如果可能,此时CE长;如果不可能,请说明理由.

28.矩形ABCD中,AB=3,BC=4.点E,F在对角线AC上,点M,N分别在边AD,BC上.

(1)如图1,若AE=CF=1,M,N分别是AD,BC的中点.求证:四边形EMFN为矩形.

(2)如图2,若AE=CF=0.5,AM=CN=x(0<x<2),且四边形EMFN为矩形,求x的值.

29.如图,在平行四边形ABCD中,点E为AC上一点,点E,点F关于CD对称.

(1)若ED∥CF,①求证:四边形ECFD是菱形.

②若点E为AC的中点,求证:AD=EF.

(2)连接BD,BE,BF,若四边形ABCD是正方形,△BDF是直角三角形,求的值.

30.(1)如图1,将一矩形纸片ABCD沿着EF折叠,CE交AF于点G,过点G作GH∥EF,交线段BE于点H.

①判断EG与EH是否相等,并说明理由.

②判断GH是否平分∠AGE,并说明理由.

(2)如图2,如果将(1)中的已知条件改为折叠三角形纸片ABC,其它条件不变.

①判断EG与EH是否相等,并说明理由.

②判断GH是否平分∠AGE,如果平分,请说明理由;如果不平分,请用等式表示∠EGH,∠AGH与∠C的数量关系,并说明理由.

参考答案

一.选择题

1.解:A、如图1中,∵∠B=90°,四边形ABCD是平行四边形,∴四边形ABCD是矩形,∴AD∥BC,∴∠DAC=∠ACB,∵∠DAC=∠CAE,∴∠ACF=∠CAF,∴AF=CF,设AF=CF=x,在Rt△ABF中,则有x2=62+(8﹣x)2,解得x=,∴EF=8﹣=,故选项A不符合题意.

B、如图2中,当BF=CF时,∵AF=CF=BF,∴∠BAC=90°,∴AC===2,∴S平行四边形ABCD=AB•AC=6×2=12,故选项B符合题意.

C、在折叠过程中,△ABF与△EFC的周长相等,选项C不符合题意.

D、如图3中,当AE⊥BC时,四边形ABEC是等腰梯形,选项D不符合题意.

故选:B.

2.解:如图,AC,BE交于点F,∵四边形ABCD是正方形,∴∠ACB=∠BAC=45°,∵2∠ABE=3∠ACB,∴∠ABE==67.5°,∴∠AFB=180°﹣∠ABF﹣∠BAC=180°﹣67.5°﹣45°=67.5°,∴∠ABE=∠AFB,∴AB=AF,∵AB∥CE,∴∠ABF=∠CEF=67.5°,∵∠CFE=∠AFB=67.5°,∴∠CFE=∠CEF,∴CE=CF,设AB=x,则AC=x+1,在Rt△ABC中,AC=,∴x+1=,解得x=+1,故选:B.

3.解:设点M(a,0),N(0,b)

∵AM⊥x轴,且点A在反比例函数y=(x>0,k>0且k是常数)的图象上,∴点A的坐标为(a,),BN⊥y轴,同理可得:B(,b)

则点C(a,b)

s△CMN==ab=1

∴ab=2

∵AC=,BC=

==4

即,且ab=2

(k﹣2)2=16

解得:k=6,k=﹣2(舍去)

故选:D.

4.解:连接FC,如图所示:

∵∠ACB=90°,F为AB的中点,∴FA=FB=FC,∵△ACE是等边三角形,∴EA=EC,∵FA=FC,EA=EC,∴点F、点E都在线段AC的垂直平分线上,∴EF垂直平分AC,即EF⊥AC;

∵△ABD和△ACE都是等边三角形,F为AB的中点,∴DF⊥AB即∠DFA=90°,BD=DA=AB=2AF,∠DBA=∠DAB=∠EAC=∠ACE=60°.

∵∠BAC=30°,∴∠DAC=∠EAF=90°,∴∠DFA=∠EAF=90°,DA⊥AC,∴DF∥AE,DA∥EF,∴四边形ADFE为平行四边形而不是菱形;

∵四边形ADFE为平行四边形,∴DA=EF,AF=2AG,∴BD=DA=EF,DA=AB=2AF=4AG;

在△DBF和△EFA中,∴△DBF≌△EFA(SAS);

综上所述:①③④正确,故选:C.

5.解:∵四边形ABCD是正方形,∴点A和点C关于BD对称,BC=AB=4,∵E为边BC的中点,∴BE=BC=2,连接AE交BD于P,则此时,PC+PE的值最小,PC+PE的最小值=AE,∵AE===2,∴PC+PE的最小值是2,故选:A.

6.解:∵四边形ABCD是平行四边形,∴∠BAD=∠BCD=60°,∴∠BAM=60°﹣θ1,∠DCM=60°﹣θ3,∴△ABM中,60°﹣θ1+θ2+110°=180°,即θ2﹣θ1=10°①,△DCM中,60°﹣θ3+θ4+90°=180°,即θ4﹣θ3=30°②,由②+①,可得(θ4﹣θ3)+(θ2﹣θ1)=40°,即θ2+θ4﹣θ1﹣θ3=40°,故选:D.

7.解:作PM⊥AD于M,交BC于N.

则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,∴S△ADC=S△ABC,S△AMP=S△AEP,S△PBE=S△PBN,S△PFD=S△PDM,S△PFC=S△PCN,∴S△DFP=S△PBE=×2×8=8,∴S阴=8+8=16,(本题也可以证明两个阴影部分的面积相等,由此解决问题)

故选:C.

8.解:延长GH交AD于M点,如图所示:

∵四边形ABCD与四边形CEFG都是矩形,∴CD=CE=FG=1,BC=EF=CG=3,BE∥AD∥FG,∴DG=CG﹣CD=3﹣1=2,∠HAM=∠HFG,∵AF的中点H,∴AH=FH,在△AMH和△FGH中,∴△AMH≌△FGH(ASA).

∴AM=FG=1,MH=GH,∴MD=AD﹣AM=3﹣1=2,在Rt△MDG中,GM===2,∴GH=GM=,故选:A.

二.填空题(共12小题)

9.解:连接AC、DE、BD,如图:

∵E为AB中点,∴S△BCE=S△ABC=S平行四边形ABCD=8,同理可得:S△CDF=8,∵F为AD中点,∴SAEF=S△AED=S△ABD=S平行四边形ABCD=4,∴S△CEF=S平行四边形ABCD﹣S△AEF﹣S△BCE﹣S△CDF=32﹣8﹣8﹣4=12;

故答案为:12.

10.解:(1)∵四边形ABCD是正方形,∴AB=AD=4,∠A=∠ADC=90°,∵BE=5,∴AE===3,∴DE=AD﹣AE=4﹣3=1,∴EC2=DE2+CD2=12+42=17,∴正方形CEFG的面积=EC2=17.

故答案为17.

(2)连接DF,DG.设DE=x,则CE=,∵S△DEC+S△DFG=S正方形ECGF,∴S△DFG=(x2+16)﹣×x×4=x2﹣2x+8=(x﹣2)2+6,∵>0,∴x=2时,△DFG的面积的最小值为6.

故答案为6.

11.解:∵菱形ABCD的边长为2,BD=2,∴△ABD和△BCD都为正三角形,∴∠BDE=∠BCF=60°,BD=BC,∵AE+DE=AD=2,而AE+CF=2,∴DE=CF,∴△BDE≌△BCF(SAS);

∴∠DBE=∠CBF,BE=BF,∵∠DBC=∠DBF+∠CBF=60°,∴∠DBF+∠DBE=60°即∠EBF=60°,∴△BEF为正三角形;

设BE=BF=EF=x,则S=•x•x•sin60°=x2,当BE⊥AD时,x最小=2×sin60°=,∴S最小=×()2=,当BE与AB重合时,x最大=2,∴S最大=×22=,∴≤S≤.

故答案为:≤S≤.

12.解:连接EM,∵E,F,M分别为边BC,AD和对角线BD的中点,∴FM=,EM=,当EF=EM+MF时,线段EF最大,即EF=1+3=4,故答案为:1;4.

13.解:如图,过点Q作QH⊥CD于点H,∵四边形ABCD是矩形,∴AB=CD=5,AD=BC=7,∵BP=2,∴CP=5,∵把线段BD绕点D逆时针方向旋转90°得线段DQ,∴BD=DQ,∠BDQ=90°,∴∠BDC+∠QDC=90°,且∠BDC+∠DBC=90°,∴∠QDC=∠DBC,且BD=DQ,∠BCD=∠DHQ=90°,∴△BDC≌△DQH(AAS)

∴DC=HQ=5,BC=DH=7,∴CH=DH﹣CD=2,∵CP=HQ=5,∠PEC=∠QEH,∠PCE=∠QHE,∴△PCE≌△QHE(AAS)

∴CE=EH,且CH=2,∴CE=EH=1,∴DE=DC+CE=5+1=6,故答案为:6.

14.解:∵点D、E、F分别是BC、AB、AC的中点,∴EF∥BC,DE∥AC(三角形的中位线的性质)

又∵EF∥BC,∠DEF=50°,∴∠DEF=∠EDB=50°(两直线平行,内错角相等),∵DE∥AC,∴∠EDB=∠FCH=50°(两直线平行,同位角相等),又∵AH⊥BC,∴△AHC是直角三角形,∵HF是斜边上的中线,∴HF=AC=FC,∴∠FHC=∠FCH=50°.

∴∠CFH=180°﹣50°﹣50°=80°,故答案为:80°.

15.解:①当矩形的其中一边在AC上时,如图1所示:

设CE=x,则BE=3﹣x,∵∠A=30°,∠C=90°,∴DE=(3﹣x),∴S矩形DECF=CE•DE=x(3﹣x)=2,整理得:x2﹣3x+2=0,解得x1=1,x2=2,当x=1时,该矩形周长=(CE+DE)×2=(1+2)×2=4+2,当x=2时,该矩形周长=(CE+DE)×2=2+4,∵(4+2)﹣(2+4)=2﹣2=2(﹣1)>0,∴矩形的周长最小值为2+4;

②当矩形的其中一边在AB上时,如图2所示:

设CF=x,则BF=3﹣x,∵∠A=30°,∠C=90°,∴FG=2x,EF=(3﹣x),∴S矩形DECF=FG•EF=2x•(3﹣x)=2,整理得:x2﹣3x+2=0,解得x1=1,x2=2,所以和(1)的结果一致,综上所述:矩形周长的最小值为2+4.

故答案为:2+4.

16.解:连接BN、CM,作NP⊥BC于P,如图所示:

∵△ABM和△ACN是等边三角形,∴AB=AM,AN=AC=CN=3,∠BAM=∠CAN=∠ACN=60°,∴∠BAM+∠BAC=∠CAN+∠BAC,即∠CAM=∠NAB,在△CAM和△NAB中,∴△CAM≌△NAB(SAS),∴CM=NB,∵D,E,F,G分别是MB,BC,CN,MN的中点,∴DG是△BMN的中位线,EF是△BCN的中位线,DE是△BCM的中位线,∴DG∥BN,DG=BN,EF∥BN,EF=BN,DE=CM,∴DG∥EF,DG=EF,DG=DE,∴四边形DEFG是平行四边形,又∵DG=DE,∴四边形DEFG是菱形,∴DE=DG=EF=FG=BN,∵∠BAC=60°,∴∠NCP=180°﹣∠ACB﹣∠ACN=60°,∵NP⊥BC,∴∠CNP=90°﹣60°=30°,∴PC=CN=,PN=PC=,∴BP=BC+PC=5+=,∴BN===7,∴DE=DG=EF=FG=BN=,∴四边形DEFG的周长=4×=14,故答案为:14.

17.解:

∵∠1、∠2、∠3、∠4的外角的角度和为220°,∴∠1+∠2+∠3+∠4+220°=4×180°,∴∠1+∠2+∠3+∠4=500°,∵五边形OAGFE内角和=(5﹣2)×180°=540°,∴∠1+∠2+∠3+∠4+∠BOD=540°,∴∠BOD=540°﹣500°=40°,故答案为:40°.

18.解:∵直线y=a分别与直线y=x和双曲线y=交于点D、A,∴A(,a),D(2a,a),当直线在x轴的正半轴时,∵四边形ABCD是正方形,∴AB=AD,即2a﹣=a,解得a=﹣1或a=1.

当直线在x轴的负半轴时,同理可得,2a﹣=﹣a,解得a=±.

故答案为:±1或±.

19.解:如图,设AD=BC=x.过点P作PH⊥AC于H.

由翻折的性质可知,PA=PC=BC=x,∵∠APC=120°,PH⊥AC,∴AH=CH,∠APH=∠CPH=60°,∴AC=2AH=2•PA•sin60°=x,∵四边形ABCD是矩形,∴∠D=90°,∴CD=AB===x,∴==,故答案为:1.

20.解:∵BE=BC,∠ABC=90°,∴△BCE是等腰直角三角形,∴∠BCE=∠BEC=45°,∵GE⊥CG,∴∠AGE+∠CGD=90°,∵∠DCG+∠CGD=90°,∴∠AGE=∠DCG,又∵∠A=∠D=90°,∴△AGE∽△DCG,∴,∵G是AD的中点,∴AG=DG,∴,∵∠D=∠CGE=90°,∴△CDG∽△CGE,∴∠DCG=∠GCE=(90°﹣45°)=22.5°,∵G是AD的中点,∴由矩形的对称性可知∠ABG=∠DCG=22.5°,由三角形的外角性质得,∠BFC=∠ABG+∠BEC=22.5°+45°=67.5°.

故答案为:67.5°.

三.解答题(共10小题)

21.(1)证明:在正方形ABCD中,AB=DA,∠EAB=∠D=90°,又∵AE=DF,∴△ABE≌△DAF(SAS),∴∠ABE=∠DAF,又∵∠DAF+∠FAB=∠EAB=90°,∴∠ABE+∠FAB=90°,∴∠APB=90°,∴AF⊥BE,又∵CH⊥BE,∴AF∥CH;

(2)解:在正方形ABCD中,∠EAB=90°,AB=2,AE=2,∴BE===4,∵S△ABE=AB•AE=BE•AP,∴AP==,在Rt△ABP中,BP===3,∵∠APB=∠ABC=90°,∴∠ABP+∠HBC=90°,∠HCB+∠HBC=90°,∴∠ABP=∠HCB,∵CH⊥BE,∴∠HCB=90°,又∵AB=BC,∴△ABP≌△BCH(AAS),∴BH=AP=,∴PH=BP﹣BH=BP﹣AP=3﹣.

(3)解:在正方形ABCD中,AB=BC,AD∥BC,∵CH⊥BP,PH=BH,∴CP=BC,∴∠CBP=∠CPB,∵∠CPB=∠QPE,∠CBP=∠QEP,∴∠QPE=∠QEP,在Rt△APE中,∠QAP=∠QPA,∴QE=QP=QA,在四边形QABC中,设QP=a,CP=b,则AB=BC=b,AQ=a,QC=a+b,∵DC2+DQ2=CQ2,∴b2+(b﹣a)2=(a+b)2,∴b2=4ab,即b=4a,∴=4.

22.(1)证明:∵四边形ABCD为矩形,∴∠DAB=90°,∵AP平分∠DAB,∴∠DAP=∠EAP=45°,在△DAP和△EAP中,∴△DAP≌△EAP(SAS)

∴PD=PE;

(2)解:如图1,作CP′⊥AP′于P′,则P′C最小,∵AB∥CD,∴∠DFA=∠EAP,∵∠DAP=∠EAP,∴∠DAP=∠DFA=45°,∴FC=DF=AD=2,∠P′FC=45°,∴P′C=FC×=,∴PC的最小值为;

(3)解:如图2,∵DF=FC,OA=OC,∴OF∥AD,∴∠DFO=180°﹣∠ADF=90°,∴当点P与点F重合时,∠DPO=90°,此时,AP==2,当点P在AF上时,作PG⊥AD于G,PH⊥AB于H,∵AP平分∠DAB,PG⊥AD,PH⊥AB,∴PG=PH,设PG=PH=a,由勾股定理得,DP2=(2﹣a)2+a2,OP2=(2﹣a)2+(1﹣a)2,OD2=5,当∠DPO=90°时,DP2+OP2=OD2,即(2﹣a)2+a2+(2﹣a)2+(1﹣a)2=5,解得,a1=2(舍去),a2=,当a=时,AP=,综上所述,∠DPO=90°时,AP=2或.

23.解:(1)∵两个函数图象的交点分别为A,B,∴,∴x2=k2,∴x=±k,∴点A坐标为(﹣k,﹣1),点B坐标(k,1),(2)∵k=1,∴点A坐标为(﹣1,﹣1),点B坐标(1,1),∵点P的坐标为(m,),∴直线PA解析式为:y=+,当y=0时,x=m﹣1,∴点C(m﹣1,0)

同理可求直线PB解析式为:y=﹣x+,当y=0时,x=m+1,∴点D(m+1,0)

∴PD==,PC==,∴PC=PD,∴△PCD是等腰三角形;

(3)如图,过点P作PH⊥CD于H,∵△PCD为直角三角形,PH⊥CD,∴CD=2PH,∴m+1﹣(m﹣1)=2×

∴m=1,∴点P(1,1),∵点B(1,1),且点P是函数y=在第一象限内的图象上的一个动点(点P不与B重合),∴不存在点P使△PCD为直角三角形.

24.(1)证明:由折叠的性质可知,∠BEA=∠BEF,∵AD∥BC,∴∠BEA=∠EBC,∠BCF=∠CED,∴∠BEF=∠EBC,∴BC=CE,∵∠BFC=∠D=90°,∴△BFC≌△CDE(AAS),∴CF=DE.

(2)解:①由翻折可知BA=BF,∠BFE=∠A=90°,在Rt△BFC中,sin∠BCF====,∴∠BCF=60°,∴∠CBF=30°,∵∠ABC=90°,∴∠ABF=90°﹣30°=60°,∵∠ABE=∠FBE,∴∠ABE=∠ABF=30°.

②∵=k,=m,∴AE=kAD,AB=mAD,∴DE=AD﹣AE=AD(1﹣k),在Rt△CED中,CE2=CD2+DE2,即AD2=(mAD)2+[AD(1﹣k)]2,整理得,m2=2k﹣k2.

25.证明:(1)∵四边形ABCD为正方形,∴∠BCD=90°,∠ABD=∠CDB=∠CBD=45°,AB=BC=CD,∴△ABD是等腰直角三角形,∴AB=BD,∵GE⊥CD,GF⊥BC,∴△DGE和△BGF是等腰直角三角形,∴GE=DG,GF=BG,∴GE+GF=(DG+BG)=BD,∴GE+GF=AB;

(2)解:GE2+GF2=AG2,理由如下:

连接CG,如图所示:

在△ABG和△CBG中,∴△ABG≌△CBG(SAS),∴AG=CG,∵GE⊥CD,GF⊥BC,∠BCD=90°,∴四边形EGFC是矩形,∴CE=GF,∴GE2+CE2=CG2,∴GE2+GF2=AG2;

设GE=x=CF,则GF=6﹣x=BF,由勾股定理得:x2+(6﹣x)2=()2,∴x=1或x=5

当x=1时,∴BF=GF=5,∴BG===5,当x=5时,∴BF=GF=1,∴BG===,26.解:(1)△AEF是等腰直角三角形,理由如下:

过点E作直线MN∥AB,交AD于M,交BC于N,如图1所示:

∵四边形ABCD是正方形,BD是对角线,且MN∥AB,∴四边形ABNM和四边形MNCD都是矩形,△NEB和△MDE都是等腰直角三角形,∴AM=BN,∠AME=∠ENF=90°,EN=BN,∴AM=EN,∵EF⊥AE,∴∠AEM+∠FEN=∠AEM+∠EAM=90°,∴∠EAM=∠FEN,在△AME和△ENF中,∴△AME≌△ENF(ASA),∴AE=EF,∵AE⊥EF,∴△AEF是等腰直角三角形;

(2)(1)中的结论还成立,理由如下:

过点E作直线MN∥DC,交AD于M,交BC于N,如图2所示:

由(1)同理可得:AM=BN=EN,∠EAM=∠FEN,∵∠AME=∠ENF=90°,在△AME和△ENF中,∴△AME≌△ENF(ASA);

∴AE=EF,∵AE⊥EF,∴△AEF是等腰直角三角形;

(3)分两种情况:

①△ADE的面积:△ABE的面积=1:2时,如图1所示:

则BE=2DE,设正方形ABCD的边长为3a,则BD=3a,由(1)得:AE=EF,ME=NF,DM=CN,△AEF、△NEB和△MDE都是等腰直角三角形,∴AF=AE,BE=BN=2a,DE=ME=a,∴AM=BN=2a,CN=NF=DM=ME=a,∴CF=NF+CN=2a,AE===a,∴AF=AE=a,∴==;

②△ADE的面积:△ABE的面积=2:1时,如图2所示:

则DE=2BE,设正方形ABCD的边长为3a,则BD=3a,同(1)得:AF=AE,BE=BN=a,DE=ME=2a,∴AM=BN=a,CN=NF=DM=ME=2a,∴CF=NF+CN=4a,AE===a,∴AF=AE=a,∴==;

综上所述,若AE将△ABD的面积分成1:2的两部分,则AF:CF的值为或.

27.(1)证明:∵四边形ABCD是正方形,∴BC=CD,∠BCA=∠DCA=45°,AD∥DC,∵点E与点G关于直线CD对称,∴EC=GC,∠DCG=∠DCA=45°,EG⊥CD,∴∠BCE=∠DCG,在△BEC和△DGC中,∴△BEC≌△DGC(SAS);

(2)证明:∵EG⊥CD,AD⊥DC,AD∥BC,∴EG∥DF∥BC,∴∠EGC=∠GEC=∠ACB=45°,∴∠DGE=∠DGC﹣45°,∵BE⊥EF,∴∠FEG=360°﹣90°﹣45°﹣∠BEC=225°﹣∠BEC,∵△BEC≌△DGC,∴∠DGC=∠BEC,∴∠DGE+∠FEG=∠DGC﹣45°+225°﹣∠BEC=180°,∴EF∥DG,∴四边形FEGD为平行四边形;

(3)解:过E作MN⊥AD于N,MN⊥BC于M,如图所示:

则∠EBM+∠BEM=90°,∵EF⊥BE,∴∠BEM+∠FEN=90°,∴∠EBM=∠FEN,∵BM=AN,AN=EN,∴BM=EN,在△BME和△ENF中,∴△BME≌△ENF(ASA),∴BE=EF,∵四边形ABCD是正方形,∴B、D关于AC对称,∴BE=DE,∴DE=EF,当四边形GD为菱形时,DF=EF,∴△DEF是等边三角形,∴∠EBM=∠FEN=∠FED=30°,设CM=x,则EM=x,∵∠EBM=30°,∴BM=x,∵四边形ABCD为正方形,AB=4,∴BC=BM+EM=(+1)x=4,解得:x=2(﹣1),∴CE=x=2﹣2.

28.(1)证明:连接MN,如图1所示:

∵四边形ABCD是矩形,∴AD∥BC,AD=BC,∠B=90°,∴∠EAM=∠FCN,AC===5,∵M,N分别是AD,BC的中点,∴AM=DM=BN=CN,AM∥BN,∴四边形ABNM是平行四边形,又∵∠B=90°,∴四边形ABNM是矩形,∴MN=AB=3,在△AME和△CNF中,∴△AME≌△CNF(SAS),∴EM=FN,∠AEM=∠CFN,∴∠MEF=∠NFE,∴EM∥FN,∴四边形EMFN是平行四边形,又∵AE=CF=1,∴EF=AC﹣AE﹣CF=3,∴MN=EF,∴四边形EMFN为矩形.

(2)解:连接MN,作MH⊥BC于H,如图2所示:

则四边形ABHM是矩形,∴MH=AB=3,BH=AM=x,∴HN=BC﹣BH﹣CN=4﹣2x,∵四边形EMFN为矩形,AE=CF=0.5,∴MN=EF=AC﹣AE﹣CF=4,在Rt△MHN中,由勾股定理得:32+(4﹣2x)2=42,解得:x=2±,∵0<x<2,∴x=2﹣.

29.(1)证明:①如解图1,∵点E,点F关于CD对称.

∴DE=DF;CE=CF,OE=OF,CD⊥EF,∴∠ECO=∠FCO,∵ED∥CF,∴∠FCO=∠EDO,∴∠ECO=∠EDO,∴DE=EC,∴DE=DE=EC=CF,∴四边形ECFD是菱形.

②由得①得四边形ECFD是菱形,∴EO=OF=,OD=OC,又∵AE=EC,∴OF=.

∴AD=EF

(2)解:四边形ABCD是正方形,△BDF是直角三角形,则有以下情况:

Ⅰ.第一种情况:若∠BFD=90°时,E、F、C三点重合,BF=BE,即.

Ⅱ.第二种情况:若∠BDF=90°时,如解2,∵四边形ABCD为正方形,∴∠BDC=∠DBC=45°,BE=DE,∴∠FDC=45°,∵E,点F关于CD对称,∴∠EDC=45°,即E为AC与BD的交点,EF⊥CD,∴EF∥BC,∴∠DEF=∠BDC=45°,∴△EFD为等腰直角三角形,∴DF=DE=BE,在Rt△BDF中,BF==,∴即=.

Ⅲ.点E为AC上一点,所以∠DBF=90°不存在.

综上所述:若四边形ABCD是正方形,△BDF是直角三角形,的值为1或.

30.解:(1)①EG=EH,理由如下:

如图,∵四边形ABCD是矩形

∴AD∥BC

∴AF∥BE,且GH∥EF

∴四边形GHEF是平行四边形

∴∠GHE=∠GFE

∵将一矩形纸片ABCD沿着EF折叠,∴∠1=∠GEF

∵AF∥BE,GH∥EF

∴∠1=∠GFE,∠HGE=∠GEF

∴∠GEF=∠HGE

∴∠GHE=∠HGE

∴HE=GE

②GH平分∠AGE

理由如下:

∵AF∥BE

∴∠AGH=∠GHE,且∠GHE=∠HGE

∴∠AGH=∠HGE

∴GH平分∠AGE

(2)①EG=GH

理由如下,如图,∵将△ABC沿EF折叠

∴∠CEF=∠C'EF,∠C=∠C'

∵GH∥EF

∴∠GEF=∠HGE,∠FEC'=∠GHE

∴∠GHE=∠HGE

∴EG=EH

②∠AGH=∠HGE+∠C

理由如下:

∵∠AGH=∠GHE+∠C'

∴∠AGH=∠HGE+∠C

第四篇:八年级四边形几何证明提高题(经典)(模版)

几何证明提高题

1、如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于F,连接DF.(1)若AB∥CD,试证明四边形ABCD是菱形;

(2)在(2)的条件下,试确定E点的位置,使得∠EFD=∠BCD,并说明理由.

2、已知:如图平行四边形ABCD,DE⊥AC,AM⊥BD,BN⊥AC,CF⊥BD

求证:MN∥EF

3、已知:如图菱形ABCD,E是BC上一点,AE、BD交于F,若AE=AB,∠DAE=2∠BAE 求证:BE=AF A

D B E C

4、已知:如图正方形ABCD,P、Q分别是BC、DC上的点,若∠1=∠2 AD求证:PB+QD=PA 12

Q

BC

P

D5、已知:如图正方形ABCD,AC、BD交于点O,E、F分别是BC、OD的中点 A求证:AF⊥EF

F

O

BCE6已知:如图,AB//CD,AEED,BFFC,EM//AF交DC于M,求证:FMAE。

7、已知:如图,⊿ABC中,E、F分别是AB、BC中点,M、N是AC上两点,EM、FN交于D,若AM=MN=NC,求证:四边形ABCD是平行四边形。

8、已知:如图,12,AB3AC,BEAD,求证:ADDE。

9、已知:如图,AB//CD,D900,BEECDC,求证:AEC3BAE。

10、已知:如图,ADBC,B2C,BEEC,求证:DE12AB。

11、已知:如图,ABDC,AEDE,BFFC,FE交BA、CD的延长线于G、H,求证:12。

12、已知:如图,AB//CD,ADC900,BEEC,求证:AED2EDC。

13、已知:如图,正方形ABCD中,E是DC上一点,DF⊥AE交BC于F 求证:OE⊥OF

AD

O E

B

FC14、如图,分别以△ABC的三边为边长,在BC的同侧作等边三角形ABD,等边三角形BCE,等边三角形ACF,连接DE,EF。求证:四边形ADEF是平行四边形。

EF

D A

BC

15、如图,点G是正方形ABCD对角线CA的延长线上任意一点,以线段AG为边作一个正方形AEFG,线段EB和GD相交于点H.

(1)求证:EB=GD;

(2)判断EB与GD的位置关系,并说明理由;

(3)若AB=2,AG=错误!未找到引用源。2,求EB的长.

16、如图,以矩形OABC的顶点O为原点,OA所在的直线为x轴,OC所在的直线为y轴,建立平面直角坐标系.已知OA=3,OC=2,点E是AB的中点,在OA上取一点D,将△BDA沿BD翻折,使点A落在BC边上的点F处.

(1)直接写出点E、F的坐标;

(2)在x轴、y轴上是否分别存在点M、N,使得四边形MNFE的周 长最小?如果存在,求出周长的最小值;如果不存在,请说明理由.

第五篇:八年级四边形几何证明提高题(经典)

几何证明提高题

1、如图,在△ABC中,BD、CE分别是AC、AB上的高。G、F分别是BC、DE的中点,试证明FG⊥DE。

2、如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于F,连接DF.

(1)若AB∥CD,试证明四边形ABCD是菱形;

(2)在(2)的条件下,试确定E点的位置,使得∠EFD=∠BCD,并说明理由.

3、已知:如图平行四边形ABCD,DE⊥AC,AM⊥BD,BN⊥AC,CF⊥BD 求证:MN∥EF4、已知:如图菱形ABCD,E是BC上一点,AE、BD交于F,若AE=AB,∠DAE=2∠BAE

求证:BE=AF5、已知:如图正方形ABCD,P、Q分别是BC、DC上的点,若∠1=∠2 求证:PB+QD=PA

CP6、已知:如图正方形ABCD,AC、BD交于点O,E、F分别是BC、OD的中点 求证:AF⊥EF

DMAE交AC于M,7、已知:如图,AB=BC,D、E分别是AB、BC上一点,BNAE

交AC于N,若BDBE求证:MNNC。

8、已知:如图,AB//CD,AEED,BFFC,EM//AF交DC于M,求证:FMAE。

10、已知:如图,⊿ABC中,E、F分别是AB、BC中点,M、N是AC上两点,EM、FN交于D,若AM=MN=NC,求证:四边形ABCD是平行四边形。

11、已知:如图,12,AB3AC,BEAD,求证:ADDE。

12、已知:如图,AB//CD,D900,BEECDC,求证:AEC3BAE。

13、已知:如图,ADBC,B2C,BEEC,求证:DE

AB。

14、已知:如图,ABDC,AEDE,BFFC,FE交BA、CD的延长线于G、H,求证:12。

15、已知:如图,AB//CD,ADC900,BEEC,求证:AED2EDC。

16、已知:如图,正方形ABCD中,E是DC上一点,DF⊥AE交BC于F求证:OE⊥OF17、如图,在四边形ABCD中,AB=DC,E、F分别是AD、BC的中点,G、H分别是BD、AC的中点,猜一猜EF与GH的位置关系,并证明你的结论.

B

F

C

O

E

A

D18、如图,分别以△ABC的三边为边长,在BC的同侧作等边三角形ABD,等边三角形BCE,等边三角形ACF,连接DE,EF。求证:四边形ADEF是平行四边形。

D19、如图,点G是正方形ABCD对角线CA的延长线上任意一点,以线段AG为边作一个正方形AEFG,线段EB和GD相交于点H.(1)求证:EB=GD;

(2)判断EB与GD的位置关系,并说明理由;

(3)若AB=2,AG=错误!未找到引用源。2,求EB的长.

20、如图,以矩形OABC的顶点O为原点,OA所在的直线为x轴,OC所在的直线为y轴,建立平面直角坐标系.已知OA=3,OC=2,点E是AB的中点,在OA上取一点D,将△BDA沿BD翻折,使点A落在BC边上的点F处.(1)直接写出点E、F的坐标;

(2)在x轴、y轴上是否分别存在点M、N,使得四边形MNFE的周 长最小?如果存在,求出周长的最小值;如果不存在,请说明理由.

下载中考第一轮复习:简单的几何证明(四边形)word格式文档
下载中考第一轮复习:简单的几何证明(四边形).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    中考数学复习几何证明压轴题

    中考数学专题几何证明压轴题1、如图,在梯形ABCD中,AB∥CD,∠BCD=90°,且AB=1,BC=2,tan∠ADC=2.求证:DC=BC;E是梯形内一点,F是梯形外一点,且∠EDC=∠FBC,DE=BF,试判断△ECF的形状......

    中考几何证明题复习

    中考复习(二)中考复习:几何证明题说明一:在直角三角形中,或是题中出现多个直角时,要证明两个角相等,涉及到的知识点:同角(或等角)的余角相等。例1:已知:如图,在△ABC中,∠ACB=90,CDAB于点D,......

    中考22题四边形证明

    2011年中考第二轮专题复习(中考解答题22题四边形证明题专题训练)B90°,C45°,AD1,BC4,E为AB的中点,EF∥DC1.如图,在梯形ABCD中,AD∥BC,交BC于点F,求EF的长.A E FC2.如图,在矩形ABCD中,点E、F......

    初三 四边形证明复习及习题

    初三班姓名:学号:一、【考点链接】1、n边形的内角和为2、平面图形的镶嵌:当围绕一点拼在一起的几个多边形的内角加在一起恰好组成一个_________时,就拼成一个平面图形.某商店出......

    中考数学专题复习几何证明与计算分析

    中考数学专题复习:几何图形证明与计算题分析【2011中考真题回顾与思考】如图9,已知在⊙O中,点C为劣弧AB上的中点,连接AC并延长至D,使CD=CA,连接DB并延长交⊙O于点E,连接AE。(1)求证:AE......

    2018中考政治第一轮复习要点[本站推荐]

    2018中考政治第一轮复习要点 一、心理部分 1、正确认识自己要做到用全面的、发展的眼光看待自己;认识自我的途径有:通过自我观察、他人、集体了解自己。集体往往对一个人的评......

    2012中考第一轮复习·成语(四)

    2012中考第一轮复习·成语(四)(本试卷总分60分,测试时间:45分钟)姓名班级学号得分(2010·中考改题)1.下列语句中,加点的成语使用恰当的一项是(3分)A. 上清寺是最具传奇色彩的地方,周公馆......

    初三中考第一轮复习教案

    初三中考第一轮复习教案 七年级 1、适应新生活 2、完善自我 3、孝敬父母 4、新型的师生关系 5、尊重生命,善待生命,生命的意义和价值 6、自强自立 7、法律的含义、特征 8、未......