切线不等式的应用

时间:2019-05-14 13:34:45下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《切线不等式的应用》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《切线不等式的应用》。

第一篇:切线不等式的应用

利用不等式“xR,exx1”解决高考压轴题

呼和浩特市第二中学

郎砺志

“xR,exx1”这一结论频繁地出现在与导数相关的各种教辅材料中,可以说学生很熟悉这个不等式的结论和证明过程,但是大多数人可能仅仅把它当成是一道练习题,殊不知,就是这样一个看似不起眼的结论,却撑起了近5年高考理科数学导数试题(压轴题)的半边天,所以本文的主要内容就是:分析近几年高考导数试题,诱发新的解题线索,提供高效而实用的解题方案,最后给出2013年全国理科数学新课标卷第21题的一种新解法。命题1.xR,exx1.可以从两个角度证明这个命题的正确性。角度1.构造函数

证明:设f(x)exx1,xR,则f(x)ex1

令f(x)ex1=0,解得x0,则当x(,0)时,f(x)0,f(x)单调递减; 则当x(0,)时,f(x)0,f(x)单调递增;

于是由单调性可知,f(x)minf(x)极小=f(0)0,即xR,exx1。角度2.数形结合

在同一坐标平面内作出两个函数f(x)e,g(x)x1的图象,如下图所示,证完!

由上图可知,这个不等式实际上反映的是曲线f(x)e和其图象上的点(0,1)处的切线图形的高低关系。

xx于是这里得到,定理.xR,exx1,当且仅当x0时取等号。

由上面的定理可以立即得到,推论1.x[0,),e1xx12x 2xx证明:让我们换一套思路证明它,tR,et1,则 xR,edt(1x)dt,00tt根据牛顿-莱布尼茨公式可得e1xx12x,证完!2这里要点明,这个结论实际上在高等数学中是显然的,根据函数的幂级数展开可得,x2x31e1x1xx2,x[0,).。

2!3!2x推论2.xR,lnxx1,当且仅当x1时取等号。

证明:由定理可得,xR,ex1x,两边同时取以e为底的对数得,lnxx1,当且仅当x1时取等号。

推论3.x[1,),lnx11(x).2x证明:t[1,),lntt1,则x[1,),化简可得推论3.接下来就是高考试题的分析。

题1(2010年全国理科数学Ⅱ卷第22题节选)设函数f(x)1e.xx1lntdt(t1)dt,1xx。x1x证明:欲证 当x1时,f(x),只须证明:

x111ex1,即

x11ex,也即

x1求证:当x1时,f(x)exx1,得证。

题2.(2013年辽宁理科数学卷第21题节选)已知函数f(x)(1x)e2x.求证:当x[0,1]时,f(x)1.1x证明:事实上,等价于证明e2x(x1)2,也即

exx1.题3.(2010年理科数学新课标卷第21题节选)设函数f(x)ex1xax2,当x0时,f(x)0.求实数a的取值范围。解:由推论1可知,a111满足条件,于是当a时均满足条件,事实上,当a时,222故当x(0,ln(2a))时,f(x)ex2a0,f(x)ex12ax,f(x)ex2a,此时函数f(x)单调递减,有f(x)f(0)0,从而函数f(x)单调递减,所以f(x)f(0)0,这和题目条件矛盾,综上,a1。2这里顺便指出,利用这道题的结论可以轻松断定2012年辽宁理科数学高考第12题的A选项是错误的,从而我们也能感受到高考试题的延续性。题4.(2011年湖北省理科数学卷第21题节选)设ak,bk(k1,2,3,,n)均为正数,证明:

若a1b1a2b2anbnb1b2bn, 则a11a22an证明:欲证a11a22anbbbnbbbn1。

bbb1,只须证ln(a11a22ann)ln10,即b1lna1b2lna2bnlnan0 ① 事实上,根据题意即推论2可知,lnakak1,k1,2,3,,n,带到①式左边可得,b1lna1b2lna2bnlnanb1(a11)b2(a21)bn(an1)

=(b1a1b2a2bnan)(b1b2bn)0,证完。

题5.(2010年湖北省理科数学卷21题节选)求证:1111n ln(n1)23n2(n1)证明:由推论3知:x[1,),lnx11(x); 且 2x11当x1,lnx(x);

2xk1k11k111,(k1,2,3,n), 有ln()令xkk2kk1111[(1)(1)]2kk1111()2kk1

于是有,ln(k1)lnk111(),k1,2,3,n.2kk1将这n个同向不等式相加并整理即可得:

1证完。111n ln(n1)23n2(n1)下面给出2013年全国新课标卷第21题的一种新解法。题6.已知函数f(x)eln(xm)当m2时,f(x)0.证明:很明显,f(x)eln(x2),若记g(x)elnx(2),则只须证明

xxxg(x)exln(x2)0即可,事实上,由推论2,ln(x2)x1知,g(x)ex(x1),设h(x)ex(x1),由定理可知h(x)0成立,但上述等号无法同时取得,综上,利用“>”的传递性可得,当m2时,f(x)0.证完!上面的各个例题告诉我们,不等式“xR,ex1”及其推论在高考试卷中的应用是广泛而重要的,能灵活地运用这些结论对快速高效地解决高考导数大题意义深远,另外,通过分析高考试题,我们也可以得到一个结论:看似纷繁芜杂的导数试题中其实蕴含着永恒的规律,遵循本文给出的解题线索,你一定能拥有针对性极强的解题意识,在高考压轴题的海洋中遨游。

x

第二篇:均值不等式及其应用

教师寄语:一切的方法都要落实到动手实践中

高三一轮复习数学学案

均值不等式及其应用

一.考纲要求及重难点

要求:1.了解均值不等式的证明过程.2.会用均值不等式解决简单的最大(小)值问题.重难点:1.主要考查应用不等式求最值和不等式的证明.2.对均值不等式的考查多以选择题和填空题的形式出现,难度为中低档题,若出现证明题难度也不会太大.二.考点梳理

ab1.均值定理:;

2(1)均值不等式成立的条件是_________.(2)等号成立的条件是:当且仅当_________时取等号.(3)其中_________称为正数a,b的算术平均值,_________称为正数a,b的几何平均值.2.利用均值定理求最值

M2

1).两个正数的和为定值时,它们的积有最大值,即若a,b∈R,且a+b=M,M为定值,则ab≤,4+

等号当且仅当a=b时成立.简记:和定积最大。

2).两个正数的积为定值时,它们的和有最小值,即若a,b∈R,且ab=P,P为定值,则a+b≥2P,+

等号当且仅当a=b时成立.简记:积定和最小。

3、几个重要的不等式

(1)ab2ab(a,b∈R)(2)22ba 2(a,b同号)ab

a2b2ab2ab2()(a,bR)(3)ab()(a,bR)(4)22

2三、学情自测

1、已知a0,b0,且ab2,则()

112222A、abB、abC、ab2D、ab3 222、给出下列不等式:①a12a212;③x221,其中正确的个数是 x1A、0B、1C、2D、31的最大值是___________。x4、长为24cm的铁丝做成长方形模型,则模型的最大面积为___________。

125.已知正数a,b,满足ab1,则的最小值为 ab3、设x0,则y33x

均值不等式及其应用第 1页(共4页)

四.典例分析

考向一:利用均值不等式求最值

212xy22x3xy4yz0,则当z取得最大值时,xyz的最大例

1、(2013山东)设正实数x,y,z满足

值为()

A.0

B.1 9C.4 D.

3x27x10变式训练1.若x1,求函数f(x)的最大值。x

12.(2013天津数学)设a + b = 2, b>0, 则当a = ______时,考向

二、利用均值不等式证明简单不等式

2、已知x0,y0,z0,求证:(变式训练

2、已知a,b,c都是实数,求证:abc

2221|a|取得最小值.2|a|byzxzxy)()()8 xxyyzz1(abc)2abbcac

3考向

三、均值不等式的实际应用

3、小王于年初用50万元购买一辆大货车,第一年因缴纳各种费用需支出6万元,从第二年起,每年都比

上一年增加支出2万元,假定该年每年的运输收入均为25万元.小王在该车运输累计收入超过总支出后,考虑将大货车作为二手车出售,若该车在第x年年底出售,其销售价格为25x万元(国家规定大货车的报废年限为10年).(1)大货车运输到第几年年底,该车运输累计收入超过总支出?

(2)在第几年年底将大货车出售,能使小王获得的年平均利润最大?)(利润=累计收入+销售收入-总支出)

变式训练:

如图:动物园要围成相同面积的长方形虎笼四间,一面可利用原有的墙,其他各面用钢筋网围成。

(1)现有可围36米长钢筋网的材料,每间虎笼的长、宽各设计为多少时,可使每间虎笼面积最大?

(2)若使每间虎笼面积为24m,则每间虎笼的长、宽各设计为多少时,可使四间虎笼的钢筋网总长最小?

五、当堂检测

1、若a,bR且ab0,则下列不等式中,恒成立的是()

2A、ab2abB、ab、11ba、2 abab2、若函数f(x)x1(x2)在xa处取得最小值,则a()x

2A、1B、1C、3D、4ab3、已知log2log21,则39的最小值为___________。ab

4.若点A1,1在直线mxny20上,其中mn0,则11的最小值为__________.mn

六、课堂小结

七、课后巩固

511、已知x,则函数y4x2的最大值是()44x

51A、2B、3C、1D、2(ab)22、已知x0,y0,x,a,b,y成等差数列,x,c,d,y成等比数列,则的最小值是 cd

A、0B、1C、2D、43、已知b0,直线(b1)xay20与直线xby10互相垂直,则ab的最小值为()

A、1B、2C、D、4、已知x0,y0,xyxy8,则xy最小值是___________。

5、若对任意x0,22xa恒成立,则a的取值范围是___________。2x3x1

6.某工厂去年的某产品的年销售量为100万只,每只产品的销售价为10元,每只产品固定成本为8元,今年,工厂第一次投入100万元,并计划以后每年比上一年多投入100万元,预计销售量从今年开始每年比上一年增加10万只,第n次投入后,每只产品的固定成本为g(n)k0,k为常数,nN),若产品销售价保持不变,第n次投入后的年利润为f(n)万元.(1)求k的值,并求出f(n)的表达式;

(2)若今年是第1年,则第几年年利润最高?最高利润为多少万元?

第三篇:均值不等式应用

均值不等式应用

一.均值不等式

22ab1.(1)若a,bR,则ab2ab(2)若a,bR,则abab时取“=”)22

22.(1)若a,bR*,则ab(2)若a,bR*,则ab2ab(当且仅当ab时取“=”)2

ab(当且仅当ab时取“=”(3)若a,bR*,则ab)22

3.若x0,则x

取“=”)1);若x0,则x12(当且仅当x1时2(当且仅当x1时取“=”xx

若x0,则x12即x12或x1-2(当且仅当ab时取“=”)

xxx

ab4.若ab0,则2(当且仅当ab时取“=”)ba

若ab0,则ababab)2即2或-2(当且仅当ab时取“=”bababa

ab2a2b25.若a,bR,则((当且仅当ab时取“=”))22

注:(1)3.已知x,yR,x+y=s,xy=p.6.及值定理:

①若p为定值,那么当且仅当时,s=x+y有;

②若s为定值,那么当且仅当时,p=xy有。

(备注):求最值的条件“一正,二定,三取等”

应用一:求最值

解题技巧:技巧一:凑项

例1:已知x5,求函数y4x21的最大值。44x

51不是常数,所以对4x2要进行拆、4x5解:因4x50,所以首先要“调整”符号,又(4x2)

凑项,∵x511,54x0,y4x254x3231 44x554x

当且仅当54x1,即x1时,上式等号成立,故当x1时,ymax1。54x

评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。技巧二:凑系数

例1.当

时,求yx(82x)的最大值。

1解析:由知,利用均值不等式求最值,必须和为定值或积为定值,此题为两

个式子积的形式,但其和不是定值。注意到2x(82x)8为定值,故只需将yx(82x)凑上一个系数即可。

当,即x=2时取等号当x=2时,yx(82x)的最大值为8。

评注:本题无法直接运用均值不等式求解,但凑系数后可得到和为定值,从而可利用均值不等式求最大值。

变式:设0x3,求函数y4x(32x)的最大值。

32x32x9解:∵0x∴32x0∴y4x(32x)22x(32x)2 222

3当且仅当2x32x,即x30,时等号成立。

42

技巧三: 分离

x27x10

(x1)的值域。例3.求y

x1

解析一:本题看似无法运用均值不等式,不妨将分子配方凑出含有(x+1)的项,再将其分离。

当,即

时,y59(当且仅当x=1时取“=”号)。技巧四:换元

解析二:本题看似无法运用均值不等式,可先换元,令t=x+1,化简原式在分离求最值。

(t1)27(t1)+10t25t44y=t

5ttt

当,即t=

时,y59(当t=2即x=1时取“=”号)。评注:分式函数求最值,通常直接将分子配凑后将式子分开或将分母换元后将式子分开再利用不等式求最值。即化为ymg(x)等式来求最值。

技巧五:注意:在应用最值定理求最值时,若遇等号取不到的情况,应结合函数f(x)x调性。

例:求函数y

A

B(A0,B0),g(x)恒正或恒负的形式,然后运用均值不g(x)

a的单x

2的值域。

2t(t

2),则y

1

t(t2)

t因t0,t1,但t解得t1不在区间2,,故等号不成立,考虑单调性。因为yt在区间1,单调递增,所以在其子区间2,为单调递增函数,故y所以,所求函数的值域为,。

练习.求下列函数的最小值,并求取得最小值时,x 的值.t1t

1t5。

252

11x23x1

y2sinx,x(0,)y2x,x3,(x0)(3)(1)y(2)

sinxx3x

2.已知0x

1,求函数y3.0x

.;,求函数y

3.条件求最值

ab

1.若实数满足ab2,则33的最小值是.解: 3和3都是正数,33≥23a3b3ab6

a

b

a

b

ababab

当33时等号成立,由ab2及33得ab1即当ab1时,33的最小值

是6.

变式:若log4xlog4y2,求的最小值.并求x,y的值

xy

技巧六:整体代换:多次连用最值定理求最值时,要注意取等号的条件的一致性,否则就会出错。2:已知x0,y0,且

1,求xy的最小值。xy

19191,xy

xy12xyxy

错解: ∵x0,y0,且..

故 xymin12。

错因:解法中两次连用均值不等式,在xyx

y,在19x

y

成立条件是

即y9x,取等号的条件的不一致,产生错误。因此,在利用均值不等式处理问题xy

时,列出等号成立条件是解题的必要步骤,而且是检验转换是否有误的一种方法。

19y9x19

正解:∵x0,y0,1,xyxy1061016

xyxyxy

当且仅当

19y9x时,上式等号成立,又1,可得x4,y12时,xymin16。

xyxy

x

y

变式:(1)若x,yR且2xy1,求11的最小值

(2)若a,b,x,yR且ab1,求xy最小值

xy

y 2

技巧

七、已知x,y为正实数,且x+ =1,求x1+y的最大值.a 2+b

2分析:因条件和结论分别是二次和一次,故采用公式ab≤。

11+y中y前面的系数为,x1+y=x

1+y2·=2 x2+22

下面将x,1y +分别看成两个因式: 22

x+x+ ≤

222

技巧

八、取平方

2y 21

2+)x+ + 2222

3= =即1+y=2 ·x

4+ ≤ 2245、已知x,y为正实数,3x+2y=10,求函数W=3x +2y 的最值.a+ba 2+b

2解法一:若利用算术平均与平方平均之间的不等关系,≤,本题很简单

3x +2y≤2

3x)2+(2y)2 =2

3x+2y =2

5解法二:条件与结论均为和的形式,设法直接用基本不等式,应通过平方化函数式为积的形式,再向“和为定值”条件靠拢。

W>0,W2=3x+2y+23x y =10+3x 2y ≤10+3x)2·(y)2 =10+(3x+2y)=20

∴ W

≤20 =5

变式: 求函数y

1x5)的最大值。

解析:注意到2x

1与52x的和为定值。

y2

244(2x1)(52x)8

又y0,所以0y当且仅当2

x1=52x,即x

时取等号。故ymax 2

评注:本题将解析式两边平方构造出“和为定值”,为利用均值不等式创造了条件。

应用二:利用均值不等式证明不等式

1. 已知a,b,c为两两不相等的实数,求证:abcabbcca

2正数a,b,c满足a+b+c=1,求证:(1-a)(1-b)(1-c)≥8abc

111

3、已知a、b、cR,且abc1。求证:1118

abc

解:a、b、cR,abc1。

111abc

11

11

aaabc上述三个不等式两边均为正,分别相乘,得

1时取等号。111。当且仅当abc11183abc

应用三:均值不等式与恒成立问题

例:已知x0,y0且191,求使不等式xym恒成立的实数m的取值范围。

x

y

条件:m≤(x+y)的最小值,m,16

应用四:均值定理在比较大小中的应用: 例:若ab1,P

lgalgb,Q

1ab(lgalgb),Rlg(),则P,Q,R的大小关系是22

分析:∵ab1 ∴lga0,lgb0

(lgalgb)algbp 2

ab1Rlg()lgablgabQ∴R>Q>P。

22Q

第四篇:应用导数证明不等式

应用导数证明不等式

常泽武指导教师:任天胜

(河西学院数学与统计学院 甘肃张掖 734000)

摘要: 不等式在初等数学和高等代数中有广泛的应用,证明方法很多,本文以函数的观点来认识不等式,以导数为工具来证明不等式。

关键字: 导数 不等式最值中值定理单调性泰勒公式

中图分类号: O13

Application derivative to testify inequality

ChangZeWu teachers: RenTianSheng

(HeXi institute of mathematics and statistics Gansu zhang ye 734000)Abstract: He inequality in elementary mathematics and higher algebra is widely used, proved many methods, based on the function point of view to know inequality to derivative tools to prove to inequality.Key words: The most value of derivative inequality value theorem monotonicity Taylor formula

1.利用微分中值定理来证明不等式

在数学分析中,我们学到了拉格朗日中值定理,其内容为:

定理1.如果函数fx在闭区间a,b上连续,在开区间a,b上可导,则至少存在一点a,b,使得f'()

拉格朗日中值定理是探讨可微函数的的几何特性及证明不等式的重要工具,我们可以根据以下两种方法来证明。

(1)首先,分析不等式通过变形,将其特殊化。其次,选取合适的函数和范围。第三,利用拉格朗日中值定理。最后,在根据函数的单调性和最大值和最小值。

(2)我们可根据其两种等价表述方式

①f(b)f(a)f'(a(ba))(ba),01

②fahfaf'ahh,01

我们可以的范围来证明不等式。f(b)f(a)。ba

11(x0)例1.1证明不等式ln(1)x1x

证明第一步变形1 ln(1)ln(1x)ln(x)x

第二步选取合适的函数和范围

令f(x)lnttx,1x

第三步应用拉格朗日中值定理

存在x,1x使得f'()f(1x)f(x)(1x)(x)

即ln(1x)ln(x)1

而 <1+x 1 1x

1x1)而0x 即ln(x1xln(1x)ln(x)

例 1.2证明:h>-1且h0都有不等式成立:

hln(1h)h 1h

证明:令f(x)=ln(1+x),有拉格朗日中值定理,0,1使得

ln(1h)f(h)f(0)f'(h)h

当h>0时有

1h11h,当1h0时有

11h1h0,即h.1h1hh;1h1h1hh.1h1h

2.利用函数单调性证明不等式

我们在初等数学当中学习不等式的证明时用到了两种方法:一种是判断它们差的正负,另一种是判断它们的商大于1还是小于1.而我们今天所要讨论的是根据函数的导数的思想来判断大小。

定理:设函数f(x)在a,b上连续,在a,b可导,那么

(1)若在a,b内f'(x)0则f(x)在a,b内单调递增。

(2)若在a,b内f'(x)0则f(x)在a,b内单调递减。

使用定理:要证明区间a,b上的不等式f(x)g(x),只需令F(x)f(x)。g使在(x)a,b上F'(x)>0(F'(x)<0)且F(a)=0或(F(b)=0)例2.1 设x0证明不等式ln(1x)xex

证明:令F(x)ln(1x)xex(x>0)

显然F(0)0

1exx21xx(x>0)F'(x)exex1x(1x)e

现在来证明exx210

令f(x)exx21显然f(0)0

当x0时f'(x)ex2x0

于是得f(x)在x0上递增

故对x0有f(x)f(0)f(x)0

而(1x)ex0

所以F'(x)0故F(x)递增

又因为F(0)0

所以F(x)0

所以ln(1x)xex成立

3.利用函数的最大值和最小值证明不等式

当等式中含有“=”号时,不等式f(x)g(x)(或f(x)g(x)) g(x)f(x)0(或g(x)f(x)0),亦即等价于函数G(x)g(x)f(x)有最小值或F(x)f(x)g(有最大值。x)

证明思路:由待正不等式建立函数,通过导数求出极值并判断时极大值还是极小值,在求出最大值或最小值,从而证明不等式。

1例3.1证明若p>1,则对于0,1中的任意x有p1xp(1x)p1 2

证明:构造函数f(x)xp(1x)p(0x1)

则有f'(x)pxp1p(1x)p1p(xp1(1x)p1)

令f'(x)0,可得xp1(1x)p1,于是有x1x,从而求得x1。由于2

函数f(x)在闭区间0,1上连续,因而在闭区间0,1上有最小值和最大值。

由于函数f(x)内只有一个驻点,没有不可导点,又函数f(x)在驻点x1和2

111p1)p1,f(0)f(1),区间端点(x0和x1)的函数值为f())p(1所以2222

1f(x)在0,1的最小值为p1,最大值为1,从而对于0,1中的任意x有2

11f(x)1xp(1x)p1。,既有p1p122

4.利用函数的泰勒展式证明不等式

若函数f(x)在含有x0的某区间有定义,并且有直到(n1)阶的各阶导数,又在x0处有n阶导数f(n)(x0),则有展式: f'(x0)f''(x0)fn(x0)2(xx0)(xx0)(xx0)nRn(x)f(x)f(x0)1!2!n!

在泰勒公式中,取x0=0,变为麦克劳林公式

f'(0)f''(0)2fn(0)nf(x)f(0)(x)(x)(x)Rn(x)1!2!n!

在上述公式中若Rn(x)0(或0)则可得

f'(0)f''(0)2fn(0)nf(x)f(0)(x)(x)(x),1!2!n!

f'(0)f''(0)2fn(0)n(x)(x)(x)。或f(x)f(0)1!2!n!

带有拉格朗日余项的泰勒公式的实质是拉格朗日微分中值定理的深化,他是一个定量估计式,该公式在不等式证明和微分不等式证明及较为复杂的极限计算中有广泛的应用。

用此公式证明不等式就是要把所证不等式化简,其中函数用此公式,在把公式右边放大或缩小得到所证不等式。

例4.1若函数f(x)满足:(1)在区间a,b上有二阶导函数f''(x),(2)

f'(a)f'(b)0,则在区间a,b内至少存在一点c,使

f''(c)4f(b)f(a)。2(ba)

证明:由f(x)在xa和xb处的泰勒公式,并利用f'(a)f'(b)0,得f(x)f(a)f''()(xa)2

2!f''()f(x)f(b)(xb)2,于是2!

abf''()(ba)2abf()f(a)(a),22!42

abf''()(ba)2abf()f(b)(a),22!42

f''()f''()(ba)2

相减,得f(b)-f(a)=,24

4f(b)f(a)1(ba)2

即f''()f(),(ba)224

当f''()f''()时,记c否则记c=,那么

f''(c)4f(b)f(a)(abc)(ba)2

参 考 文 献

《数学分析》上册,高等教育出版社,1990.1郑英元,毛羽辉,宋国栋编,2赵焕光,林长胜编《数学分析》上册,四川大学出版社,2006。3欧阳光中,姚允龙,周渊编《数学分析》上册,复旦大学出版社,2004.4华东师范大学数学系编《数学分析》上册,第三版,高等教育出版社2001.

第五篇:均值不等式的应用

均值不等式的应用

教学目标:

1.掌握平均不等式的基础上进而掌握极值定理

2.运用基本不等式和极值定理熟练地处理一些极值与最值问题 教学重点:应用 教学难点:应用

教学方法:讲练结合 教

具:多媒体 教学过程

一、复习引入:

1.算术平均数与几何平均数定义,平均不等式 2.算术平均数与几何平均数之间的关系----并推广:调和平均数≤几何平均数≤算术平均数≤平方平均数 3.极值定理:积定和最小;和定积最大

注:①极值定理成立的条件:一正二定三相等 ②应用时应该注意的问题: 4.练习:

3①若x0,求y12x的最大值.xx22x2②4x1,求的最值.2x2y221,求x1y2的最大值.③xR,且x21④ yx(23x)⑤y14x

54x

二、新授:

1.基本应用:

掌握用重要不等式求最值的方法,重视运用过程中的三个条件:正数、相等、常数

4例1.求函数yx的值域.x(,4]或[4,)

例2.已知x2y1,x、yR,求x2y的最大值.11xx4y31x2y32)(2)分析:x2yxx4y(443432721当x=4y即x,y时取等号.36例3.设a,b,x,yR,且有a2+b2=3,x2+y2=6,求ax+by的最大值.分析:运用柯西不等式 2.变形运用:

对于某些复杂的函数式,需适当变形后,再运用重要不等式求最值.23例4.求ysinxcos2x(x(0,))函数的最大值.29ab例5.已知a,b,x,yR且1,求xy的最小值.xy分析:此题若能灵活变形,运用重要不等式求最值,则能起到事半功倍的效果.解法一:用判别式法----转换为一个未知数利用判别式 解法二:换元法----令xacsc2,ybsec2 解法三:转换为一个字母利用基本不等式求解

ab解法四:利用xy=(xy)()

xy11变形:已知a,b,x,yR,且x2y1,求u的最小值.xy3.综合运用:

例6.已知直角三角形的内切圆半径为1,求此三角形面积的最小值.解:略.例7.将一块边长为a的正方形铁皮,剪去四个角(四个全等的正方形),作成一个 无盖的铁盒,要使其容积最大,剪去的小正方形的边长为多少?最大容积是多少?

解:设剪去的小正方形的边长为x

a则其容积为Vx(a2x)2,(0x)

2114x(a2x)(a2x)32a3V4x(a2x)(a2x)[]

44327aa2a3当且仅当4xa2x即x时取“=”即剪去的小边长为时,容积为

6627

三、练习:

663x2的最小值,y23x的最小值.xx2.已知a,b满足abab3,求ab的范围.1.x0时求y3.已知x,y满足xyxy1,求xy的最小值.4.已知a2b210,求a+b的范围.5.已知x0,y0,z0,求(1x2)(1y2)(1z2)8xyz的解.四、小结:

五、作业:

1.若0x1, 求yx4(1x2)的最大值

2.制作一个容积为16m3的圆柱形容器(有底有盖),问圆柱底半径和高各取多少时,用料最省?(不计加工时的损耗及接缝用料)(R2m,h4m)

六、板书设计:

下载切线不等式的应用word格式文档
下载切线不等式的应用.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    均值不等式公式总结及应用

    均值不等式应用a2b21. (1)若a,bR,则ab2ab (2)若a,bR,则ab2ab**2. (1)若a,bR,则ab (2)若a,bR,则ab2ab 222(当且仅当a(当且仅当ab时取“=”) b时取“=”)ab(当且仅当ab时取“=”(3)若a......

    柯西不等式及应用含答案

    一、柯西不等式:(a)(b)(akbk)2等号成立的条件是akbk(k1,2,3n)2k2kk1k1k1nnn二维柯西不等式:(x1x2y1y2)2(x12y12)(x22y22)证明:(用作差法)(x1y1)(x2y2)(x1x2y1y2)2x1y2x2y12x1x2y1......

    积分不等式的证明及应用

    衡阳师范学院毕业论文(设计) 题 目:积分不等式的证明及应用 所 在 系: 数学与计算科学系 专 业: 数学与应用数学 学 号: 08090233 作者姓名: 盛军宇 指导教师: 肖娟 2012年 4 月 27......

    Cauchy-Schwarz不等式的证明和应用

    Cauchy-Schwarz不等式的证明和应用 摘要:Cauchy-Schwarz不等式有多种证明方法而且应用广泛.本文归纳了几种Cauchy-Schwarz不等式的典型证明方法,并探讨了Cauchy-Schwarz不等......

    Jensen不等式的证明和应用

    Jensen不等式的证明和应用1.设x在a,b内二阶可导,且x0,则p1x1p2x2pnxnp1x1p2x2pnxnpppppp12n12n其中p1,p2,L,pn均为正数,x1,x2,L,xnÎ2.证明不等式abcabc3(a,b)。aabbcc其中a,b,......

    均值不等式的变形和应用

    均值不等式的变形和应用一、变形1. 设a,b是正实数,则a2ab+b 2a或+ 2(当且仅当a=b时,等号成立) bba2. 设a,b,c是正实数,则a2+b2+c2?abbc+ca(当且仅当a=b时,等号成立)3. 设a,b是正实数......

    20140511一元一次不等式及其应用

    一元一次不等式及其应用 1、下列不等式中,是一元一次不等式的是A;B; C ;D ; 2.下列各式中,是一元一次不等式的是A.5+4>8B.2x-1C.2x≤5D.-3x≥0 3. 下列各式中,是一元一次不等式的是 (1......

    高三数学教案:不等式的应用

    不等式的应用 一、内容归纳 1知识精讲:在前面几节课学习的不等式的性质、证明和解不等式的基础上运用不等式的的知识和思想方法分析、解决一些涉及不等式关系的问题. 2重点......