余弦定理的证明方法大全(共十法)

时间:2019-05-14 13:50:50下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《余弦定理的证明方法大全(共十法)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《余弦定理的证明方法大全(共十法)》。

第一篇:余弦定理的证明方法大全(共十法)

余弦定理的证明方法大全(共十法)

一、余弦定理

余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与他们夹角的余弦的积的两倍,即在ABC中,已知ABc,BCa,CAb,则有

a2b2c22bccosA, b2c2a22cacosB, c2a2b22abcosC.二、定理证明

为了叙述的方便与统一,我们证明以下问题即可: 在ABC中,已知ABc,ACb,及角A,求证:a2b2c22bccosA.证法一:如图1,在ABC中,由CBABAC可得:

CCBCB(ABAC)(ABAC)

ABAC2ABAC

b2c22bccosA

AB图122即,a2b2c22bccosA.证法二:本方法要注意对A进行讨论.(1)当A是直角时,由b2c22bccosAb2c22bccos90b2c2a2知结论成立.(2)当A是锐角时,如图2-1,过点C作CDAB,交AB于点D,则

在RtACD中,ADbcosA,CDbsinA.从而,BDABADcbcosA.在RtBCD中,由勾股定理可得: BC2BD2CD2

(cbcosA)2(bsinA)2

c22cbcosAb2

AD图2-1BC即,a2b2c22bccosA.说明:图2-1中只对B是锐角时符合,而B还可以是直角或钝角.若B是直角,图中的 点D就与点B重合;若B是钝角,图中的点D就在AB的延长线上.(3)当A是钝角时,如图2-2,过点C作CDAB,交BA延长线于点D,则 在RtACD中,ADbcos(A)bcosA,CDbsin(A)bsinA.从而,BDABADcbcosA.在RtBCD中,由勾股定理可得:

C BCBDCD

(cbcosA)2(bsinA)2

c22cbcosAb2

DA图2-2B222即,abc2bccosA.综上(1),(2),(3)可知,均有a2b2c22bccosA成立.证法三:过点A作ADBC,交BC于点D,则

BDAD在RtABD中,sin,cos.ccCDAD在RtACD中,sin,cos.bbCD222βαA图3B由cosAcos()coscossinsin可得: ADADBDCDADBDCDcosA

cbcbbc2AD22BDCDc2BD2b2CD22BDCD

2bc2bcb2c2(BDCD)2b2c2a2

2bc2bc2整理可得a2b2c22bccosA.证法四:在ABC中,由正弦定理可得

abcc.sinAsinBsinCsin(AB)从而有bsinAasinB,………………………………………………………………①

csinAasin(AB)asinAcosBacosAsinB.…………………………②

将①带入②,整理可得acosBcbcosA.…………………………………………③ 将①,③平方相加可得a2(cbcosA)2(bsinA)2b2c22bccosA.即,a2b2c22bccosA.证法五:建立平面直角坐标系(如图4),则由题意可得点A(0,0),B(c,0),C(bcosA,bsinA),再由两点间距离公式可得a2(cbcosA)2(bsinA)2c22cbcosAb2.即,a2b2c22bccosA.A(O)图4BxyC证法六:在ABC中,由正弦定理可得a2RsinA,b2RsinB,c2RsinC.于是,a24R2sin2A4R2sin2(BC)

4R2(sin2Bcos2Ccos2Bsin2C2sinBsinCcosBcosC)4R2(sin2Bsin2C2sin2Bsin2C2sinBsinCcosBcosC)4R2(sin2Bsin2C2sinBsinCcos(BC))4R2(sin2Bsin2C2sinBsinCcosA)

(2RsinB)2(2RsinC)22(2RsinB)(2RsinB)cosA

b2c22bccosA

即,结论成立.证法七:在ABC中,由正弦定理可得a2RsinA,b2RsinB,c2RsinC.于是,a2b2c22bccosA

4R2sin2A4R2sin2B4R2sin2C8R2sinBsinCcosA

2sin2A2sin2B2sin2C4sinBsinCcosA

2sin2A2cos2Bcos2C4sinBsinCcosA

22cos2A22cos(BC)cos(BC)4sinBsinCcosA 由于cos(BC)cos(A)cosA,因此

cos2Acos(BC)cos(BC)2sinBsinCcosA

cosAcos(BC)2sinBsinC

cosAcosBcosCsinBsinCcos(BC).这,显然成立.即,结论成立.证法八:如图5,以点C为圆心,以CAb为半径作C,直线BC与C交于点D,E,延长AB交C于F,延长AC交C于G.F2bcosA-cEBaGbbCbb-acA则由作图过程知AF2bcosA, 故BF2bcosAc.由相交弦定理可得:BABFBDBE, 即,c(2bcosAc)(ba)(ba), 整理可得:abc2bccosA.222D图5证法九:如图6,过C作CD∥AB,交ABC的外接圆于D,则ADBCa,BDACb.分别过C,D作AB的垂线,垂足分别为E,F,则AEBFbcosA,故CDc2bcosA.由托勒密定理可得ADBCABCDACBD, 即,aac(c2bcosA)bb.bCD整理可得:abc2bccosA.证法十:由图7-1和图7-2可得a2(cbcosA)2(bsinA)2, 整理可得:a2b2c22bccosA.AE222aac图6FBCEAbsinAaBCbsinADc-bcosAc-bcosAaBbcosAD

余弦定理的证明方法还有很多,比如可以用物理方法证明、可以构造相似三角形证明、可以利用图形面积证明等.感兴趣的读者可以到图书馆或互联网中进行查询.图7-1图7-2

第二篇:余弦定理的证明 向量法

∵如图,有a+b=c(平行四边形定则:两个邻边之间的对角线代表两个邻边大小

∴c·c=(a+b)·(a+b)∴c^2=a·a+2a·b+b·b∴c^2=a^2+b^2+2|a||b|Cos(π-θ)(以上粗体字符表示向量)又∵cos(π-θ)=-Cosθ

∴c^2=a^2+b^2-2|a||b|cosθ(注意:这里用到了三角函数公式)再拆开,得c^2=a^2+b^2-2*a*b*CosC 即 cosC=(a^2+b^2-c^2)/2*a*b 同理可证其他,而下面的cosC=(a^2+b^2-c^2)/2ab就是将cosC移到左边表示一下。

第三篇:余弦定理证明过程

余弦定理证明过程

ma=√(c^2+(a/2)^2-ac*cosB)

=(1/2)√(4c^2+a^2-4ac*cosB)

由b^2=a^2+c^2-2ac*cosB

得,4ac*cosB=2a^2+2c^2-2b^2,代入上述ma表达式:

ma=(1/2)√

=(1/2)√(2b^2+2c^2-a^2)

证毕。

2在任意△ABC中,作AD⊥BC.∠C对边为c,∠B对边为b,∠A对边为a-->

BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c

勾股定理可知:

AC²=AD²+DC²

b²=(sinB*c)²+(a-cosB*c)²

b²=sin²B*c²+a²+cos²B*c²-2ac*cosB

b²=(sin²B+cos²B)*c²-2ac*cosB+a²

b²=c²+a²-2ac*cosB

所以,cosB=(c²+a²-b²)/2ac

2如右图,在ABC中,三内角A、B、C所对的边分别是a、b、c.以A为原点,AC所在的直线为x轴建立直角坐标系,于是C点坐标是(b,0),由三角函数的定义得B点坐标是(ccosA,csinA).∴CB=(ccosA-b,csinA).现将CB平移到起点为原点A,则AD=CB.而|AD|=|CB|=a,∠DAC=π-∠BCA=π-C,根据三角函数的定义知D点坐标是(acos(π-C),asin(π-C))即D点坐标是(-acosC,asinC),∴AD=(-acosC,asinC)而AD=CB∴(-acosC,asinC)=(ccosA-b,csinA)∴asinC=csinA…………①-acosC=ccosA-b……②由①得asinA=csinC,同理可证asinA=bsinB,∴asinA=bsinB=csinC.由②得acosC=b-ccosA,平方得:a2cos2C=b2-2bccosA+c2cos2A,即a2-a2sin2C=b2-2bccosA+c2-c2sin2A.而由①可得a2sin2C=c2sin2A∴a2=b2+c2-2bccosA.同理可证b2=a2+c2-2accosB,c2=a2+b2-2abcosC.到此正弦定理和余弦定理证明完毕。3△ABC的三边分别为a,b,c,边BC,CA,AB上的中线分别为ma.mb,mc,应用余弦定理证明:

mb=(1/2)

mc=(1/2)ma=√(c^2+(a/2)^2-ac*cosB)

=(1/2)√(4c^2+a^2-4ac*cosB)

由b^2=a^2+c^2-2ac*cosB

得,4ac*cosB=2a^2+2c^2-2b^2,代入上述ma表达式:

ma=(1/2)√

=(1/2)√(2b^2+2c^2-a^2)

同理可得:

mb=

mc=

ma=√(c^2+(a/2)^2-ac*cosB)

=(1/2)√(4c^2+a^2-4ac*cosB)

由b^2=a^2+c^2-2ac*cosB

得,4ac*cosB=2a^2+2c^2-2b^2,代入上述ma表达式:

ma=(1/2)√

=(1/2)√(2b^2+2c^2-a^2)

证毕。

第四篇:余弦定理证明

余弦定理证明

在任意△ABC中,作AD⊥BC.∠C对边为c,∠B对边为b,∠A对边为a-->

BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c

勾股定理可知:

AC²=AD²+DC²

b²=(sinB*c)²+(a-cosB*c)²

b²=sin²B*c²+a²+cos²B*c²-2ac*cosB

b²=(sin²B+cos²B)*c²-2ac*cosB+a²

b²=c²+a²-2ac*cosB

所以,cosB=(c²+a²-b²)/2ac

2如右图,在ABC中,三内角A、B、C所对的边分别是a、b、c.以A为原点,AC所在的直线为x轴建立直角坐标系,于是C点坐标是(b,0),由三角函数的定义得B点坐标是(ccosA,csinA).∴CB=(ccosA-b,csinA).现将CB平移到起点为原点A,则AD=CB.而|AD|=|CB|=a,∠DAC=π-∠BCA=π-C,根据三角函数的定义知D点坐标是(acos(π-C),asin(π-C))即D点坐标是(-acosC,asinC),∴AD=(-acosC,asinC)而AD=CB∴(-acosC,asinC)=(ccosA-b,csinA)∴asinC=csinA…………①-acosC=ccosA-b……②由①得asinA=csinC,同理可证asinA=bsinB,∴asinA=bsinB=csinC.由②得acosC=b-ccosA,平方得:a2cos2C=b2-2bccosA+c2cos2A,即a2-a2sin2C=b2-2bccosA+c2-c2sin2A.而由①可得a2sin2C=c2sin2A∴a2=b2+c2-2bccosA.同理可证b2=a2+c2-2accosB,c2=a2+b2-2abcosC.到此正弦定理和余弦定理证明完毕。3△ABC的三边分别为a,b,c,边BC,CA,AB上的中线分别为ma.mb,mc,应用余弦定理证明:

mb=(1/2)

mc=(1/2)ma=√(c^2+(a/2)^2-ac*cosB)

=(1/2)√(4c^2+a^2-4ac*cosB)

由b^2=a^2+c^2-2ac*cosB

得,4ac*cosB=2a^2+2c^2-2b^2,代入上述ma表达式:

ma=(1/2)√

=(1/2)√(2b^2+2c^2-a^2)

同理可得:

mb=

mc=

ma=√(c^2+(a/2)^2-ac*cosB)

=(1/2)√(4c^2+a^2-4ac*cosB)

由b^2=a^2+c^2-2ac*cosB

得,4ac*cosB=2a^2+2c^2-2b^2,代入上述ma表达式:

ma=(1/2)√

=(1/2)√(2b^2+2c^2-a^2)

证毕。

第五篇:怎么证明余弦定理

怎么证明余弦定理

证明余弦定理:

因为过C作CD垂直于AB,AD=bcosA;所以(c-bcosA)^2+(bsinA)^2=a^2。

又因为b^2-(bcosA)^2=(bsinA)^2,所以(c-x)^2+b^2-(bcosA)^2=a^2,所以c^2-2cbcosA+(bcosA)^2+b^2-(bcosA)^2=a^2,所以c^2-2cbcosA+b^2=a^2,所以c^2+b^2-a^2=2cbcosA,所以cosA=(c^2+b^2-a^2)/2bc

同理cosB=(a^2+c^2-b^2)/2ac,cosC=(a^2+b^2-c^2)/2ab

2在任意△ABC中,作AD⊥BC.∠C对边为c,∠B对边为b,∠A对边为a-->

BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c

勾股定理可知:

AC²=AD²+DC²

b²=(sinB*c)²+(a-cosB*c)²

b²=sin²B*c²+a²+cos²B*c²-2ac*cosB

b²=(sin²B+cos²B)*c²-2ac*cosB+a²

b²=c²+a²-2ac*cosB

所以,cosB=(c²+a²-b²)/2ac

2如右图,在ABC中,三内角A、B、C所对的边分别是a、b、c.以A为原点,AC所在的直线为x轴建立直角坐标系,于是C点坐标是(b,0),由三角函数的定义得B点坐标是(ccosA,csinA).∴CB=(ccosA-b,csinA).现将CB平移到起点为原点A,则AD=CB.而|AD|=|CB|=a,∠DAC=π-∠BCA=π-C,根据三角函数的定义知D点坐标是(acos(π-C),asin(π-C))即D点坐标是(-acosC,asinC),∴AD=(-acosC,asinC)而AD=CB∴(-acosC,asinC)=(ccosA-b,csinA)∴asinC=csinA…………①-acosC=ccosA-b……②由①得asinA=csinC,同理可证asinA=bsinB,∴asinA=bsinB=csinC.由②得acosC=b-ccosA,平方得:a2cos2C=b2-2bccosA+c2cos2A,即a2-a2sin2C=b2-2bccosA+c2-c2sin2A.而由①可得a2sin2C=c2sin2A∴a2=b2+c2-2bccosA.同理可证b2=a2+c2-2accosB,c2=a2+b2-2abcosC.到此正弦定理和余弦定理证明完毕。3△ABC的三边分别为a,b,c,边BC,CA,AB上的中线分别为ma.mb,mc,应用余弦定理证明:

mb=(1/2)

mc=(1/2)ma=√(c^2+(a/2)^2-ac*cosB)

=(1/2)√(4c^2+a^2-4ac*cosB)

由b^2=a^2+c^2-2ac*cosB

得,4ac*cosB=2a^2+2c^2-2b^2,代入上述ma表达式:

ma=(1/2)√

=(1/2)√(2b^2+2c^2-a^2)

同理可得:

mb=

mc=

ma=√(c^2+(a/2)^2-ac*cosB)

=(1/2)√(4c^2+a^2-4ac*cosB)

由b^2=a^2+c^2-2ac*cosB

得,4ac*cosB=2a^2+2c^2-2b^2,代入上述ma表达式:

ma=(1/2)√

=(1/2)√(2b^2+2c^2-a^2)

证毕。

下载余弦定理的证明方法大全(共十法)word格式文档
下载余弦定理的证明方法大全(共十法).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    余弦定理证明过程

    在△ABC中,设BC=a,AC=b,AB=c,试根据b,c,A来表示a。 分析:由于初中平面几何所接触的是解直角三角形问题,所以应添加辅助线构造直角三角形,在直角三角形内通过边角关系作进一步的转化工......

    用复数证明余弦定理

    用复数证明余弦定理法一:证明:建立如下图所示的直角坐标系,则A=(0,0)、B=(c,0),又由任意角三角函数的定义可得:C=(bcos A,bsin A),以AB、BC为邻边作平行四边形ABCC′,则∠BAC′=π-......

    球面正弦,余弦定理证明

    §4球面余弦定理和正弦定理平面几何中的三角形全等判定条件说明了平面三角形的唯一性,到了平面三角学,把这种唯一性定理提升到有效能算的角边函数关系。其中最基本的就是三角......

    余弦定理证明案例分析

    余弦定理证明案例分析秭归二中董建华我今年教高一(3)、一(7)班两班数学,在证明余弦定理时,上午第二节在一(3)班上数学,在证明余弦定理时,我是这样上课的:同学们,前一节课我们学习了正弦......

    余弦定理的证明方法

    余弦定理的证明方法在△ABC中,AB=c、BC=a、CA=b则c^2=a^2+b^2-2ab*cosCa^2=b^2+c^2-2bc*cosAb^2=a^2+c^2-2ac*cosB下面在锐角△中证明第一个等式,在钝角△中证明以此类推。过A......

    高考考余弦定理证明

    从高考考余弦定理证明谈起【题1】 叙述并证明勾股定理(1979年全国卷,四题). 【说明】 这道大题,在总分为110分的考卷上,理科占6分,文科占9分.理科的评分标准是:(1)叙述勾股定理(2分);(2)证......

    叙述并证明余弦定理

    叙述并证明余弦定理余弦定理(第二余弦定理)余弦定理是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求角的问题,若对余弦......

    余弦定理的三种证明

    △ABC中的三个内角∠A,∠B,∠C的对边,分别用a,b,c表示.余弦定理 三角形任何一边的平方等于其他两边的平方和减去这两边与它们夹角的余弦的积的两倍. 即c2=a2+b2-2abcosC,b2=a2+......