第一篇:用复数证明余弦定理
用复数证明余弦定理法一:证明:建立如下图所示的直角坐标系,则A=(0,0)、B=(c,0),又由任意角三角函数的定义可得:C=(bcos A,bsin A),以AB、BC为邻边作平行四边形ABCC′,则∠BAC′=π-∠B,∴C′(acos(π-B),asin(π-B))=C′(-acos B,asin B).根据向量的运算: =(-acos B,asin B),=-=(bcos A-c,bsin A),(1)由 = :得 asin B=bsin A,即 =.同理可得: =.∴ = =.(2)由 =(b-cos A-c)2+(bsin A)2=b2+c2-2bccos A,又| |=a, ∴a2=b2+c2-2bccos A.同理:
c2=a2+b2-2abcos C;b2=a2+c2-2accos B.法二:如图5,,设 轴、轴方向上的单位向量分别为、,将上式的两边分别与、,即
将(1)式改写为
化简得b2-a2-c2=-2accos B.即b2=a2+c2-2accos B.(4)这里(1)为射影定理,(2)为正弦定理,(4)为余弦定理.2 在△ABC中,AB=c、BC=a、CA=b 则c^2=a^2+b^2-2ab*cosC a^2=b^2+c^2-2bc*cosA b^2=a^2+c^2-2ac*cosB 下面在锐角△中证明第一个等式,在钝角△中证明以此类推。过A作AD⊥BC于D,则BD+CD=a 由勾股定理得:
c^2=(AD)^2+(BD)^2,(AD)^2=b^2-(CD)^2 所以c^2=(AD)^2-(CD)^2+b^2 =(a-CD)^2-(CD)^2+b^2 =a^2-2a*CD +(CD)^2-(CD)^2+b^2 =a^2+b^2-2a*CD 因为cosC=CD/b 所以CD=b*cosC 所以c^2=a^2+b^2-2ab*cosC 题目中^2表示平方。2
作数量积,可知 谈正、余弦定理的多种证法 聊城二中 魏清泉
正、余弦定理是解三角形强有力的工具,关于这两个定理有好几种不同的证明方法.人教A版教材《数学》(必修5)是用向量的数量积给出证明的,如是在证明正弦定理时用到作辅助单位向量并对向量的等式作同一向量的数量积,这种构思方法过于独特,不易被初学者接受.本文试图通过运用多种方法证明正、余弦定理从而进一步理解正、余弦定理,进一步体会向量的巧妙应用和数学中“数”与“形”的完美结合.定理:在△ABC中,AB=c,AC=b,BC=a,则(1)(正弦定理)= =;(2)(余弦定理)c2=a2+b2-2abcos C, b2=a2+c2-2accos B, a2=b2+c2-2bccos A.一、正弦定理的证明
证法一:如图1,设AD、BE、CF分别是△ABC的三条高。则有 AD=b•sin∠BCA,BE=c•sin∠CAB,CF=a•sin∠ABC。
所以S△ABC=a•b•csin∠BCA =b•c•sin∠CAB =c•a•sin∠ABC.证法二:如图1,设AD、BE、CF分别是△ABC的3条高。则有 AD=b•sin∠BCA=c•sin∠ABC,BE=a•sin∠BCA=c•sin∠CAB。证法三:如图2,设CD=2r是△ABC的外接圆 的直径,则∠DAC=90°,∠ABC=∠ADC。
证法四:如图3,设单位向量j与向量AC垂直。因为AB=AC+CB,所以j•AB=j•(AC+CB)=j•AC+j•CB.因为j•AC=0,j•CB=| j ||CB|cos(90°-∠C)=a•sinC,j•AB=| j ||AB|cos(90°-∠A)=c•sinA.二、余弦定理的证明
法一:在△ABC中,已知,求c。
第二篇:用复数证明余弦定理
用复数证明余弦定理
法一:证明:建立如下图所示的直角坐标系,则A=(0,0)、B=(c,0),又由任意角三角函数的定义可得:C=(bcosA,bsinA),以AB、BC为邻边作平行四边形ABCC′,则∠BAC′=π-∠B,∴C′(acos(π-B),asin(π-B))=C′(-acosB,asinB).根据向量的运算:
=(-acosB,asinB),=-=(bcosA-c,bsinA),(1)由=:得
asinB=bsinA,即
=.同理可得:=.∴==.(2)由=(b-cosA-c)2+(bsinA)2=b2+c2-2bccosA,又||=a,∴a2=b2+c2-2bccosA.同理:
c2=a2+b2-2abcosC;
b2=a2+c2-2accosB.法二:如图5,,设轴、轴方向上的单位向量分别为、,将上式的两边分别与、作数量积,可知,即
将(1)式改写为
化简得b2-a2-c2=-2accosB.即b2=a2+c2-2accosB.(4)
这里(1)为射影定理,(2)为正弦定理,(4)为余弦定理.2在△ABC中,AB=c、BC=a、CA=b
则c^2=a^2+b^2-2ab*cosC
a^2=b^2+c^2-2bc*cosA
b^2=a^2+c^2-2ac*cosB
下面在锐角△中证明第一个等式,在钝角△中证明以此类推。
过A作AD⊥BC于D,则BD+CD=a
由勾股定理得:
c^2=(AD)^2+(BD)^2,(AD)^2=b^2-(CD)^
2所以c^2=(AD)^2-(CD)^2+b^2
=(a-CD)^2-(CD)^2+b^2
=a^2-2a*CD+(CD)^2-(CD)^2+b^2
=a^2+b^2-2a*CD
因为cosC=CD/b
所以CD=b*cosC
所以c^2=a^2+b^2-2ab*cosC
题目中^2表示平方。
2谈正、余弦定理的多种证法
聊城二中魏清泉
正、余弦定理是解三角形强有力的工具,关于这两个定理有好几种不同的证明方法.人教A版教材《数学》(必修5)是用向量的数量积给出证明的,如是在证明正弦定理时用到作辅助单位向量并对向量的等式作同一向量的数量积,这种构思方法过于独特,不易被初学者接受.本文试图通过运用多种方法证明正、余弦定理从而进一步理解正、余弦定理,进一步体会向量的巧妙应用和数学中“数”与“形”的完美结合.定理:在△ABC中,AB=c,AC=b,BC=a,则
(1)(正弦定理)==;
(2)(余弦定理)
c2=a2+b2-2abcosC,b2=a2+c2-2accosB,a2=b2+c2-2bccosA.一、正弦定理的证明
证法一:如图1,设AD、BE、CF分别是△ABC的三条高。则有
AD=b•sin∠BCA,BE=c•sin∠CAB,CF=a•sin∠ABC。
所以S△ABC=a•b•csin∠BCA
=b•c•sin∠CAB
=c•a•sin∠ABC.证法二:如图1,设AD、BE、CF分别是△ABC的3条高。则有
AD=b•sin∠BCA=c•sin∠ABC,BE=a•sin∠BCA=c•sin∠CAB。
证法三:如图2,设CD=2r是△ABC的外接圆的直径,则∠DAC=90°,∠ABC=∠ADC。
证法四:如图3,设单位向量j与向量AC垂直。
因为AB=AC+CB,所以j•AB=j•(AC+CB)=j•AC+j•CB.因为j•AC=0,j•CB=|j||CB|cos(90°-∠C)=a•sinC,j•AB=|j||AB|cos(90°-∠A)=c•sinA.二、余弦定理的证明
法一:在△ABC中,已知,求c。
过A作,在Rt中,法二:,即:
法三:
先证明如下等式:
⑴
证明:
故⑴式成立,再由正弦定理变形,得
结合⑴、有
即.同理可证
.三、正余弦定理的统一证明
法一:证明:建立如下图所示的直角坐标系,则A=(0,0)、B=(c,0),又由任意角三角函数的定义可得:C=(bcosA,bsinA),以AB、BC为邻边作平行四边形ABCC′,则∠BAC′=π-∠B,∴C′(acos(π-B),asin(π-B))=C′(-acosB,asinB).根据向量的运算:
=(-acosB,asinB),=-=(bcosA-c,bsinA),(1)由=:得
asinB=bsinA,即
=.同理可得:=.∴==.(2)由=(b-cosA-c)2+(bsinA)2=b2+c2-2bccosA,又||=a,∴a2=b2+c2-2bccosA.同理:
c2=a2+b2-2abcosC;
b2=a2+c2-2accosB.法二:如图5,,设轴、轴方向上的单位向量分别为、,将上式的两边分别与、作数量积,可知,即
将(1)式改写为
化简得b2-a2-c2=-2accosB.即b2=a2+c2-2accosB.(4)
这里(1)为射影定理,(2)为正弦定理,(4)为余弦定理.
第三篇:怎么证明余弦定理
怎么证明余弦定理
证明余弦定理:
因为过C作CD垂直于AB,AD=bcosA;所以(c-bcosA)^2+(bsinA)^2=a^2。
又因为b^2-(bcosA)^2=(bsinA)^2,所以(c-x)^2+b^2-(bcosA)^2=a^2,所以c^2-2cbcosA+(bcosA)^2+b^2-(bcosA)^2=a^2,所以c^2-2cbcosA+b^2=a^2,所以c^2+b^2-a^2=2cbcosA,所以cosA=(c^2+b^2-a^2)/2bc
同理cosB=(a^2+c^2-b^2)/2ac,cosC=(a^2+b^2-c^2)/2ab
2在任意△ABC中,作AD⊥BC.∠C对边为c,∠B对边为b,∠A对边为a-->
BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c
勾股定理可知:
AC²=AD²+DC²
b²=(sinB*c)²+(a-cosB*c)²
b²=sin²B*c²+a²+cos²B*c²-2ac*cosB
b²=(sin²B+cos²B)*c²-2ac*cosB+a²
b²=c²+a²-2ac*cosB
所以,cosB=(c²+a²-b²)/2ac
2如右图,在ABC中,三内角A、B、C所对的边分别是a、b、c.以A为原点,AC所在的直线为x轴建立直角坐标系,于是C点坐标是(b,0),由三角函数的定义得B点坐标是(ccosA,csinA).∴CB=(ccosA-b,csinA).现将CB平移到起点为原点A,则AD=CB.而|AD|=|CB|=a,∠DAC=π-∠BCA=π-C,根据三角函数的定义知D点坐标是(acos(π-C),asin(π-C))即D点坐标是(-acosC,asinC),∴AD=(-acosC,asinC)而AD=CB∴(-acosC,asinC)=(ccosA-b,csinA)∴asinC=csinA…………①-acosC=ccosA-b……②由①得asinA=csinC,同理可证asinA=bsinB,∴asinA=bsinB=csinC.由②得acosC=b-ccosA,平方得:a2cos2C=b2-2bccosA+c2cos2A,即a2-a2sin2C=b2-2bccosA+c2-c2sin2A.而由①可得a2sin2C=c2sin2A∴a2=b2+c2-2bccosA.同理可证b2=a2+c2-2accosB,c2=a2+b2-2abcosC.到此正弦定理和余弦定理证明完毕。3△ABC的三边分别为a,b,c,边BC,CA,AB上的中线分别为ma.mb,mc,应用余弦定理证明:
mb=(1/2)
mc=(1/2)ma=√(c^2+(a/2)^2-ac*cosB)
=(1/2)√(4c^2+a^2-4ac*cosB)
由b^2=a^2+c^2-2ac*cosB
得,4ac*cosB=2a^2+2c^2-2b^2,代入上述ma表达式:
ma=(1/2)√
=(1/2)√(2b^2+2c^2-a^2)
同理可得:
mb=
mc=
ma=√(c^2+(a/2)^2-ac*cosB)
=(1/2)√(4c^2+a^2-4ac*cosB)
由b^2=a^2+c^2-2ac*cosB
得,4ac*cosB=2a^2+2c^2-2b^2,代入上述ma表达式:
ma=(1/2)√
=(1/2)√(2b^2+2c^2-a^2)
证毕。
第四篇:余弦定理证明
余弦定理证明
在任意△ABC中,作AD⊥BC.∠C对边为c,∠B对边为b,∠A对边为a-->
BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c
勾股定理可知:
AC²=AD²+DC²
b²=(sinB*c)²+(a-cosB*c)²
b²=sin²B*c²+a²+cos²B*c²-2ac*cosB
b²=(sin²B+cos²B)*c²-2ac*cosB+a²
b²=c²+a²-2ac*cosB
所以,cosB=(c²+a²-b²)/2ac
2如右图,在ABC中,三内角A、B、C所对的边分别是a、b、c.以A为原点,AC所在的直线为x轴建立直角坐标系,于是C点坐标是(b,0),由三角函数的定义得B点坐标是(ccosA,csinA).∴CB=(ccosA-b,csinA).现将CB平移到起点为原点A,则AD=CB.而|AD|=|CB|=a,∠DAC=π-∠BCA=π-C,根据三角函数的定义知D点坐标是(acos(π-C),asin(π-C))即D点坐标是(-acosC,asinC),∴AD=(-acosC,asinC)而AD=CB∴(-acosC,asinC)=(ccosA-b,csinA)∴asinC=csinA…………①-acosC=ccosA-b……②由①得asinA=csinC,同理可证asinA=bsinB,∴asinA=bsinB=csinC.由②得acosC=b-ccosA,平方得:a2cos2C=b2-2bccosA+c2cos2A,即a2-a2sin2C=b2-2bccosA+c2-c2sin2A.而由①可得a2sin2C=c2sin2A∴a2=b2+c2-2bccosA.同理可证b2=a2+c2-2accosB,c2=a2+b2-2abcosC.到此正弦定理和余弦定理证明完毕。3△ABC的三边分别为a,b,c,边BC,CA,AB上的中线分别为ma.mb,mc,应用余弦定理证明:
mb=(1/2)
mc=(1/2)ma=√(c^2+(a/2)^2-ac*cosB)
=(1/2)√(4c^2+a^2-4ac*cosB)
由b^2=a^2+c^2-2ac*cosB
得,4ac*cosB=2a^2+2c^2-2b^2,代入上述ma表达式:
ma=(1/2)√
=(1/2)√(2b^2+2c^2-a^2)
同理可得:
mb=
mc=
ma=√(c^2+(a/2)^2-ac*cosB)
=(1/2)√(4c^2+a^2-4ac*cosB)
由b^2=a^2+c^2-2ac*cosB
得,4ac*cosB=2a^2+2c^2-2b^2,代入上述ma表达式:
ma=(1/2)√
=(1/2)√(2b^2+2c^2-a^2)
证毕。
第五篇:用余弦定理证明勾股定理并非循环论证
用余弦定理证明勾股定理并非循环论证
大家都知道,勾股定理不过是余弦定理的一种特例,所以用余弦定理证明勾股定理就很容易;但是长期以来,有一种观点认为,余弦定理不能用来证明勾股定理,原因是余弦定理是用勾股定理证明出来的,然后用余弦定理又来证明勾股定理就是循环论证,说到这里,我就纳闷了,难道证明余弦定理非要直接或者间接的用到勾股定理?NO!简直是谬论,出于兴趣,偶在网上找到了一种证明余弦定理的方法,证明的过程和勾股定理扯不上一点关系。据说是伟大的科学家爱因斯坦在12岁时, 在未学过平面几何的情况下, 基于三角形的相似性, 找到的这一巧妙和简单的证明余弦定理的方法。天才就是天才,汗……
让我们看看天才是怎样一步一步证明余弦定理的:
如图, 在△ABC 中, 过C 点作线段CD, CE 交AB 于D, E, 使∠ACD = ∠B, ∠BCE = ∠A。显然有:
因为 △ACD ∼ △ABC ∼ △CBE, 所以:
AC*AC = AD * AB, ①
BC*BC = BE * AB,②
∠ADC = ∠CEB,△CDE是等腰三角形
AC / AB = CE / BC = CD / BC,即: CD = AC * BC / AB③
而∠CDE = ∠CED = ∠A + ∠B, 由余弦定义知,cos(A + B)= cos ∠CDE =(1/2 * DE)/CD.于是 DE = 2 *(CD * cos∠CDE)= 2 * CD * cos(A + B)。
将③代入得 :
DE = 2AC*BC/AB* cos(A + B)④
根据①②④,便可以推导出:
AC*AC + BC*BC
=(AD + BE)* AB将①②代入
=(AB − DE)* AB
= AB*AB − DE * AB
= AB*AB − 2AC*BC/AB*cos(A+B)* AB将④代入
= AB*AB −2AC·BC cos(A+B)
= AB*AB + 2AC·BC cos∠ACB。
即:AC*AC + BC*BC = AB*AB + 2AC·BC cos∠ACB。⑤
⑤便是众所周知的余弦定理啦
如此便证明了余弦定理。在图中, 若D,E重合到虚线的位置, 则∠ACB 为直角, 余弦定理变为勾股定理,因此,用类似的方法也可以证明勾股定理。由以上看到,证明余弦定理并非一定要涉及到勾股定理。
所以用余弦定理证明勾股定理不存在所谓的循环论证。所以说,请不要认为用余弦定理证明勾股定理的方法是错误的,除非事先说明不允许用余弦定理,否则偶认为用余弦定理证明勾股定理是最简单的一种证明方法,大家都知道 a = 90°时 cos(a)= 0,代入余弦定理便得到勾股定理。
参考文献:再談畢氏定理與餘弦定理的證明