第一篇:正余弦定理的证明及其作用
一、余弦定理、正弦定理的证明:Proofs without words。
(1)余弦定理的证明
(2)正弦定理的证明
二、正弦定理、余弦定理的应用
(1)证明三角形角平分线定理
(2)证明平行四边形边与对角线的长度关系
(3)证明知三边的三角形面积公式:海伦公式
(4)正弦定理是三角形中的边与角联系的纽带和桥梁,也就是说,能够将三角形中边的关系转化为角之间的关系,也能将角的关系转化为边之间的关系,这是正弦定理的“灵魂”。
(5)余弦定理是勾股定理的推广,勾股定理是余弦定理的特例,余弦定理揭示了任意三角形边角之间的客观规律,是解三角形的的重要工具。
第二篇:正、余弦定理的证明----方法种种(本站推荐)
正、余弦定理的证明----方法种种
在解三角形的有关知识中,正、余弦定理占有十分重要的地位,是揭示任意三角形边角之间关系的两个重要定理,它们相辅相成,是一个不可分割的整体.要想灵活的应用正、余弦定理解决有关三角形问题,必须熟练掌握这两个定理的证明,本文归纳了正、余弦定理的几种常见证明方法,希望能对同学们的正、余弦定理的学习有所帮助和启示.
一、正弦定理的证明
正弦定理 在一个三角形中,各边和它所对角的正弦的比相等,即
abc.sinAsinBsinC教材中给出了用三角函数定义的证明,除此以外还可以用向量法和几何法来证明正弦定理.证明:方法一(向量法):如图(1),△ABC为锐角三角形时,过A作单位向量j垂直于AB,则j与AB的夹角为,j与BC的夹角为B,j与CA的夹角为222A,设角A、B、C的对边分别为a、b、c,∵ABBCCA0,∴jABjBCjCAj00,即jABcosjBCcosBjCAcosA0.222ab.sinAsinBbcabc同理可得:,即.sinBsinCsinAsinBsinC∴asinBbsinA,即当△ABC为钝角三角形(如图(2))或为直角三角形时,利用同样的方法可以证得结论,请同学们自己证明.(注意:在此证明过程中,要注意两向量所成的角与三角形内角的关系.)方法二(几何法):如图所示,设O为△ABC外接圆的圆心,连BO并延长交
''''⊙O于A,连AC,则AA或AA,∴sinAsinA'BCa,'AB2Rabc2R,同理可证2R,2R.sinAsinBsinCabc2R.故有sinAsinBsinC即方法三(解析法):如图,在ABC中,三内角A,B,C所对的边分别是a,b,c.以A为原点,AC所在直线为x轴建立直角坐标系,则C点坐标是(b,0).由三角函数的定义得B点坐标是ccosA,csiaA,所以CBccosAb,csinA.将CB平移到起点为原点A,则ADCB.因为ADCBa,DACBCAC, 1 根据三角函数的定义知D点坐标是acosC,asinC,即D坐标是acosC,asinC.所以,所以acosC,asiC所nsbc,s.iAn以ADacosC,asinC.又因为ADCBccoAasinCcsinA,即acababc.同理可证,所以.sinAsinCsinAsinBsinAsinBsinC
二、余弦定理的证明
余弦定理 三角形的任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍,即 abc2bccosA,bac2accosB,cab2abcosC.教材中给出了用向量证明余弦定理的方法,体现了向量在解决三角形度量问题中的作用,另外,还可以用解析法和三角法来证明余弦定理.证明:方法一(解析法):如图,以A点为原点,以△ABC的边AB所在直线为为x轴,以过点A与AB垂直的直线为y轴,建立直角坐标系,则A(0,0),C(bcosA,bsinA),B(c,0), 2由两点间的距离公式得BCbcosAcbsinA0,22222222222a2b2cos2A2bccosAc2b2sin2A,即a2b2c22bccosA.同理可证b2a2c22accosB,c2a2b22abcosC.方法二(几何法):如图,当△ABC为锐角三角形时,过C作CD⊥AB于D,则CDbsinA,BDABADcbcosA.在Rt△BCD中,由勾股定理得BCCDBD, 222222即absinAcbcosA.整理得abc2bccosA.2222同理可证:bac2accosB,cab2abcosC.222222CDbsinA,BDADABbcosAc.当△ABC为钝角三角形时,如图,在Rt△BCD中,由勾股定理得BCCDBD, 222222即absinAbcosAc.整理得abc2bccosA.2222同理可证:bac2accosB,cab2abcosC.222222 2
第三篇:正余弦定理的多种证明方法
利用向量统一正、余弦定理的证明
正、余弦定理是解三角形强有力的工具,关于这两个定理有好几种不同的证明方法,[1]人教版中等职业教育国家规划教材《数学》(提高版)是用向量的数量积(内积)给出证明的,如是在证明正弦定理时用到:作辅助单位向量并对向量的等式作同一向量的数量积,这种构思方法过于独特,不易被初学者接受。本文通过三角函数的定义,利用向量相等和向量的模统一正、余弦定理的证明,方法较为简单。从本文的证明中又一次显示数学中“数”与“形”的完美结合。
定理:在△ABC中,AB=c,AC=b,BC=a,则
(1)(正弦定理)==;
(2)(余弦定理)
c2=a2+b2-2abcos C,b2=a2+c2-2accos B,a2=b2+c2-2bccos A。
证明:建立如下图所示的直角坐标系,则A=(0,0)、B=(c,0),又由任意角三角函数的定义可得:
C=(bcos A,bsin A),以AB、BC为邻边作平行四边形ABCC′,则∠BAC′=π-∠B,∴C′(acos(π-B),asin(π-B))
=C′(-acos B,asin B)。
根据向量的运算:
=(-acos B,asin B),=-=(bcos A-c,bsin A),(1)由=:得
asin B=bsin A,即
=。
同理可得:=。
∴==。
(2)由=(b-cos A-c)2+(bsin A)2=b2+c2-2bccos A,又||=a,∴a2=b2+c2-2bccos A。
同理:
c2=a2+b2-2abcos C;
b2=a2+c2-2accos B。
第四篇:怎么证明余弦定理
怎么证明余弦定理
证明余弦定理:
因为过C作CD垂直于AB,AD=bcosA;所以(c-bcosA)^2+(bsinA)^2=a^2。
又因为b^2-(bcosA)^2=(bsinA)^2,所以(c-x)^2+b^2-(bcosA)^2=a^2,所以c^2-2cbcosA+(bcosA)^2+b^2-(bcosA)^2=a^2,所以c^2-2cbcosA+b^2=a^2,所以c^2+b^2-a^2=2cbcosA,所以cosA=(c^2+b^2-a^2)/2bc
同理cosB=(a^2+c^2-b^2)/2ac,cosC=(a^2+b^2-c^2)/2ab
2在任意△ABC中,作AD⊥BC.∠C对边为c,∠B对边为b,∠A对边为a-->
BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c
勾股定理可知:
AC²=AD²+DC²
b²=(sinB*c)²+(a-cosB*c)²
b²=sin²B*c²+a²+cos²B*c²-2ac*cosB
b²=(sin²B+cos²B)*c²-2ac*cosB+a²
b²=c²+a²-2ac*cosB
所以,cosB=(c²+a²-b²)/2ac
2如右图,在ABC中,三内角A、B、C所对的边分别是a、b、c.以A为原点,AC所在的直线为x轴建立直角坐标系,于是C点坐标是(b,0),由三角函数的定义得B点坐标是(ccosA,csinA).∴CB=(ccosA-b,csinA).现将CB平移到起点为原点A,则AD=CB.而|AD|=|CB|=a,∠DAC=π-∠BCA=π-C,根据三角函数的定义知D点坐标是(acos(π-C),asin(π-C))即D点坐标是(-acosC,asinC),∴AD=(-acosC,asinC)而AD=CB∴(-acosC,asinC)=(ccosA-b,csinA)∴asinC=csinA…………①-acosC=ccosA-b……②由①得asinA=csinC,同理可证asinA=bsinB,∴asinA=bsinB=csinC.由②得acosC=b-ccosA,平方得:a2cos2C=b2-2bccosA+c2cos2A,即a2-a2sin2C=b2-2bccosA+c2-c2sin2A.而由①可得a2sin2C=c2sin2A∴a2=b2+c2-2bccosA.同理可证b2=a2+c2-2accosB,c2=a2+b2-2abcosC.到此正弦定理和余弦定理证明完毕。3△ABC的三边分别为a,b,c,边BC,CA,AB上的中线分别为ma.mb,mc,应用余弦定理证明:
mb=(1/2)
mc=(1/2)ma=√(c^2+(a/2)^2-ac*cosB)
=(1/2)√(4c^2+a^2-4ac*cosB)
由b^2=a^2+c^2-2ac*cosB
得,4ac*cosB=2a^2+2c^2-2b^2,代入上述ma表达式:
ma=(1/2)√
=(1/2)√(2b^2+2c^2-a^2)
同理可得:
mb=
mc=
ma=√(c^2+(a/2)^2-ac*cosB)
=(1/2)√(4c^2+a^2-4ac*cosB)
由b^2=a^2+c^2-2ac*cosB
得,4ac*cosB=2a^2+2c^2-2b^2,代入上述ma表达式:
ma=(1/2)√
=(1/2)√(2b^2+2c^2-a^2)
证毕。
第五篇:余弦定理证明
余弦定理证明
在任意△ABC中,作AD⊥BC.∠C对边为c,∠B对边为b,∠A对边为a-->
BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c
勾股定理可知:
AC²=AD²+DC²
b²=(sinB*c)²+(a-cosB*c)²
b²=sin²B*c²+a²+cos²B*c²-2ac*cosB
b²=(sin²B+cos²B)*c²-2ac*cosB+a²
b²=c²+a²-2ac*cosB
所以,cosB=(c²+a²-b²)/2ac
2如右图,在ABC中,三内角A、B、C所对的边分别是a、b、c.以A为原点,AC所在的直线为x轴建立直角坐标系,于是C点坐标是(b,0),由三角函数的定义得B点坐标是(ccosA,csinA).∴CB=(ccosA-b,csinA).现将CB平移到起点为原点A,则AD=CB.而|AD|=|CB|=a,∠DAC=π-∠BCA=π-C,根据三角函数的定义知D点坐标是(acos(π-C),asin(π-C))即D点坐标是(-acosC,asinC),∴AD=(-acosC,asinC)而AD=CB∴(-acosC,asinC)=(ccosA-b,csinA)∴asinC=csinA…………①-acosC=ccosA-b……②由①得asinA=csinC,同理可证asinA=bsinB,∴asinA=bsinB=csinC.由②得acosC=b-ccosA,平方得:a2cos2C=b2-2bccosA+c2cos2A,即a2-a2sin2C=b2-2bccosA+c2-c2sin2A.而由①可得a2sin2C=c2sin2A∴a2=b2+c2-2bccosA.同理可证b2=a2+c2-2accosB,c2=a2+b2-2abcosC.到此正弦定理和余弦定理证明完毕。3△ABC的三边分别为a,b,c,边BC,CA,AB上的中线分别为ma.mb,mc,应用余弦定理证明:
mb=(1/2)
mc=(1/2)ma=√(c^2+(a/2)^2-ac*cosB)
=(1/2)√(4c^2+a^2-4ac*cosB)
由b^2=a^2+c^2-2ac*cosB
得,4ac*cosB=2a^2+2c^2-2b^2,代入上述ma表达式:
ma=(1/2)√
=(1/2)√(2b^2+2c^2-a^2)
同理可得:
mb=
mc=
ma=√(c^2+(a/2)^2-ac*cosB)
=(1/2)√(4c^2+a^2-4ac*cosB)
由b^2=a^2+c^2-2ac*cosB
得,4ac*cosB=2a^2+2c^2-2b^2,代入上述ma表达式:
ma=(1/2)√
=(1/2)√(2b^2+2c^2-a^2)
证毕。