2016考研数学大纲解析及复习重点--函数、极限、连续

时间:2019-05-14 13:53:01下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《2016考研数学大纲解析及复习重点--函数、极限、连续》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《2016考研数学大纲解析及复习重点--函数、极限、连续》。

第一篇:2016考研数学大纲解析及复习重点--函数、极限、连续

凯程考研辅导班,中国最强的考研辅导机构

2016考研数学大纲解析及复习重点--函

数、极限、连续

9月18日这个在中国历史上成为转折点的一天,同样也为2016年参加考研的同学带来了重磅消息—2016年考研大纲正式发布,下面凯程教育数学教研室老师就按章节来分析大纲的要求以及复习该章节的重点:

一、大纲要求:函数、极限、连续

1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、复习重点

本部分重点是极限,前后内容交叉多,综合性强,主要有两个出题点,一个是计算极限,一个是对极限的定义的考查。主要求极限的方法有:

利用极限的四则运算法则、幂指函数运算、连续函数代入法

利用两个重要极限求极限

利用洛必达法则

利用等价无穷小

极限存在准则:夹逼准则,单调有界准则

利用左右极限求分段函数分段点

利用导数定义

利用定积分定义

利用泰勒公式求极限

通过与2015年的数学一大纲比较,今年没有做任何调整,同学们按照原计划复习,夯实基础,把握重点,重视总结、归纳解题思路、方法和技巧,提高解题计算能力必能在2016

凯程考研辅导班,中国最强的考研辅导机构 的考试中创造辉煌。最后祝同学们,金榜题名。

2016考研数学考试大纲对比—高等数学(数二)

大家翘首以待的2016年考研数学大纲终于出炉,凯程教育数学教研室第一时间为各位考生权威、详尽解析大纲变化、预测命题趋势,从而有的放矢地提供备考指导,以帮助同学们快速了解、把握今年的考试方向、复习重点,选择适合的复习方法和策略,以利于同学们在今后复习中,高效学习,取得好成绩。

在逐字逐句的比对后,发现2016年考研数学二大纲与2015年相比,没有发生任何变化,经历了多年统考实践,考研数学的考试内容已趋于完善,因此,相应的考试大纲今年也没有发生变化。考生可以通过研究真题来揣摩命题者的出题规律,从而把握今年命题的思路和趋势,按部就班的进行分析复习,增加复习备考的针对性和有效性。尽管2016年考研数学大纲没有变动,但是仍然需要考生提高横向、纵向梳理考点的能力,只有这样才能拿到高分,所以考生仍然需要扎实备考。

下面我们就看看今年数学二高等数学部分的大纲要求:

一、函数、极限、连续

1.理解函数的概念,掌握函数的表示法,并会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学

1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数的最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间 内,设函数 具有二阶导数.当 时,的图形是凹的;当 时,的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会

凯程考研辅导班,中国最强的考研辅导机构

描绘函数的图形.9.了解曲率、曲率圆和曲率半径的概念,会计算曲率和曲率半径.三、一元函数积分学

1.理解原函数的概念,理解不定积分和定积分的概念.2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.3.会求有理函数、三角函数有理式和简单无理函数的积分.4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.5.了解反常积分的概念,会计算反常积分.6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数平均值.四、多元函数微积分学

1.了解多元函数的概念,了解二元函数的几何意义.2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,了解隐函数存在定理,会求多元隐函数的偏导数.4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标、极坐标).五、常微分方程

1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程及一阶线性微分方程的解法,会解齐次微分方程.3.会用降阶法解下列形式的微分方程: 和.4.理解二阶线性微分方程解的性质及解的结构定理.5.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.6.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.7.会用微分方程解决一些简单的应用问题.所以同学们继续按照原计划复习,夯实基础,把握重点,重视总结、归纳解题思路、方法和技巧,提高解题计算能力必能在2016的考试中创造辉煌。最后祝同学们,金榜题名。

第二篇:高等数学函数极限连续练习题及解析

数学任务——启动——习题

1一、选择题:

(1)函数yxarccosx1的定义域是()

2(A)x1;(B)3x1(C)3,1(D)xx1x3x

1(2)函数yxcosxsinx是()

(A)偶函数(B)奇函数(C)非奇非偶函数(D)奇偶函数

(3)函数y1cos

2x的最小正周期是()

(A)2(B)

(4)与y(C)4(D)1 2x2等价的函数是()

(A)x;(B)x(C)x(D)23x

x11x0(5)fx,则limfx()x0x1x0

(A)-1(B)1(C)0(D)不存在二、填空题:

(1)若f1

t52t2,则ft_________,ft21__________.t



1(2)tsinx3,则______。______,66x

30,1,则fx2的定义域为______,fsinx的定义域为x(3)若fx的定义域为

______,fxaa0的定义域为___,fxafxaa0的定义域为______。

14x

2(4)lim。__________

12x1x2

(5)无穷小量皆以______为极限。

三、计算题

(1)证明函数y11sin在区间0,1上无界,但当x0时,这个函数不是无穷大。xx

(2)求下列极限(1)lim2x33x25

x7x34x21

(3)limtanxtan2x

x

(5)limex1

x

x0

(7)limxsinx1

x0x2arctanx

(2)lim1cos2x x0xsinx(4)lim12n3n1n n(6)limtanxsinxx0sin32x 1(8)limxex1x

(3)设fx

1xx0,求limfx。2x0x1x0

(4)证明数列2,22,222,的极限存在,并求出该极限。

f(x)2x3f(x)2,lim3, 求f(x)(5)设f(x)是多项式, 且lim2xx0xx

(6)证明方程xasinxb,其中a0,b0,至少有一个正根,并且它不超过ab。

x2axb2,求:a,b.(7).lim2x2xx2

第三篇:函数极限与连续

函数、极限与连续

一、基本题

1、函数f

xln6x的连续区间ax2x2x

12、设函数fx,若limfx0,且limfx存在,则 x1x1x12axb

a-1,b

41sin2x

3、limx2sin-2x0xx

4、n2x4/(√2-3)k

5、lim1e2,则k=-1xx

x2axb5,则a3,b-

46、设limx1x

17、设函数fx2xsinx1,gxkx,当x0时,fx~gx,则k

ex2x0

8、函数fx2x10x1的定义域R ;连续区间(-oo,1),(1,+oo)3x1x1

1xsinx

a9、函数fx1xsinbxx0x0在x0处连续,则a1,b1x010、函数fxe

1e11

x1x的间断点为x=0,类型是 跳跃间断点。

11、fx,yx2y2xycosx,则f0,1ft,1y12、fxy,xyx2y2,则fx,yy^2+x13、函数zln

2x2y2的定义域为 {(x,y)|1=0}

14、1e2xylim-12;x,y0,0x2y2exyx,y0,01x2y2x2y2lim

3-12;lim12xyx15、x0

y0

二、计算题

1、求下列极限

(1)0

0型:

1)limexex2x

x0xsin3x;=0

2)limexx

1x0x1e2x;=-1/

43)limtan3xln12x

x01cos2x;=-

34)limtanxsinx

x0xsin2x2;=1/4

(2)

型:

1)lnsin3x

xlim0lnsin2x=1

lim2n13n1

2)n2n3n=3

(3)型:

1)lim11

x0xex1=1/

22)lim

x111x1lnx=-1/2

3)xlimarccosx=π/3

4)xlimx=-1 x0y2

(4)0型:

1)limxarctanx=1x2

2)limx1tanx1x2=-π/2

(5)1型:

21)lim1xx3x2=e^(-6)

4x23x12)limx3x2

3)lim12xx0 =e^(-4)=e^(2/5)1sin5x

14)limcos=e^(-1/2)xx

(6)00型:1)limxsinx=1 x0x2

方法:lim x^sinx=lim e^(sinxlnx)

公式:f(x)^g(x)=e^(g(x)ln(f(x)))

(7)型:1)limx20x

x1x=2

同上

2、已知:fxsin2xln13x2limfx,求fx x0x

f(x)=(sin2x)/x+ln(1-3x)+

2(方法:两边limf(x)x->0)

x2x3、求函数fx的间断点,并判定类型。2xx1驻点x=0,x=1,x=-

11)当x=0+时,f(x)=-1;当x=0-时,f(x)=1 跳跃间断点

2)当x=1时,f(x)=oo;第二类间断点

3)当x=-1时,f(x)=1/2;但f(-1)不存在,所以x=-1是可去间断点

sin2xx

4、设函数fxa

ln1bx1e2xx0x0在定义域内连续,求a与b x0

Lim sin(2x)/x|x->0-=2=a=b/-2=>a=2,b=-

45、证明方程:x33x29x10在0,1内有唯一的实根。(存在性与唯一性)证明:

1)存在性:

令f(x)=x^3-3x^2-9x+1

f(0)=1>0;

f(1)=-10<0;

因为f(0).f(1)<0所以在(0,1)内存在一个实根

2)唯一性

f’(x)=3x^2-6x-9=3(x+1)(x-3)

所以f(x)在(0,1)内为单调减函数

故x33x29x10在0,1内有唯一的实根。

第四篇:函数极限连续试题

····· ········密············································订·········线·································装·····系·····封················· ··················__ __:_ :___: ___________名______________业_姓_____ _号_____ _::___级_ ____别年专______学

· ·····密·········· ·············································卷···线·································阅·······封········································

函数 极限 连续试题

1.设f(x)

(1)f(x)的定义域;(2)12f[f(x)]2

;(3)lim

f(x)x0x

.2.试证明函数f(x)x3ex2

为R上的有界函数.3.求lim1nnln[(11n)(12

n)

(1nn)].4.设在平面区域D上函数f(x,y)对于变量x连续,对于变量y 的一阶偏导数有界,试证:f(x,y)在D上连续.(共12页)第1页

5.求lim(2x3x4x1

x03)x.1(1x)x

6.求lim[

x0e]x.7.设f(x)在[1,1]上连续,恒不为0,求x0

8.求lim(n!)n2

n

.9.设x

axb)2,试确定常数a和b的值.(共12页)第2页

10.设函数f(x)=limx2n1axb

n1x

2n连续,求常数a,b的值.11.若limsin6xxf(x)6f(xx0x30,求lim)

x0x2

.12.设lim

axsinx

x0c(c0),求常数a,b,c的值.xln(1t3)btdt

13.判断题:当x0时,x

1cost2

0t

是关于x的4阶无穷小量.114.设a为常数,且lim(ex

x0

2aarctan1

x)存在,求a的值,并计算极限.ex1

(共12页)第3页

215.设lim[

ln(1ex)x0

1a[x]]存在,且aN,求a的值,并计算极限.ln(1ex)

16.求n(a0).n

17.求limn2(a0,b0).

ln(1

f(x)

18.设lim)

x0

3x1

=5,求limf(x)x0x2.19.设f(x)为三次多项式,且xlim

f(x)f(x)f2ax2axlim4ax4a1,求xlim(x)

3ax3a的值.(共12页)第4页

24.设连续函数f(x)在[1,)上是正的,单调递减的,且

dnf(k)f(x)dx,试证明:数列dn收敛.n

n

20.设x1,求lim(1x)(1x2)(1x4n

n)

(1x2).21.试证明:(1)(1n1111+n)1

为递减数列;(2)n1ln(1n)n,n1,2,3,.limnn

22.求n3nn!

.23.已知数列:a1

112,a222,a32,22

a42

12

1的极限存在,求此极限.22

(共12页)第5页

k1

25.设数列xn,x0a,x1b,求limn

xn.26.求lima2n

n1a2n

.28.求limx

.x1

n2

(xn1xn2)(n2),(共12页)第6页

29.设函数f(x)是周期为T(T0)的连续函数,且f(x)0,试证:

xlim1xx0f(t)dt1TT0f(t)dt.30.求lim1

1n0

x.en

(1x)n

n

31.设lim(1x)x

tetxx

dt,求的值.32.判断函数f(x)limxn1

nxn1的连续性.33.判断函数f(x.(共12页)第7页

34.设f(x)为二次连续可微函数,f(0)=0,定义函数

g(x)

f(0)当x0,试证:g(x)f(x)

x当x0连续可微.35.设f(x)在[a,b]上连续,f(a)f(b),对x(a,b),g(x)lim

f(xt)f(xt)

t0

t

存在,试证:存在c(a,b),使g(c)0.36.若f(x)为[a,b]上定义的连续函数,如果b

a[f(x)]2dx0,试证:

f(x)0(axb).37.设函数f(x)在x=0处连续,且lim

f(2x)f(x)

x0

x

A,试证:f(0)=A.(共12页)第8页

38.设f(x)在[a,b]上二阶可导,过点A(a,f(a))与B(b,f(b))的直线与曲线

yf(x)相交于C(c,f(c)),其中acb.试证:至少存在一点(a,b),使得f()=0.39.设f(x),g(x),h(x)在axb上连续,在(a,b)内可导,试证:

f(a)

g(a)

h(a)

至少存在一点(a,b),使得f(b)

g(b)h(b)=0,并说明拉格朗日中值 f()g()h()

定理和柯西中值定理是它的特例.40.试证明函数ysgnx在x[1,1]上不存在原函数.41.设函数f(x)=nf(x)的不可导点的个数.(共12页)第9页

42.设f(x(0x

),求f(x).43.设xn1(n1,2,3,),0x13,试说明数列xn的极限存在.x0

44.求函数f(x)=sin1

x21

x(2x)的间断点.2cosx

x0

45.求曲线

3的斜渐近线.(共12页)第10页

1

46.求数列nn的最小项.

50.求lim

x.x0

sin1

x

47.求limtan(tanx)sin(sinx)

x0tanxsinx

.48.设f(x)在[0,2]上连续,在(0,2)内有二阶导数,且lim

f(x)

x1(x1)2

1,

f(x)dxf(2),试证:存在(0,2),使得f()=(1+1)f().49.试证:若函数f(x)在点a处连续,则函数f+(x)=maxf(x),0与

f-(x)=minf(x),0在点a处都连续.(共12页)第11页

12页)第12页

(共

第五篇:考研大纲第一章函数与极限

2013年试卷内容结构: 高等教学 约56% 线性代数 约22% 概率论与数理统计22%

试卷题型结构: 单选题8小题每题4分共32分;填空题6小题每题4分共24分; 解答题包括证明题9小题共94分高等数学

一、函数、极限、连续

考试内容

函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立 数列极限与函数极限的定义及其性质 函数的左极限与右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则单调有界准则和夹逼准则 两个重要极限函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质。

考试要求

1理解函数的概念掌握函数的表示法会建立应用问题的函数关系.2了解函数的有界性、单调性、周期性和奇偶性

3理解复合函数及分段函数的概念了解反函数及隐函数的概念

4掌握基本初等函数的性质及其图形了解初等函数的概念.5理解极限的概念理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系

6掌握极限的性质及四则运算法则.7掌握极限存在的两个准则并会利用它们求极限掌握利用两个重要极限求极限的方法

8理解无穷小量、无穷大量的概念掌握无穷小量的比较方法会用等价无穷小量求极限

9理解函数连续性的概念含左连续与右连续会判别函数间断点的类型

10了解连续函数的性质和初等函数的连续性理解闭区间上连续函数的性质有界性、最大值和最小值定理、介值定理并会应用这些性质函数、极限、连续

下载2016考研数学大纲解析及复习重点--函数、极限、连续word格式文档
下载2016考研数学大纲解析及复习重点--函数、极限、连续.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    函数、极限和连续试题及答案

    极限和连续试题(A卷) 1.选择题(正确答案可能不止一个)。 (1)下列数列收敛的是()。 A. xnn1n(1)n B. xn1n(1)n C. xnnsin2 D. xn2n (2)下列极限存在的有()。 A. lim1xsinxB. xlimxsinx C.......

    函数极限与连续教案

    第四讲Ⅰ 授课题目(章节)1.8:函数的连续性Ⅱ 教学目的与要求:1、正确理解函数在一点连续及在某一区间内连续的定义;2、会判断函数的间断点.4、了解初等函数在定义区间内是连续的......

    2012年考研数学大纲函数

    2012年考研数学大纲函数、极限和连续性(一)考试内容 共济 函数的概念及表示法,函数的有界性、单调性、周期性和奇偶性,复合函数、反函数、分段函数和隐函数,基本初等函数的性质及......

    函数极限与连续习题(含答案)

    1、已知四个命题:(1)若 (2)若 (3)若 (4)若f(x)在x0点连续,则f(x)在xx0点必有极限 f(x)在xx0点有极限,则f(x)在x0点必连续 f(x)在xx0点无极限,则f(x)在xx0点一定不连续f(x)在xx0点不连续,......

    高数课件-函数极限和连续范文合集

    一、函数极限和连续自测题 1,是非题 (1)无界变量不一定是无穷大量 (2)若limf(x)a,则f(x)在x0处必有定义 xx012x(3)极限lim2sinxlimx0 xx33x2,选择题 (1)当x0时,无穷小量1x1x是x的 A.......

    多元函数的极限与连续

    数学分析 第16章多元函数的极限与连续计划课时: 1 0 时 第16章多元函数的极限与连续 ( 1 0 时 )§ 1平面点集与多元函数一.平面点集:平面点集的表示: E{(x,y)|(x,y)满......

    二元函数的极限与连续

    §2.3 二元函数的极限与连续 定义 设二元函数有意义, 若存在 常数A,都有 则称A是函数当点 趋于点 或 或趋于点时的极限,记作 。 的方式无关,即不,当(即)时,在点的某邻域内 或......

    多元函数的极限与连续

    多元函数的极限 1. 求下列极限: x2y111)lim(4x3y); 2)lim(xy)sinsin;3)lim2. 2x0x2x0xyxyy0y1y022. 证明:若f(x,y) xy,(xy0),求 limlimf(x,y)与limlimf(x,y). x0y0y0x0xyx4y43. 设函数......