第一篇:导数公式证明大全
导数的定义:f'(x)=lim Δy/Δx Δx→0(下面就不再标明Δx→0了)用定义求导数公式(1)f(x)=x^n
证法一:(n为自然数)f'(x)=lim [(x+Δx)^n-x^n]/Δx =lim(x+Δx-x)[(x+Δx)^(n-1)+x*(x+Δx)^(n-2)+...+x^(n-2)*(x+Δx)+x^(n-1)]/Δx =lim [(x+Δx)^(n-1)+x*(x+Δx)^(n-2)+...+x^(n-2)*(x+Δx)+x^(n-1)] =x^(n-1)+x*x^(n-2)+x^2*x^(n-3)+...x^(n-2)*x+x^(n-1)=nx^(n-1)
证法二:(n为任意实数)
f(x)=x^n lnf(x)=nlnx(lnf(x))'=(nlnx)' f'(x)/f(x)=n/x f'(x)=n/x*f(x)f'(x)=n/x*x^n f'(x)=nx^(n-1)
(2)f(x)=sinx f'(x)=lim(sin(x+Δx)-sinx)/Δx=lim(sinxcosΔx+cosxsinΔx-sinx)/Δx =lim(sinx+cosxsinΔx-sinx)/Δx=lim cosxsinΔx/Δx=cosx
(3)f(x)=cosx f'(x)=lim(cos(x+Δx)-cosx)/Δx=lim(cosxcosΔx-sinxsinΔx-cosx)/Δx =lim(cosx-sinxsinΔx-cos)/Δx=lim-sinxsinΔx/Δx=-sinx
(4)f(x)=a^x f'(x)=lim(a^(x+Δx)-a^x)/Δx=lim a^x*(a^Δx-1)/Δx(设a^Δx-1=m,则Δx=loga^(m+1))
=lim a^x*m/loga^(m+1)=lim a^x*m/[ln(m+1)/lna]=lim a^x*lna*m/ln(m+1)=lim a^x*lna/[(1/m)*ln(m+1)]=lim a^x*lna/ln[(m+1)^(1/m)] =lim a^x*lna/lne=a^x*lna
若a=e,原函数f(x)=e^x 则f'(x)=e^x*lne=e^x
(5)f(x)=loga^x f'(x)=lim(loga^(x+Δx)-loga^x)/Δx
=lim loga^[(x+Δx)/x]/Δx=lim loga^(1+Δx/x)/Δx=lim ln(1+Δx/x)/(lna*Δx)=lim x*ln(1+Δx/x)/(x*lna*Δx)=lim(x/Δx)*ln(1+Δx/x)/(x*lna)=lim ln[(1+Δx/x)^(x/Δx)]/(x*lna)=lim lne/(x*lna)=1/(x*lna)
若a=e,原函数f(x)=loge^x=lnx则f'(x)=1/(x*lne)=1/x(6)f(x)=tanx f'(x)=lim(tan(x+Δx)-tanx)/Δx=lim(sin(x+Δx)/cos(x+Δx)-sinx/cosx)/Δx =lim(sin(x+Δx)cosx-sinxcos(x+Δx)/(Δxcosxcos(x+Δx))=lim(sinxcosΔxcosx+sinΔxcosxcosx-sinxcosxcosΔx+sinxsinxsinΔx)/(Δxcosxcos(x+Δx))=lim sinΔx/(Δxcosxcos(x+Δx))=1/(cosx)^2=secx/cosx=(secx)^2=1+(tanx)^2
(7)f(x)=cotx f'(x)=lim(cot(x+Δx)-cotx)/Δx=lim(cos(x+Δx)/sin(x+Δx)-cosx/sinx)/Δx =lim(cos(x+Δx)sinx-cosxsin(x+Δx))/(Δxsinxsin(x+Δx))=lim(cosxcosΔxsinx-sinxsinxsinΔx-cosxsinxcosΔx-cosxsinΔxcosx)/(Δxsinxsin(x+Δx))=lim-sinΔx/(Δxsinxsin(x+Δx))=-1/(sinx)^2=-cscx/sinx=-(secx)^2=-1-(cotx)^2
(8)f(x)=secx f'(x)=lim(sec(x+Δx)-secx)/Δx=lim(1/cos(x+Δx)-1/cosx)/Δx =lim(cosx-cos(x+Δx)/(ΔxcosxcosΔx)=lim(cosx-cosxcosΔx+sinxsinΔx)/(Δxcosxcos(x+Δx))=lim sinxsinΔx/(Δxcosxcos(x+Δx))=sinx/(cosx)^2=tanx*secx
(9)f(x)=cscx f'(x)=lim(csc(x+Δx)-cscx)/Δx=lim(1/sin(x+Δx)-1/sinx)/Δx =lim(sinx-sin(x+Δx))/(Δxsinxsin(x+Δx))=lim(sinx-sinxcosΔx-sinΔxcosx)/(Δxsinxsin(x+Δx))=lim-sinΔxcosx/(Δxsinxsin(x+Δx))=-cosx/(sinx)^2=-cotx*cscx
(10)f(x)=x^x lnf(x)=xlnx(lnf(x))'=(xlnx)' f'(x)/f(x)=lnx+1 f'(x)=(lnx+1)*f(x)f'(x)=(lnx+1)*x^x(12)h(x)=f(x)g(x)h'(x)=lim(f(x+Δx)g(x+Δx)-f(x)g(x))/Δx =lim [(f(x+Δx)-f(x)+f(x))*g(x+Δx)+(g(x+Δx)-g(x)-g(x+Δx))*f(x)]/Δx =lim [(f(x+Δx)-f(x))*g(x+Δx)+(g(x+Δx)-g(x))*f(x)+f(x)*g(x+Δx)-f(x)*g(x+Δx)]/Δx =lim(f(x+Δx)-f(x))*g(x+Δx)/Δx+(g(x+Δx)-g(x))*f(x)/Δx=f'(x)g(x)+f(x)g'(x)(13)h(x)=f(x)/g(x)h'(x)=lim(f(x+Δx)/g(x+Δx)-f(x)g(x))/Δx =lim(f(x+Δx)g(x)-f(x)g(x+Δx))/(Δxg(x)g(x+Δx))=lim [(f(x+Δx)-f(x)+f(x))*g(x)-(g(x+Δx)-g(x)+g(x))*f(x)]/(Δxg(x)g(x+Δx))=lim [(f(x+Δx)-f(x))*g(x)-(g(x+Δx)-g(x))*f(x)+f(x)g(x)-f(x)g(x)]/(Δxg(x)g(x+Δx))=lim(f(x+Δx)-f(x))*g(x)/(Δxg(x)g(x+Δx))-(g(x+Δx)-g(x))*f(x)/(Δxg(x)g(x+Δx))=f'(x)g(x)/(g(x)*g(x))-f(x)g'(x)/(g(x)*g(x))=[f'(x)g(x)-f(x)g'(x)]/(g(x)*g(x))x(14)h(x)=f(g(x))h'(x)=lim [f(g(x+Δx))-f(g(x))]/Δx =lim [f(g(x+Δx)-g(x)+g(x))-f(g(x))]/Δx(另g(x)=u,g(x+Δx)-g(x)=Δu)=lim(f(u+Δu)-f(u))/Δx=lim(f(u+Δu)-f(u))*Δu/(Δx*Δu)=lim f'(u)*Δu/Δx=lim f'(u)*(g(x+Δx)-g(x))/Δx=f'(u)*g'(x)=f'(g(x))g'(x)总结一下
(x^n)'=nx^(n-1)(sinx)'=cosx(cosx)'=-sinx(a^x)'=a^xlna(e^x)'=e^x(loga^x)'=1/(xlna)(lnx)'=1/x(tanx)'=(secx)^2=1+(tanx)^2(cotx)'=-(cscx)^2=-1-(cotx)^2(secx)'=tanx*secx(cscx)'=-cotx*cscx(x^x)'=(lnx+1)*x^x [f(x)g(x)]'=f'(x)g(x)+f(x)g'(x)[f(x)/g(x)]'=[f'(x)g(x)-f(x)g'(x)]/(g(x)*g(x))[f(g(x))]'=f'(g(x))g'(x)
第二篇:导数证明不等式
导数证明不等式
一、当x>1时,证明不等式x>ln(x+1)
f(x)=x-ln(x+1)
f'(x)=1-1/(x+1)=x/(x+1)
x>1,所以f'(x)>0,增函数
所以x>1,f(x)>f(1)=1-ln2>0
f(x)>0
所以x>0时,x>ln(x+1)
二、导数是近些年来高中课程加入的新内容,是一元微分学的核心部分。本文就谈谈导数在一元不等式中的应用。
例1.已知x∈(0,),求证:sinx
第三篇:公式及证明
初中数学几何定理
1。同角(或等角)的余角相等。2。对顶角相等。3。三角形的一个外角等于和它不相邻的两个内角之和。4。在同一平面内垂直于同一条直线的两条直线是平行线。
5。同位角相等,两直线平行。6。等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合。7。直角三角形中,斜边上的中线等于斜边的一半。
8。在角平分线上的点到这个角的两边距离相等。及其逆定理。
9。夹在两条平行线间的平行线段相等。夹在两条平行线间的垂线段相等。
10。一组对边平行且相等、或两组对边分别相等、或对角线互相平分的四边形是平行四边形。
11。有三个角是直角的四边形、对角线相等的平行四边形是矩形。
12。菱形性质:四条边相等、对角线互相垂直,并且每一条对角线平分一组对角。
13。正方形的四个角都是直角,四条边相等。两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角。
14。在同圆或等圆中,如果两个圆心角、两条弧、两条弦、两个弦心距中有一对相等,那么它们所对应的其余各对量都相等。15。垂直于弦的直径平分这条弦,并且平分弦所对弧。平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。16。直角三角形被斜边上的高线分成的两个直角三角形和原三角形相似。
17。相似三角形对应高线的比,对应中线的比和对应角平分线的比都等于相似比。相似三角形面积的比等于相似比的平方。
18.圆内接四边形的对角互补,并且任何一个外角等于它的内对角。
19。切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线。
20。切线的性质定理①经过圆心垂直于切线的直线必经过切点。②圆的切线垂直于经过切点的半径。③经过切点垂直于切线的直线必经过圆心。
21。切线长定理 从圆外一点引圆的两条切线,它们的切线长相等。连结圆外一点和圆心的直线,平分从这点向圆所作的两条切线所夹的角。
22。弦切角定理 弦切角的度数等于它所夹的弧的度数的一半。弦切角等于它所夹的弧所对的圆周角。
23。相交弦定理; 切割线定理; 割线定理;
初中数学几何一般证题途径:证明两线段相等
1.两全等三角形中对应边相等 2.同一三角形中等角对等边
3.等腰三角形顶角的平分线或底边的高平分底边
4.平行四边形的对边或对角线被交点分成的两段相等
5.直角三角形斜边的中点到三顶点距离相等
6.线段垂直平分线上任意一点到线段两段距离相等
7.角平分线上任一点到角的两边距离相等
8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等
9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等
10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等
11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等
12.两圆的内(外)公切线的长相等 13.等于同一线段的两条线段相等
证明两个角相等
1.两全等三角形的对应角相等 2.同一三角形中等边对等角
3.等腰三角形中,底边上的中线(或高)平分顶角
4.两条平行线的同位角、内错角或平行四边形的对角相等
5.同角(或等角)的余角(或补角)相等 6.同圆(或等圆)中,等弦(或同弧)所对的圆心角相等,圆周角相等,弦切角等于它所夹的弧对的圆周角
7.圆外一点引圆的两条切线,圆心和这一点的连线平分两条切线的夹角
8.相似三角形的对应角相等 9.圆的内接四边形的外角等于内对角
10.等于同一角的两个角相等
证明两直线平行
1.垂直于同一直线的各直线平行 2.同位角相等,内错角相等或同旁内角互补的两直线平行
3.平行四边形的对边平行 4.三角形的中位线平行于第三边
5.梯形的中位线平行于两底 6.平行于同一直线的两直线平行 7.一条直线截三角形的两边(或延长线)所得的线段对应成比例,则这条直线平等行于第三边
证明两条直线互相垂直
1.等腰三角形的顶角平分线或底边的中线垂直于底边
2.三角形中一边的中线若等于这边一半,则这一边所对的角是直角
3.在一个三角形中,若有两个角互余,则第三个角是直角
4.邻补角的平分线互相垂直 5.一条直线垂直于平行线中的一条,则必垂直于另一条
6.两条直线相交成直角则两直线垂直
7.利用到一线段两端的距离相等的点在线段的垂直平分线上
8.利用勾股定理的逆定理 9.利用菱形的对角线互相垂直
10.在圆中平分弦(或弧)的直径垂直于弦 11.利用半圆上的圆周角是直角
证明线段的和差倍分
1.作两条线段的和,证明与第三条线段相等
2.在第三条线段上截取一段等于第一条线段,证明余下部分等于第二条线段
3.延长短线段为其二倍,再证明它与较长的线段相等
4.取长线段的中点,再证其一半等于短线段
5.利用一些定理(三角形的中位线、含30度的直角三角形、直角三角形斜边上的中线、三角形的重心、相似三角形的性质等)
证明角的和差倍分
1.与证明线段的和、差、倍、分思路相同 2.利用角平分线的定义
3.三角形的一个外角等于和它不相邻的两个内角的和
证明线段不等
1.同一三角形中,大角对大边 2.垂线段最短
3.三角形两边之和大于第三边,两边之差小于第三边
4.在两个三角形中有两边分别相等而夹角不等,则夹角大的第三边大
5.同圆或等圆中,弧大弦大,弦心距小 6.全量大于它的任何一部分
证明两角的不等
1.同一三角形中,大边对大角 2.三角形的外角大于和它不相邻的任一内角
3.在两个三角形中有两边分别相等,第三边不等,第三边大的,两边的夹角也大
4.同圆或等圆中,弧大则圆周角、圆心角大 5.全量大于它的任何一部分
证明比例式或等积式
1.利用相似三角形对应线段成比例 2.利用内外角平分线定理
3.平行线截线段成比例 4.直角三角形中的比例中项定理即射影定理
5.与圆有关的比例定理:相交弦定理、切割线定理及其推论
6.利用比利式或等积式化得
证明四点共圆
1.对角互补的四边形的顶点共圆 2.外角等于内对角的四边形内接于圆
3.同底边等顶角的三角形的顶点共圆(顶角在底边的同侧)
4.同斜边的直角三角形的顶点共圆 5.到顶点距离相等的各点共圆
二、空间与图形
A:图形的认识:
1:点,线,面
点,线,面:①图形是由点,线,面构成的。②面与面相交得线,线与线相交得点。③点动成线,线动成面,面动成体。
展开与折叠:①在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的所有侧棱长相等,棱柱的上下底面的形状相同,侧面的形状都是长方体。②N棱柱就是底面图形有N条边的棱柱。
一个几何体:用一个平面去截一个图形,截出的面叫做截面。
3视图:主视图,左视图,俯视图。
多边形:他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形。
弧,扇形:①由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形。②圆可以分割成若干个扇形。
2:角
线:①线段有两个端点。②将线段向一个方向无限延长就形成了射线。射线只有一个端点。③将线段的两端无限延长就形成了直线。直线没有端点。④经过两点有且只有一条直线。比较长短:①两点之间的所有连线中,线段最短。②两点之间线段的长度,叫做这两点之间的距离。
角的度量与表示:①角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。②一度的1/60是一分,一分的1/60是一秒。
角的比较:①角也可以看成是由一条射线绕着他的端点旋转而成的。②一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。始边继续旋转,当他又和始边重合时,所成的角叫做周角。③从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。
平行:①同一平面内,不相交的两条直线叫做平行线。②经过直线外一点,有且只有一条直线与这条直线平行。③如果两条直线都与第3条直线平行,那么这两条直线互相平行。垂直:①如果两条直线相交成直角,那么这两条直线互相垂直。②互相垂直的两条直线的交点叫做垂足。③平面内,过一点有且只有一条直线与已知直线垂直。
3:相交线与平行线
角:①如果两个角的和是直角,那么称和两个角互为余角;如果两个角的和是平角,那么称这两个角互为补角。②同角或等角的余角/补角相等。③对顶角相等。④同位角相等/内错角相等/同旁内角互补,两直线平行,反之亦然。
4:三角形
三角形:①由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。②三角形任意两边之和大于第三边。三角形任意两边之差小于第三边。③三角形三个内角的和等于180度。④三角形分锐角三角形/直角三角形/钝角三角形。⑤直角三角形的两个锐角互余。⑥三角形中一个内角的角平分线与他的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。⑦三角形中,连接一个顶点与他对边中点的线段叫做这个三角形的中线。⑧三角形的三条角平分线交于一点,三条中线交于一点。⑨从三角形的一个顶点向他的对边所在的直线作垂线,顶点和垂足之间的线段叫做三角形的高。⑩三角形的三条高所在的直线交于一点。
图形的全等:全等图形的形状和大小都相同。两个能够重合的图形叫全等图形。全等三角形:①全等三角形的对应边/角相等。②条件:SSS/AAS/ASA/SAS/HL。勾股定理:直角三角形两直角边的平方和等于斜边的平方,反之亦然。
5:四边形
平行四边形的性质:①两组对边分别平行的四边形叫做平行四边形。②平行四边形不相邻的两个顶点连成的线段叫他的对角线。③平行四边形的对边/对角相等。④平行四边形的对角线互相平分。
平行四边形的判定条件:两条对角线互相平分的四边形/一组对边平行且相等的四边形/两组对边分别相等的四边形/定义。
菱形:①一组邻边相等的平行四边形是菱形。②领心的四条边相等,两条对角线互相垂直平分,每一组对角线平分一组对角。③判定条件:定义/对角线互相垂直的平行四边形/四条边都相等的四边形。
矩形与正方形:①有一个内角是直角的平行四边形叫做矩形。②矩形的对角线相等,四个角都是直角。③对角线相等的平行四边形是矩形。④正方形具有平行四边形,矩形,菱形的一切性质。⑤一组邻边相等的矩形是正方形。
梯形:①一组对边平行而另一组对边不平行的四边形叫梯形。②两条腰相等的梯形叫等腰梯形。③一条腰和底垂直的梯形叫做直角梯形。④等腰梯形同一底上的两个内角相等,对角线星等,反之亦然。
多边形:①N边形的内角和等于(N-2)180度。②多边心内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角,在每个顶点处取这个多边形的一个外角,他们的和叫做这个多边形的内角和(都等于360度)
平面图形的密铺:三角形,四边形和正六边形可以密铺。
中心对称图形:①在平面内,一个图形绕某个点旋转180度,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做他的对称中心。②中心对称图形上的每一对对应点所连成的线段都被对称中心平分。
B:图形与变换:
1:图形的轴对称
轴对称:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。
轴对称图形:①角的平分线上的点到这个角的两边的距离相等。②线段垂直平分线上的点到这条线段两个端点的距离相等。③等腰三角形的“三线合一”。
轴对称的性质:对应点所连的线段被对称轴垂直平分,对应线段/对应角相等。
2:图形的平移和旋转
平移:①在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做平移。②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等。
旋转:①在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动叫做旋转。②经过旋转,图形商店每一个点都绕旋转中心沿相同方向转动了相同的角度,任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等。3:图形的相似
比:①A/B=C/D,那么AD=BC,反之亦然。②A/B=C/D,那么A土B/B=C土D/D。③A/B=C/D=。。=M/N,那么A+C+。。+M/B+D+。。N=A/B。
黄金分割:点C把线段AB分成两条线段AC与BC,如果AC/AB=BC/AC,那么称线段AB被点C黄金分割,点C叫做线段AB的黄金分割点,AC与AB的比叫做黄金比(根号5-1/2)。相似:①各角对应相等,各边对应成比例的两个多边形叫做相似多边形。②相似多边形对应
边的比叫做相似比。
相似三角形:①三角对应相等,三边对应成比例的两个三角形叫做相似三角形。②条件:AA/SSS/SAS。
相似多边形的性质:①相似三角形对应高,对应角平分线,对应中线的比都等于相似比。②相似多边形的周长比等于相似比,面积比等于相似比的平方。
图形的放大与缩小:①如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过同一个点,那么这样的两个图形叫做位似图形,这个点叫做位似中心,这时的相似比又称为位似比。②位似图形上任意一对对应点到位似中心的距离之比等于位似比。
D:证明
定义与命题:①对名称与术语的含义加以描述,作出明确的规定,也就是给出他们的定义。②对事情进行判断的句子叫做命题(分真命题与假命题)。③每个命题是由条件和结论两部分组成。④要说明一个命题是假命题,通常举出一个离子,使之具备命题的条件,而不具有命题的结论,这种例子叫做反例。
公理:①公认的真命题叫做公理。②其他真命题的正确性都通过推理的方法证实,经过证明的真命题称为定理。③同位角相等,两直线平行,反之亦然;SAS/ASA/SSS,反之亦然;同旁内角互补,两直线;平行,反之亦然;内错角相等,两直线平行,反之亦然;三角形三个内角的和等于180度;三角形的一个外交等于和他不相邻的两个内角的和;三角心的一个外角大于任何一个和他不相邻的内角。④由一个公理或定理直接推出的定理,叫做这个公理或定理的推论。
第四篇:应用导数证明不等式
应用导数证明不等式
常泽武指导教师:任天胜
(河西学院数学与统计学院 甘肃张掖 734000)
摘要: 不等式在初等数学和高等代数中有广泛的应用,证明方法很多,本文以函数的观点来认识不等式,以导数为工具来证明不等式。
关键字: 导数 不等式最值中值定理单调性泰勒公式
中图分类号: O13
Application derivative to testify inequality
ChangZeWu teachers: RenTianSheng
(HeXi institute of mathematics and statistics Gansu zhang ye 734000)Abstract: He inequality in elementary mathematics and higher algebra is widely used, proved many methods, based on the function point of view to know inequality to derivative tools to prove to inequality.Key words: The most value of derivative inequality value theorem monotonicity Taylor formula
1.利用微分中值定理来证明不等式
在数学分析中,我们学到了拉格朗日中值定理,其内容为:
定理1.如果函数fx在闭区间a,b上连续,在开区间a,b上可导,则至少存在一点a,b,使得f'()
拉格朗日中值定理是探讨可微函数的的几何特性及证明不等式的重要工具,我们可以根据以下两种方法来证明。
(1)首先,分析不等式通过变形,将其特殊化。其次,选取合适的函数和范围。第三,利用拉格朗日中值定理。最后,在根据函数的单调性和最大值和最小值。
(2)我们可根据其两种等价表述方式
①f(b)f(a)f'(a(ba))(ba),01
②fahfaf'ahh,01
我们可以的范围来证明不等式。f(b)f(a)。ba
11(x0)例1.1证明不等式ln(1)x1x
证明第一步变形1 ln(1)ln(1x)ln(x)x
第二步选取合适的函数和范围
令f(x)lnttx,1x
第三步应用拉格朗日中值定理
存在x,1x使得f'()f(1x)f(x)(1x)(x)
即ln(1x)ln(x)1
而 <1+x 1 1x
1x1)而0x 即ln(x1xln(1x)ln(x)
例 1.2证明:h>-1且h0都有不等式成立:
hln(1h)h 1h
证明:令f(x)=ln(1+x),有拉格朗日中值定理,0,1使得
ln(1h)f(h)f(0)f'(h)h
当h>0时有
1h11h,当1h0时有
11h1h0,即h.1h1hh;1h1h1hh.1h1h
2.利用函数单调性证明不等式
我们在初等数学当中学习不等式的证明时用到了两种方法:一种是判断它们差的正负,另一种是判断它们的商大于1还是小于1.而我们今天所要讨论的是根据函数的导数的思想来判断大小。
定理:设函数f(x)在a,b上连续,在a,b可导,那么
(1)若在a,b内f'(x)0则f(x)在a,b内单调递增。
(2)若在a,b内f'(x)0则f(x)在a,b内单调递减。
使用定理:要证明区间a,b上的不等式f(x)g(x),只需令F(x)f(x)。g使在(x)a,b上F'(x)>0(F'(x)<0)且F(a)=0或(F(b)=0)例2.1 设x0证明不等式ln(1x)xex
证明:令F(x)ln(1x)xex(x>0)
显然F(0)0
1exx21xx(x>0)F'(x)exex1x(1x)e
现在来证明exx210
令f(x)exx21显然f(0)0
当x0时f'(x)ex2x0
于是得f(x)在x0上递增
故对x0有f(x)f(0)f(x)0
而(1x)ex0
所以F'(x)0故F(x)递增
又因为F(0)0
所以F(x)0
所以ln(1x)xex成立
3.利用函数的最大值和最小值证明不等式
当等式中含有“=”号时,不等式f(x)g(x)(或f(x)g(x)) g(x)f(x)0(或g(x)f(x)0),亦即等价于函数G(x)g(x)f(x)有最小值或F(x)f(x)g(有最大值。x)
证明思路:由待正不等式建立函数,通过导数求出极值并判断时极大值还是极小值,在求出最大值或最小值,从而证明不等式。
1例3.1证明若p>1,则对于0,1中的任意x有p1xp(1x)p1 2
证明:构造函数f(x)xp(1x)p(0x1)
则有f'(x)pxp1p(1x)p1p(xp1(1x)p1)
令f'(x)0,可得xp1(1x)p1,于是有x1x,从而求得x1。由于2
函数f(x)在闭区间0,1上连续,因而在闭区间0,1上有最小值和最大值。
由于函数f(x)内只有一个驻点,没有不可导点,又函数f(x)在驻点x1和2
111p1)p1,f(0)f(1),区间端点(x0和x1)的函数值为f())p(1所以2222
1f(x)在0,1的最小值为p1,最大值为1,从而对于0,1中的任意x有2
11f(x)1xp(1x)p1。,既有p1p122
4.利用函数的泰勒展式证明不等式
若函数f(x)在含有x0的某区间有定义,并且有直到(n1)阶的各阶导数,又在x0处有n阶导数f(n)(x0),则有展式: f'(x0)f''(x0)fn(x0)2(xx0)(xx0)(xx0)nRn(x)f(x)f(x0)1!2!n!
在泰勒公式中,取x0=0,变为麦克劳林公式
f'(0)f''(0)2fn(0)nf(x)f(0)(x)(x)(x)Rn(x)1!2!n!
在上述公式中若Rn(x)0(或0)则可得
f'(0)f''(0)2fn(0)nf(x)f(0)(x)(x)(x),1!2!n!
f'(0)f''(0)2fn(0)n(x)(x)(x)。或f(x)f(0)1!2!n!
带有拉格朗日余项的泰勒公式的实质是拉格朗日微分中值定理的深化,他是一个定量估计式,该公式在不等式证明和微分不等式证明及较为复杂的极限计算中有广泛的应用。
用此公式证明不等式就是要把所证不等式化简,其中函数用此公式,在把公式右边放大或缩小得到所证不等式。
例4.1若函数f(x)满足:(1)在区间a,b上有二阶导函数f''(x),(2)
f'(a)f'(b)0,则在区间a,b内至少存在一点c,使
f''(c)4f(b)f(a)。2(ba)
证明:由f(x)在xa和xb处的泰勒公式,并利用f'(a)f'(b)0,得f(x)f(a)f''()(xa)2
2!f''()f(x)f(b)(xb)2,于是2!
abf''()(ba)2abf()f(a)(a),22!42
abf''()(ba)2abf()f(b)(a),22!42
f''()f''()(ba)2
相减,得f(b)-f(a)=,24
4f(b)f(a)1(ba)2
即f''()f(),(ba)224
当f''()f''()时,记c否则记c=,那么
f''(c)4f(b)f(a)(abc)(ba)2
参 考 文 献
《数学分析》上册,高等教育出版社,1990.1郑英元,毛羽辉,宋国栋编,2赵焕光,林长胜编《数学分析》上册,四川大学出版社,2006。3欧阳光中,姚允龙,周渊编《数学分析》上册,复旦大学出版社,2004.4华东师范大学数学系编《数学分析》上册,第三版,高等教育出版社2001.
第五篇:利用导数证明不等式
利用导数证明不等式
例1.已知x>0,求证:x>ln(1+x)分析:设f(x)=x-lnx。x[0,+。考虑到f(0)=0,要证不等式变为:x>0时,f(x)>f(0),这只要证明:
f(x)在区间[0,)是增函数。
证明:令:f(x)=x-lnx,容易看出,f(x)在区间[0,)上可导。
且limf(x)0f(0)x0 由f'(x)11x 可得:当x(0,)时,f'(x)f(0)0 x1x1 即x-lnx>0,所以:x>0时,x>lnx 评注:要证明一个一元函数组成的不等式成立,首先根据题意构造出一个
函数(可以移项,使右边为零,将移项后的左式设为函数),并利 用导数判断所设函数的单调性,再根据函数单调性的定义,证明要 证的不等式。
例2:当x0,时,证明不等式sinxx成立。证明:设f(x)sinxx,则f'(x)cosx1.∵x(0,),∴f'(x)0.∴f(x)sinxx在x(0,)内单调递减,而f(0)0.∴f(x)sinxxf(0)0, 故当x(0,)时,sinxx成立。
点评:一般地,证明f(x)g(x),x(a,b),可以构造函数F(x)f(x)g(x),如果F'(x)0,,则F(x)在(a,b)上是减函数,同时若F(a)0,由减函数的定义可知,x(a,b)时,有F(x)0,即证明了f(x)g(x)。
x练习:1.当x0时,证明不等式e1x12x成立。2证明:设fxe1xx12x,则f'xex1x.2xxx令g(x)e1x,则g'(x)e1.当x0时,g'xe10.g(x)在0,上单调递增,而g(0)0.gxg(0)0,g(x)0在0,上恒成立,f(x)在即f'(x)0在0,恒成立。0,上单调递增,又f(0)0,ex1x1x20,即x0时,ex222.证明:当x1时,有ln(x1)lnxln(x2).1x12x成立。2分析 只要把要证的不等式变形为
ln(x1)ln(x2),然后把x相对固定看作常数,并选取辅助函
lnxln(x1)数f(x)ln(x1).则只要证明f(x)在(0,)是单调减函数即可.lnx证明: 作辅助函数f(x)ln(x1)(x1)lnxlnxln(x1)xlnx(x1)ln(x1)于是有f(x)x12x
lnxx(x1)ln2x因为 1xx1, 故0lnxln(x1)所以 xlnx(x1)ln(x1)
(1,)因而在内恒有f'(x)0,所以f(x)在区间(1,)内严格递减.又因为1x1x,可知f(x)f(x1)即 ln(x1)ln(x2)lnxln(x1)所以 ln2(x1)lnxln(x2).利用导数知识证明不等式是导数应用的一个重要方面,也成为高考的一个新热点,其关键是构造适当的函数,判断区间端点函数值与0的关系,其实质就是利用求导的方法研究函数的单调性,通过单调性证明不等式。
x2例3.证明不等式xln(1x)x,其中x0.2x2分析 因为例6中不等式的不等号两边形式不一样,对它作差ln(1x)(x),则发现作差以后
21x)求导得不容易化简.如果对ln(1,这样就能对它进行比较.1xx2证明: 先证 xln(1x)
2x2设 f(x)ln(1x)(x)(x0)
21x210)00 f(x)则 f(0)ln(1x1x1x' x0 即 1x0 x20
x2 f(x)0 ,即在(0,)上f(x)单调递增
1xx2 f(x)f(0)0 ln(1x)x
21x)x;令 g(x)ln(1x)x 再证 ln(则 g(0)0 g(x)11 1x1ln(1x)x x0 1 g(x)0 1xx2 xln(1x)x 练习:3(2001年全国卷理20)已知i,m,n是正整数,且1imn
证明:(1m)n(1n)m
分析:要证(1m)n(1n)m成立,只要证
ln(1m)nln(1n)m
即要证11ln(1m)ln(1n)成立。因为m 11ln(1m)ln(1n); mn从而:(1m)n(1n)m。 评注:这类非明显一元函数式的不等式证明问题,首先变换成某一个一元函数式分别在两个不同点处的函数值的大小比较问题,只要将这个函数式找到了,通过设函数,求导判断它的单调性,就可以解决不等式证明问题。难点在于找这个一元函数式,这就是“构造函数法”,通过这类数学方法的练习,对培养分析问题、解决问题的能力是有很大好处的,这也是进一步学习高等数学所需要的。