第一篇:海伦公式的证明
与海伦在他的著作“Metrica”(《度量论》)中的原始证明不同,在此我们用三角公式和公式变形来证明。设三角形的三边a、b、c的对角分别为A、B、C,则余弦定理为cosC =(a^2+b^2-c^2)/2abS=1/2*ab*sinC=1/2*ab*√(1-cos^2 C)=1/2*ab*√[1-(a^2+b^2-c^2)^2/4a^2*b^2]=1/4*√[4a^2*b^2-(a^2+b^2-c^2)^2]=1/4*√[(2ab+a^2+b^2-c^2)(2ab-a^2-b^2+c^2)]=1/4*√[(a+b)^2-c^2][c^2-(a-b)^2]=1/4*√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)]设p=(a+b+c)/2则p=(a+b+c)/2, p-a=(-a+b+c)/2, p-b=(a-b+c)/2,p-c=(a+b-c)/2,上式=√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)/16]=√[p(p-a)(p-b)(p-c)]所以,三角形ABC面积S=√[p(p-a)(p-b)(p-c)]
第二篇:海伦公式的几种证明与推广
海伦公式的几种证明与推广
古镇高级中学付增德
高中数学必修⑤第一章在阅读与思考栏目向学生介绍一个非常重要且优美的公式——海伦公式〔Heron's Formula〕:假设有一个三角形,边长分别为a,b,c,,三角形的面积S可由以下公式求得:
s
(pa)(pb)(pc),而公式里的p
2(abc),称为半周长。
图
1C
海伦公式又译希伦公式,传说是古代的叙拉古国王希伦二世发现的公式,利用三角形的三条边长来求取三角形面积。但根据Morris Kline在1908年出版的著作考证,这条公式其实是阿基米德所发现,以托希伦二世的名发表。由于任何n边的多边形都可以分割成n-2个三角形,所以海伦公式可以用作求多边形面积的公式。比如说测量土地的面积的时候,不用测三角形的高,只需测两点间的距离,就可以方便地导出答案。海伦公式形式漂亮,结构工整,有多种变形,如:S=
p(pa)(pb)(pc)
===
14141
4(abc)(abc)(acb)(bca)(a
=
[(ab)c][c14
4ab
(ab)]
b
c
2ab)[(a
b
c
2ab)]
=
(a
bc)
2ab
2ac
2bc
abc
absinC和余弦定理
教课书中并以习题形式出现,给出的参考答案是利用三角形面积计算公式s
c
a
b
2abcosC的证明过程:sabsinC=ab1cosnC=
ab1(a
b
c
2ab)
下略。我国南宋著名数学家秦九韶也发现了与海伦公式等价的“三斜求积”公式,中国古代的天元术发展水平非常高,笔者猜想秦九韶在独立推出“三斜求积”公式过程中,利用了解方程的方法,因此海伦公式可以作如下推证,从三角形最基本的面积公式SABC
aha入手,利用勾股定理,布列方程组求高。
如图2,B
图2
C
x2y2c2
222
2acb22
在△ABC中,AD为边BC上的高,根据勾股定理,有xzb解方程,得y,2a
yzaz
a
b
c
2a,xc
y
c
(a
c
b
2a)
12a
4ac
(a
c
b)下略。在求
高的方法上,我们也可以用斯特瓦尔特定理,根据斯氏定理,△ABC顶点A于对边BC上任一点D间的距离AD有下列等式确定:AB
AD
DCAC
BDAD
BCBDDCBC,等式改写为
AB
DCBC
AC
BDBC
BC
DCBC
BDBC
aa
而当点D是顶点A的正射影时,有
BDDC
ABcosBACcosC
cb
bc
22,利用比例的性质,变形得
BDBC
a
c
b
2a,DCBC
a
b
c
2a,代入即求出高AD。推证海伦公式也可以考虑应用三角函数的恒等式,容易证明下列三角恒等式:若∠A+∠B+∠C =180°那么
ABACBCtata+tantantan+tan=1,222222
zz
C
图
3如图3,在△ABC中,内切圆⊙O的半径是r,则tan
A2
rx, tan
B2
ry,tan
C2
rz,代入恒等式
tan
A2
tan
B2
+tan
A2
tan
C2
+tan
B2
tan
C2
=1,得
r
xy
r
xz
r
yz
1,两边同乘xyz,有等式
r(xyz)xyz„„„①
又,bca(xz)(xy)(yz)2x,所以,x
z
abc
bca,同理y
acb。„„„②于是△ABC的面积S
(abc)r=
(yzxzxy)r=(xyz)r
=(xyz)r=
14,把①、②式代入,即得S(xyz)xyz
(abc)(abc)(bca)(acb)
三角形的面积和三边有如此优美和谐的关系,我们不禁会类比猜想,简单四边形的面积和它的四条
边又是什么关系呢?由于三角形内接于圆,所以猜想海伦公式的推广为:在任意内接与圆的四边形ABCD中,设四条边长分别为a,b,c,d,且p
abcd,则S四边形=(pa)(pb)(pc)(pd)
现根据猜想进行证明。
证明:如图,延长DA,CB交于点E。设EA = eEB = f
○○
∵∠1+∠2 =180∠2+∠3 =180 ∴∠1 =∠3∴△EAB~△ECD ∴
fae
=
efc
=
bd,SEABS四边形
ABCD
=
bd
b
解得: e =
b(abcd)d
b
③f =
b(adbc)d
b
④由于S四边形ABCD =
d
bb
S△EAB
将③,④跟b =
b(dd
b)b
代入海伦公式公式变形,得:
∴S四边形ABCD =
db
4eb
(e
b
f)
4b
d
b
b(abcd)(d
(db
224
b)
=
d
4b
b)
[(b(abcd)(d
b)
b(d(d
b)
b)
b(adbc)(d
b)
22)]
b
=
4b
(d
b)
4(ab
cd)(d
b)[(abcd)(d
2222
b)(adbc)]
=
4(d
b)1
4(abcd)(d
b)[{abcd}{d
2222
b}{adbc}]
2222
=
4(d
b)1
4(abcd)(d
b)(ab
2222
cd
d
b
2db
ad
bc)
=
4(d
b)1
4(abcd)(d
b)[b(a
2222
b
d
c)d(d
222
b
a
c)
=
4(d1
b)
(d
b)[4(abcd)(c
2222
d
b
a)]
=4
(2ab2cdc
d
b
a)(2ab2cdd
b
a
c)
=4
ac)(bd)][(bd)(ac)]
2222
(abcd)(abdc)(adcb)(bdca)
=4
=(pa)(pb)(pc)(pd)所以,海伦公式的推广得证。
图4
参考文献
[1] 七市高中选修教材编写委员会.数学问题探究[M].北京:生活·读书·新知三联书店,2003:14~
26.
[2] 王林全.初等几何研究教程[M].广州:暨南大学出版社,1996.
第三篇:海伦公式原理简介
原理简介
我国宋代的数学家秦九韶也提出了“三斜求积术”,它与海伦公式基本一样。
假设在平面内,有一个三角形,边长分别为a、b、c,三角形的面积S可由以下公式求得:
S=√[p(p-a)(p-b)(p-c)]
而公式里的p为半周长:
p=(a+b+c)/2
——————————————————————————————————————————————
注1:“Metrica”(《度量论》)手抄本中用s作为半周长,所以
S=√[p(p-a)(p-b)(p-c)] 和S=√[s(s-a)(s-b)(s-c)]两种写法都是可以的,但多用p作为半周长。
——————————————————————————————————————————————
由于任何n边的多边形都可以分割成n-2个三角形,所以海伦公式可以用作求多边形面积的公式。比如说测量土地的面积的时候,不用测三角形的高,只需测两点间的距离,就可以方便地导出答案。编辑本段证明过程 证明(1)
与海伦在他的著作“Metrica”(《度量论》)中的原始证明不同,在此我们用三角公式和公式变形来证明。设三角形的三边a、b、c的对角分别为A、B、C,则余弦定理为
cosC =(a^2+b^2-c^2)/2ab
S=1/2*ab*sinC
=1/2*ab*√(1-cos^2 C)=1/2*ab*√[1-(a^2+b^2-c^2)^2/4a^2*b^2] =1/4*√[4a^2*b^2-(a^2+b^2-c^2)^2] =1/4*√[(2ab+a^2+b^2-c^2)(2ab-a^2-b^2+c^2)] =1/4*√[(a+b)^2-c^2][c^2-(a-b)^2] =1/4*√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)] 设p=(a+b+c)/2 则p=(a+b+c)/2, p-a=(-a+b+c)/2, p-b=(a-b+c)/2,p-c=(a+b-c)/2,上式=√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)/16]
=√[p(p-a)(p-b)(p-c)]
所以,三角形ABC面积S=√[p(p-a)(p-b)(p-c)] 证明(2)
我国宋代的数学家秦九韶也提出了“三斜求积术”。它与海伦公式基本一样,其实在《九章算术》中,已经有求三角形公式“底乘高的一半”,在实际丈量土地面积时,由于土地的面积并不是的三角形,要找出它来并非易事。所以他们想到了三角形的三条边。如果这样做求三角形的面积也就方便多了。但是怎样根据三边的长度来求三角形的面积?直到南宋,我国著名的数学家秦九韶提出了“三斜求积术”。
秦九韶他把三角形的三条边分别称为小斜、中斜和大斜。“术”即方法。三斜求积术就是用小斜平方加上大斜平方,送到中斜平方,取相减后余数的一半,自乘而得一个数,小斜平方乘以大斜平方,送到上面得到的那个。相减后余数被4除,所得的数作为“实”,作1作为“隅”,开平方后即得面积。
所谓“实”、“隅”指的是,在方程px 2=q,p为“隅”,q为“实”。以△、a,b,c表示三角形面积、大斜、中斜、小斜,所以
q=1/4{a^2*c^2-[(a^2+c^2-b^2)/2 ]^2}
当P=1时,△ 2=q,△=√1/4{a^2*c^2-[(a^2+c^2-b^2)/2 ]^2} 因式分解得
△ ^2=1/16[4a^2c^2-(a^2+c^2-b^2)^2] =1/16[(c+a)^2-b ^2][b^ 2-(c-a)^ 2] =1/16(c+a+b)(c+a-b)(b+c-a)(b-c+a)=1/16(c+a+b)(a+b+c-2b)(b+c+a-2a)(b+a+c-2c)=1/16 [2p(2p-2a)(2p-2b)(2p-2c)] =p(p-a)(p-b)(p-c)由此可得:
S△=√[p(p-a)(p-b)(p-c)]
其中p=1/2(a+b+c)
这与海伦公式完全一致,所以这一公式也被称为“海伦-秦九韶公式”。
S=√1/4{a^2*c^2-[(a^2+c^2-b^2)/2 ]^2}.其中c>b>a.根据海伦公式,我们可以将其继续推广至四边形的面积运算。如下题:
已知四边形ABCD为圆的内接四边形,且AB=BC=4,CD=2,DA=6,求四边形ABCD的面积
这里用海伦公式的推广
S圆内接四边形= 根号下(p-a)(p-b)(p-c)(p-d)(其中p为周长一半,a,b,c,d,为4边)
代入解得s=8√ 3 证明(3)
在△ABC中∠A、∠B、∠C对应边a、b、c O为其内切圆圆心,r为其内切圆半径,p为其半周长 有tanA/2tanB/2+tanB/2tanC/2+tanC/2tanA/2=1 r(tanA/2tanB/2+tanB/2tanC/2+tanC/2tanA/2)=r ∵r=(p-a)tanA/2=(p-b)tanB/2=(p-c)tanC/2 ∴ r(tanA/2tanB/2+tanB/2tanC/2+tanC/2tanA/2)=[(p-a)+(p-b)+(p-c)]tanA/2tanB/2tanC/2 =ptanA/2tanB/2tanC/2 =r ∴p^2r^2tanA/2tanB/2tanC/2=pr^3
∴S^2=p^2r^2=(pr^3)/(tanA/2tanB/2tanC/2)=p(p-a)(p-b)(p-c)∴S=√p(p-a)(p-b)(p-c)证明(4)通过正弦定理:和余弦定理的结合证明(具体可以参考证明方法1)编辑本段推广
关于三角形的面积计算公式在解题中主要应用的有:
设△ABC中,a、b、c分别为角A、B、C的对边,ha为a边上的高,R、r分别为△ABC外接圆、内切圆的半径,p =(a+b+c)/2,则
S△ABC
=1/2 aha
=1/2 ab×sinC
= r p
= 2R^2sinAsinBsinC
= √[p(p-a)(p-b)(p-c)]
其中,S△ABC =√[p(p-a)(p-b)(p-c)] 就是著名的海伦公式,在希腊数学家海伦的著作《测地术》中有记载。编辑本段海伦公式在解题中有十分重要的应用。
一、海伦公式的证明
证一 勾股定理
如右图
勾股定理证明海伦公式。
证二:斯氏定理
如右图。
斯氏定理证明海伦公式
证三:余弦定理
分析:由变形② S = 可知,运用余弦定理 c2 = a2 + b2 -2abcosC 对其进行证明。
证明:要证明S =
则要证S =
=
= ab×sinC
此时S = ab×sinC/2为三角形计算公式,故得证。
证四:恒等式
恒等式证明(1)
恒等式证明(2)证五:半角定理
∵由证一,x = = -c = p-c
y = = -a = p-a
z = = -b = p-b
∴ r3 = ∴ r =
∴S△ABC = r·p = 故得证。
二、海伦公式的推广
由于在实际应用中,往往需计算四边形的面积,所以需要对海伦公式进行推广。由于三角形内接于圆,所以猜想海伦公式的推广为:在任意内接与圆的四边形ABCD中,设p= ,则S四边形=
现根据猜想进行证明。
证明:如图,延长DA,CB交于点E。
设EA = e EB = f ∵∠1+∠2 =180° ∠2+∠3 =180° ∴∠1 =∠3 ∴△EAB~△ECD ∴ = = =
解得: e = ① f = ②
由于S四边形ABCD = S△EAB
将①,②跟b = 代入公式变形④,得到: ∴S四边形ABCD = 所以,海伦公式的推广得证。
编辑本段例题:
C语言版:
如图四边形ABCD内接于圆O中,SABCD = ,AD = 1,AB = 1, CD = 2.求:四边形可能为等腰梯形。解:设BC = x 由海伦公式的推广,得:(4-x)(2+x)2 =27
x4-12x2-16x+27 = 0
x2(x2—1)-11x(x-1)-27(x-1)= 0(x-1)(x3+x2-11x-27)= 0 x = 1或x3+x2-11x-27 = 0 当x = 1时,AD = BC = 1 ∴ 四边形可能为等腰梯形。在程序中实现(VBS): dim a,b,c,p,q,s a=inputbox(“请输入三角形第一边的长度”)b=inputbox(“请输入三角形第二边的长度”)c=inputbox(“请输入三角形第三边的长度”)a=1*a b=1*b c=1*c p=(a+b+c)*(a+b-c)*(a-b+c)*(-a+b+c)q=sqr(p)s=(1/4)*q msgbox(“三角形面积为”&s), ,“三角形面积” 在VC中实现
#include
using System;using System.Collections.Generic;using System.Text;namespace CST09078 class Program static void Main(string[] args)
double a, b, c, p, s;
Console.WriteLine(“输入第一条边的长度:n”);a = Convert.ToDouble(Console.ReadLine());Console.WriteLine(“输入第二条边的长度:n”);b = Convert.ToDouble(Console.ReadLine());Console.WriteLine(“输入第三条边的长度:n”);c = Convert.ToDouble(Console.ReadLine());p =(a+b+c)/2;s = Math.Sqrt(p*(pb)*(p-c));Console.WriteLine(“我算出来的面积是{0}”, s);Console.Read();
第四篇:海伦公式
海伦公式
与海伦在他的著作“Metrica”(《度量论》)中的原始证明不同,在此我们用三角公式和公式变形来证明。设三角形的三边a、b、c的对角分别为A、B、C,则余弦定理为下述推导[1]
cosC =(a^2+b^2-c^2)/2ab
S=1/2*ab*sinC
=1/2*ab*√(1-cos^2 C)
=1/2*ab*√[1-(a^2+b^2-c^2)^2/4a^2*b^2]
=1/4*√[4a^2*b^2-(a^2+b^2-c^2)^2]
=1/4*√[(2ab+a^2+b^2-c^2)(2ab-a^2-b^2+c^2)]
=1/4*√[(a+b)^2-c^2][c^2-(a-b)^2]
=1/4*√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)]
设p=(a+b+c)/2
则p=(a+b+c)/2,p-a=(-a+b+c)/2,p-b=(a-b+c)/2,p-c=(a+b-c)/2,上式=√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)/16]
=√[p(p-a)(p-b)(p-c)]
所以,三角形ABC面积S=√[p(p-a)(p-b)(p-c)]
证明⑵
中国宋代的数学家秦九韶在1247年也提出了“三斜求积术”。它与海伦公式基本一样,其实在《九章算术》中,已经有求三角形公式“底乘高的一半”,在实际丈量土地面积时,由于土地的面积并不是三角形,要找出它来并非易事。所以他们想到了三角形的三条边。如果这样做求三角形的面积也就方便多了。但是怎样根据三边的长度来求三角形的面积?直到南宋,中国著名的数学家秦九韶提出了“三斜求积术”。
秦九韶他把三角形的三条边分别称为小斜、中斜和大斜。“术”即方法。三斜求积术就是用小斜平方加上大斜平方,送到中斜平方,取相减后余数的一半,自乘而得一个数,小斜平方乘以大斜平方,送到上面得到的那个。相减后余数被4除,所得的数作为“实”,作1作为“隅”,开平方后即得面积。
所谓“实”、“隅”指的是,在方程px 2=q,p为“隅”,q为“实”。以△、a,b,c表示三角形面积、大斜、中斜、小斜,所以
q=1/4{a^2*c^2-[(a^2+c^2-b^2)/2 ]^2}
当P=1时,△ 2=q,△=√1/4{a^2*c^2-[(a^2+c^2-b^2)/2 ]^2}
因式分解得
△ ^2=1/4[4a^2c^2-(a^2+c^2-b^2)^2]
=1/4[(c+a)^2-b ^2][b^ 2-(c-a)^ 2]
=1/4(c+a+b)(c+a-b)(b+c-a)(b-c+a)
=1/4(c+a+b)(a+b+c-2b)(b+c+a-2a)(b+a+c-2c)
=1/4[2p(2p-2a)(2p-2b)(2p-2c)]
=p(p-a)(p-b)(p-c)
由此可得:
S△=√[p(p-a)(p-b)(p-c)]
其中p=1/2(a+b+c)
这与海伦公式完全一致,所以这一公式也被称为“海伦-秦九韶公式”。
S=√1/4{a^2*c^2-[(a^2+c^2-b^2)/2 ]^2}.其中c>b>a.根据海伦公式,我们可以将其继续推广至四边形的面积运算。如下题:
已知四边形ABCD为圆的内接四边形,且AB=BC=4,CD=2,DA=6,求四边形ABCD的面积
这里用海伦公式的推广
S圆内接四边形= 根号下(p-a)(p-b)(p-c)(p-d)(其中p为周长一半,a,b,c,d,为4边)
代入解得s=8√ 3
证明⑶
在△ABC中∠A、∠B、∠C对应边a、b、c
O为其内切圆圆心,r为其内切圆半径,p为其半周长
有tanA/2tanB/2+tanB/2tanC/2+tanC/2tanA/2=1
r(tanA/2tanB/2+tanB/2tanC/2+tanC/2tanA/2)=r
∵r=(p-a)tanA/2=(p-b)tanB/2=(p-c)tanC/2
∴ r(tanA/2tanB/2+tanB/2tanC/2+tanC/2tanA/2)
=[(p-a)+(p-b)+(p-c)]tanA/2tanB/2tanC/2
=ptanA/2tanB/2tanC/2
=r
∴p^2r^2tanA/2tanB/2tanC/2=pr^3
∴S^2=p^2r^2=(pr^3)/(tanA/2tanB/2tanC/2)
=p(p-a)(p-b)(p-c)
∴S=√p(p-a)(p-b)(p-c)
第五篇:海伦公式与四边形面积公式
海伦公式与四边形面积公式
2007年08月01日 星期三 00:43 我们知道,已知三角形的三条边长度a,b,c(2p=a+b+c),就可以由海伦公式得到三角形的面积:
所以:已知圆内接三角形的三边长,其面积公式为海伦公式。事实上,对于圆内接四边形,已知其四边形的四边长(不妨设其为a,b,c,d,2p=a+b+c+d),也可以求其面积,而且公式的形式与海伦公式相类似:
证明:
设圆内接四边形ABCD中,AB=a,BC=b,CD=c,DA=d,设∠BAD=θ,则∠BCD=180°-θ,设其对角线BD=x,由余弦定理有:
联立两式解得: