第一篇:高中数学必修五《海伦公式探究》
海伦公式探究
背景:海伦公式在数学学习中使用非常广泛,它方便了日常数学学习中三角形的面积计算,使我们只需知道任意三角形的三边长度,就可以用公式求得三角形的面积大小。但是你知道海伦公式的证明方法吗?本次探究,着手海伦公式的证明方法、推广,使同学们能更深刻地记住海伦公式、容易证明,并且合理使用。
过程:海伦公式 证明 三斜求积术 推广 运用 余弦定理
海伦公式又译作希伦公式、海龙公式、希罗公式、海伦-秦九韶公式,传说是古代的叙拉古国王 希伦(Heron,也称海龙)二世发现的公式,利用三角形的三条边长来求取三角形面积。但根据Morris Kline在1908年出版的著作考证,这条公式其实是阿基米得所发现,以托希伦二世的名发表(未查证)。我国宋代的数学家秦九韶也提出了“三斜求积术”,它与海伦公式基本一样。
如右图,假设有一个三角形,边长分别为a、b、c,三角形的面积S可由图下公式求得。
证明Ⅰ:
与海伦在他的著作“Metrica”(《度量论》)中的原始证明不同,在此我们用三角公式和公式变
a2b2c2形来证明。设三角形的三边a、b、c的对角分别为A、B、C,则余弦定理为:cosC
2abS1absinC① 21ab1cos2C② 21(a2b2c2)2③ ab12224ab141414144a2b2(a2b2c2)④
(2aba2b2c2)(2aba2b2c2)⑤ [(ab)2c2][c2(ab)2]⑥
(abc)(abc)(abc)(abb)⑦
abb 2abcabcabc,pb,pc, 则pa222设p上式(abc)(abc)(abc)(abc)
16p(pa)(pb)(pc)
所以,S△ABC
p(pa)(pb)(pc)
证明Ⅱ:我国著名的数学家九韶在《数书九章》提出了“三斜求积术”。
秦九韶他把三角形的三条边分别称为小斜、中斜和大斜。“术”即方法。三斜求积术就是用小斜平方加上大斜平方,送到斜平方,取相减后余数的一半,自乘而得一个数小斜平方乘以大斜平方,送到上面得到的那个。相减后余数被4除冯所得的数作为“实”,作1作为“隅”,开平方后即得面积。
所谓“实”、“隅”指的是,在方程px 2=qk,p为“隅”,Q为“实”。以△、a,b,c表示三角形面积、大斜、中斜、小斜。
定理:若三角形的三条边分别是:大斜、中斜、小斜,则三角形面积为:
原文见<数书九章>卷五第二题: 以小斜幂并大斜幂,减中斜幂,余,半之.同乘于上,以小斜幂并大斜幂,减上.余,四约之为实,开平方,得积.
证明:如 图,a=u+v,b2=h2+u2,c2=h2+v2 所以,u2-v2=b2-c2
(u+v)(u-v)=(b+c)(b-c)a(u-v)=(b+c)(b-c)(u-v)=(b+c)(b-c)/a 因(u+v)=a,所以22又 h=b-u,三角形面积=a.h/2
此即:,其中c>b>a.将根号下的多项式分解因式,便成为可见,三斜求积术与古希腊海伦公式是等价的 所以这一公式也被称为“海伦-秦九韶公式”。
关于三角形的面积计算公式在解题中主要应用的有:
设△ABC中,a、b、c分别为角A、B、C的对边,ha为a边上的高,R、r分别为△ABC外接圆、内切圆的半径,p =
1(a+b+c),则 211S△ABC =aha=ab×sinC = r p 22abc 4R = 2R2sinAsinBsinC =
=p(pa)(pb)(pc)
p(pa)(pb)(pc)就是著名的海伦公式,在希腊数学家海伦的著作《测地术》中有记其中,S△ABC =载。
海伦公式在解题中有十分重要的应用。
一、海伦公式的变形
S=p(pa)(pb)(pc)
(abc)(abc)(acb)(bca)
① [(ab)2c2][c2(ab)2] ②(a2b2c22ab)[(a2b2c22ab)] ③ 4a2b2(a2b2c2)④ 2a2b22a2c22b2c2a4b4c4 ⑤ 141 =41 =41 =41 =4 =
证一:根据勾股定理证明。分析:先从三角形最基本的计算公式S△ABC =导出海伦公式。
1aha入手,运用勾股定理推2
证二:根据斯氏定理证明。
根据海伦公式,我们可以将其继续推广至四边形的面积运算。如下题:
{已知四边形ABCD为圆的内接四边形,且AB=BC=4,CD=2,DA=6,求四边形ABCD的面积}
这里用海伦公式的推广
S圆内接四边形(pa)(pb)(pc)(pd)(其中p为周长一半,a,b,c,d,为4边)
代入解得s83
海伦公式在解题中有十分重要的应用。
二、海伦公式的推广
由于在实际应用中,往往需计算四边形的面积,所以需要对海伦公式进行推广。由于三角形内接于圆,所以猜想海伦公式的推广为:在任意内接与圆的四边形ABCD中,设p==(pa)(pb)(pc)(pd)
现根据猜想进行证明。
证明:如图,延长DA,CB交于点E。
设EA = e EB = f ∵∠1+∠2 =180○ ∠2+∠3 =180○ ∴∠1 =∠3 ∴△EAB~△ECD
abcd,则S
2四边形
SEABfbb2e∴== = aefcdS四边形ABCDd2b2解得: e =b(abcd)b(adbc)① f = ②
d2b2d2b2d2b2由于S四边形ABCD =S△EAB
b2b(d2b2)将①,②跟b =代入公式变形④,得:22db
所以,海伦公式的推广得证。
三、海伦公式的推广的应用
海伦公式的推广在实际解题中有着广泛的应用,特别是在有关圆内接四边形的各种综合题中,直接运用海伦公式的推广往往事半功倍。
例题:如图,四边形ABCD内接于圆O中,SABCD =求:四边形可能为等腰梯形。解:设BC = x 由海伦公式的推广,得:
33,AD = 1,AB = 1, CD = 2.4133(112x)(11x2)(2x11)(2x11)= 44(4-x)(2+x)2 =27 x4-12x2-16x+27 = 0 x2(x2—1)-11x(x-1)-27(x-1)= 0(x-1)(x3+x2-11x-27)= 0 x = 1或x3+x2-11x-27 = 0 当x = 1时,AD = BC = 1 ∴ 四边形可能为等腰梯形。
第二篇:海伦公式
海伦公式
与海伦在他的著作“Metrica”(《度量论》)中的原始证明不同,在此我们用三角公式和公式变形来证明。设三角形的三边a、b、c的对角分别为A、B、C,则余弦定理为下述推导[1]
cosC =(a^2+b^2-c^2)/2ab
S=1/2*ab*sinC
=1/2*ab*√(1-cos^2 C)
=1/2*ab*√[1-(a^2+b^2-c^2)^2/4a^2*b^2]
=1/4*√[4a^2*b^2-(a^2+b^2-c^2)^2]
=1/4*√[(2ab+a^2+b^2-c^2)(2ab-a^2-b^2+c^2)]
=1/4*√[(a+b)^2-c^2][c^2-(a-b)^2]
=1/4*√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)]
设p=(a+b+c)/2
则p=(a+b+c)/2,p-a=(-a+b+c)/2,p-b=(a-b+c)/2,p-c=(a+b-c)/2,上式=√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)/16]
=√[p(p-a)(p-b)(p-c)]
所以,三角形ABC面积S=√[p(p-a)(p-b)(p-c)]
证明⑵
中国宋代的数学家秦九韶在1247年也提出了“三斜求积术”。它与海伦公式基本一样,其实在《九章算术》中,已经有求三角形公式“底乘高的一半”,在实际丈量土地面积时,由于土地的面积并不是三角形,要找出它来并非易事。所以他们想到了三角形的三条边。如果这样做求三角形的面积也就方便多了。但是怎样根据三边的长度来求三角形的面积?直到南宋,中国著名的数学家秦九韶提出了“三斜求积术”。
秦九韶他把三角形的三条边分别称为小斜、中斜和大斜。“术”即方法。三斜求积术就是用小斜平方加上大斜平方,送到中斜平方,取相减后余数的一半,自乘而得一个数,小斜平方乘以大斜平方,送到上面得到的那个。相减后余数被4除,所得的数作为“实”,作1作为“隅”,开平方后即得面积。
所谓“实”、“隅”指的是,在方程px 2=q,p为“隅”,q为“实”。以△、a,b,c表示三角形面积、大斜、中斜、小斜,所以
q=1/4{a^2*c^2-[(a^2+c^2-b^2)/2 ]^2}
当P=1时,△ 2=q,△=√1/4{a^2*c^2-[(a^2+c^2-b^2)/2 ]^2}
因式分解得
△ ^2=1/4[4a^2c^2-(a^2+c^2-b^2)^2]
=1/4[(c+a)^2-b ^2][b^ 2-(c-a)^ 2]
=1/4(c+a+b)(c+a-b)(b+c-a)(b-c+a)
=1/4(c+a+b)(a+b+c-2b)(b+c+a-2a)(b+a+c-2c)
=1/4[2p(2p-2a)(2p-2b)(2p-2c)]
=p(p-a)(p-b)(p-c)
由此可得:
S△=√[p(p-a)(p-b)(p-c)]
其中p=1/2(a+b+c)
这与海伦公式完全一致,所以这一公式也被称为“海伦-秦九韶公式”。
S=√1/4{a^2*c^2-[(a^2+c^2-b^2)/2 ]^2}.其中c>b>a.根据海伦公式,我们可以将其继续推广至四边形的面积运算。如下题:
已知四边形ABCD为圆的内接四边形,且AB=BC=4,CD=2,DA=6,求四边形ABCD的面积
这里用海伦公式的推广
S圆内接四边形= 根号下(p-a)(p-b)(p-c)(p-d)(其中p为周长一半,a,b,c,d,为4边)
代入解得s=8√ 3
证明⑶
在△ABC中∠A、∠B、∠C对应边a、b、c
O为其内切圆圆心,r为其内切圆半径,p为其半周长
有tanA/2tanB/2+tanB/2tanC/2+tanC/2tanA/2=1
r(tanA/2tanB/2+tanB/2tanC/2+tanC/2tanA/2)=r
∵r=(p-a)tanA/2=(p-b)tanB/2=(p-c)tanC/2
∴ r(tanA/2tanB/2+tanB/2tanC/2+tanC/2tanA/2)
=[(p-a)+(p-b)+(p-c)]tanA/2tanB/2tanC/2
=ptanA/2tanB/2tanC/2
=r
∴p^2r^2tanA/2tanB/2tanC/2=pr^3
∴S^2=p^2r^2=(pr^3)/(tanA/2tanB/2tanC/2)
=p(p-a)(p-b)(p-c)
∴S=√p(p-a)(p-b)(p-c)
第三篇:海伦公式的证明
与海伦在他的著作“Metrica”(《度量论》)中的原始证明不同,在此我们用三角公式和公式变形来证明。设三角形的三边a、b、c的对角分别为A、B、C,则余弦定理为cosC =(a^2+b^2-c^2)/2abS=1/2*ab*sinC=1/2*ab*√(1-cos^2 C)=1/2*ab*√[1-(a^2+b^2-c^2)^2/4a^2*b^2]=1/4*√[4a^2*b^2-(a^2+b^2-c^2)^2]=1/4*√[(2ab+a^2+b^2-c^2)(2ab-a^2-b^2+c^2)]=1/4*√[(a+b)^2-c^2][c^2-(a-b)^2]=1/4*√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)]设p=(a+b+c)/2则p=(a+b+c)/2, p-a=(-a+b+c)/2, p-b=(a-b+c)/2,p-c=(a+b-c)/2,上式=√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)/16]=√[p(p-a)(p-b)(p-c)]所以,三角形ABC面积S=√[p(p-a)(p-b)(p-c)]
第四篇:海伦公式原理简介
原理简介
我国宋代的数学家秦九韶也提出了“三斜求积术”,它与海伦公式基本一样。
假设在平面内,有一个三角形,边长分别为a、b、c,三角形的面积S可由以下公式求得:
S=√[p(p-a)(p-b)(p-c)]
而公式里的p为半周长:
p=(a+b+c)/2
——————————————————————————————————————————————
注1:“Metrica”(《度量论》)手抄本中用s作为半周长,所以
S=√[p(p-a)(p-b)(p-c)] 和S=√[s(s-a)(s-b)(s-c)]两种写法都是可以的,但多用p作为半周长。
——————————————————————————————————————————————
由于任何n边的多边形都可以分割成n-2个三角形,所以海伦公式可以用作求多边形面积的公式。比如说测量土地的面积的时候,不用测三角形的高,只需测两点间的距离,就可以方便地导出答案。编辑本段证明过程 证明(1)
与海伦在他的著作“Metrica”(《度量论》)中的原始证明不同,在此我们用三角公式和公式变形来证明。设三角形的三边a、b、c的对角分别为A、B、C,则余弦定理为
cosC =(a^2+b^2-c^2)/2ab
S=1/2*ab*sinC
=1/2*ab*√(1-cos^2 C)=1/2*ab*√[1-(a^2+b^2-c^2)^2/4a^2*b^2] =1/4*√[4a^2*b^2-(a^2+b^2-c^2)^2] =1/4*√[(2ab+a^2+b^2-c^2)(2ab-a^2-b^2+c^2)] =1/4*√[(a+b)^2-c^2][c^2-(a-b)^2] =1/4*√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)] 设p=(a+b+c)/2 则p=(a+b+c)/2, p-a=(-a+b+c)/2, p-b=(a-b+c)/2,p-c=(a+b-c)/2,上式=√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)/16]
=√[p(p-a)(p-b)(p-c)]
所以,三角形ABC面积S=√[p(p-a)(p-b)(p-c)] 证明(2)
我国宋代的数学家秦九韶也提出了“三斜求积术”。它与海伦公式基本一样,其实在《九章算术》中,已经有求三角形公式“底乘高的一半”,在实际丈量土地面积时,由于土地的面积并不是的三角形,要找出它来并非易事。所以他们想到了三角形的三条边。如果这样做求三角形的面积也就方便多了。但是怎样根据三边的长度来求三角形的面积?直到南宋,我国著名的数学家秦九韶提出了“三斜求积术”。
秦九韶他把三角形的三条边分别称为小斜、中斜和大斜。“术”即方法。三斜求积术就是用小斜平方加上大斜平方,送到中斜平方,取相减后余数的一半,自乘而得一个数,小斜平方乘以大斜平方,送到上面得到的那个。相减后余数被4除,所得的数作为“实”,作1作为“隅”,开平方后即得面积。
所谓“实”、“隅”指的是,在方程px 2=q,p为“隅”,q为“实”。以△、a,b,c表示三角形面积、大斜、中斜、小斜,所以
q=1/4{a^2*c^2-[(a^2+c^2-b^2)/2 ]^2}
当P=1时,△ 2=q,△=√1/4{a^2*c^2-[(a^2+c^2-b^2)/2 ]^2} 因式分解得
△ ^2=1/16[4a^2c^2-(a^2+c^2-b^2)^2] =1/16[(c+a)^2-b ^2][b^ 2-(c-a)^ 2] =1/16(c+a+b)(c+a-b)(b+c-a)(b-c+a)=1/16(c+a+b)(a+b+c-2b)(b+c+a-2a)(b+a+c-2c)=1/16 [2p(2p-2a)(2p-2b)(2p-2c)] =p(p-a)(p-b)(p-c)由此可得:
S△=√[p(p-a)(p-b)(p-c)]
其中p=1/2(a+b+c)
这与海伦公式完全一致,所以这一公式也被称为“海伦-秦九韶公式”。
S=√1/4{a^2*c^2-[(a^2+c^2-b^2)/2 ]^2}.其中c>b>a.根据海伦公式,我们可以将其继续推广至四边形的面积运算。如下题:
已知四边形ABCD为圆的内接四边形,且AB=BC=4,CD=2,DA=6,求四边形ABCD的面积
这里用海伦公式的推广
S圆内接四边形= 根号下(p-a)(p-b)(p-c)(p-d)(其中p为周长一半,a,b,c,d,为4边)
代入解得s=8√ 3 证明(3)
在△ABC中∠A、∠B、∠C对应边a、b、c O为其内切圆圆心,r为其内切圆半径,p为其半周长 有tanA/2tanB/2+tanB/2tanC/2+tanC/2tanA/2=1 r(tanA/2tanB/2+tanB/2tanC/2+tanC/2tanA/2)=r ∵r=(p-a)tanA/2=(p-b)tanB/2=(p-c)tanC/2 ∴ r(tanA/2tanB/2+tanB/2tanC/2+tanC/2tanA/2)=[(p-a)+(p-b)+(p-c)]tanA/2tanB/2tanC/2 =ptanA/2tanB/2tanC/2 =r ∴p^2r^2tanA/2tanB/2tanC/2=pr^3
∴S^2=p^2r^2=(pr^3)/(tanA/2tanB/2tanC/2)=p(p-a)(p-b)(p-c)∴S=√p(p-a)(p-b)(p-c)证明(4)通过正弦定理:和余弦定理的结合证明(具体可以参考证明方法1)编辑本段推广
关于三角形的面积计算公式在解题中主要应用的有:
设△ABC中,a、b、c分别为角A、B、C的对边,ha为a边上的高,R、r分别为△ABC外接圆、内切圆的半径,p =(a+b+c)/2,则
S△ABC
=1/2 aha
=1/2 ab×sinC
= r p
= 2R^2sinAsinBsinC
= √[p(p-a)(p-b)(p-c)]
其中,S△ABC =√[p(p-a)(p-b)(p-c)] 就是著名的海伦公式,在希腊数学家海伦的著作《测地术》中有记载。编辑本段海伦公式在解题中有十分重要的应用。
一、海伦公式的证明
证一 勾股定理
如右图
勾股定理证明海伦公式。
证二:斯氏定理
如右图。
斯氏定理证明海伦公式
证三:余弦定理
分析:由变形② S = 可知,运用余弦定理 c2 = a2 + b2 -2abcosC 对其进行证明。
证明:要证明S =
则要证S =
=
= ab×sinC
此时S = ab×sinC/2为三角形计算公式,故得证。
证四:恒等式
恒等式证明(1)
恒等式证明(2)证五:半角定理
∵由证一,x = = -c = p-c
y = = -a = p-a
z = = -b = p-b
∴ r3 = ∴ r =
∴S△ABC = r·p = 故得证。
二、海伦公式的推广
由于在实际应用中,往往需计算四边形的面积,所以需要对海伦公式进行推广。由于三角形内接于圆,所以猜想海伦公式的推广为:在任意内接与圆的四边形ABCD中,设p= ,则S四边形=
现根据猜想进行证明。
证明:如图,延长DA,CB交于点E。
设EA = e EB = f ∵∠1+∠2 =180° ∠2+∠3 =180° ∴∠1 =∠3 ∴△EAB~△ECD ∴ = = =
解得: e = ① f = ②
由于S四边形ABCD = S△EAB
将①,②跟b = 代入公式变形④,得到: ∴S四边形ABCD = 所以,海伦公式的推广得证。
编辑本段例题:
C语言版:
如图四边形ABCD内接于圆O中,SABCD = ,AD = 1,AB = 1, CD = 2.求:四边形可能为等腰梯形。解:设BC = x 由海伦公式的推广,得:(4-x)(2+x)2 =27
x4-12x2-16x+27 = 0
x2(x2—1)-11x(x-1)-27(x-1)= 0(x-1)(x3+x2-11x-27)= 0 x = 1或x3+x2-11x-27 = 0 当x = 1时,AD = BC = 1 ∴ 四边形可能为等腰梯形。在程序中实现(VBS): dim a,b,c,p,q,s a=inputbox(“请输入三角形第一边的长度”)b=inputbox(“请输入三角形第二边的长度”)c=inputbox(“请输入三角形第三边的长度”)a=1*a b=1*b c=1*c p=(a+b+c)*(a+b-c)*(a-b+c)*(-a+b+c)q=sqr(p)s=(1/4)*q msgbox(“三角形面积为”&s), ,“三角形面积” 在VC中实现
#include
using System;using System.Collections.Generic;using System.Text;namespace CST09078 class Program static void Main(string[] args)
double a, b, c, p, s;
Console.WriteLine(“输入第一条边的长度:n”);a = Convert.ToDouble(Console.ReadLine());Console.WriteLine(“输入第二条边的长度:n”);b = Convert.ToDouble(Console.ReadLine());Console.WriteLine(“输入第三条边的长度:n”);c = Convert.ToDouble(Console.ReadLine());p =(a+b+c)/2;s = Math.Sqrt(p*(pb)*(p-c));Console.WriteLine(“我算出来的面积是{0}”, s);Console.Read();
第五篇:高中数学必修五1.1.2余弦定理
1.1.2余弦定理蕲春三中刘芳
1.1.2余弦定理
蕲春三中刘芳
(一)教学目标
1.知识与技能:掌握余弦定理的两种表示形式及证明余弦定理的向量方法,并会运用余弦定理解决两类基本的解三角形问题。
2.过程与方法:利用向量的数量积推出余弦定理及其推论,并通过实践演算掌握运用余弦定理解决两类基本的解三角形问题,3.情态与价值:培养学生在方程思想指导下处理解三角形问题的运算能力;通过三角函数、余弦定理、向量的数量积等知识间的关系,来理解事物之间的普遍联系与辩证统一。
(二)教学重、难点
重点:余弦定理的发现和证明过程及其基本应用;
难点:勾股定理在余弦定理的发现和证明过程中的作用。
(三)学法与教学用具
学法:首先研究把已知两边及其夹角判定三角形全等的方法进行量化,也就是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题,利用向量的数量积比较容易地证明了余弦定理。从而利用余弦定理的第二种形式由已知三角形的三边确定三角形的角 教学用具:投影仪、计算器
(四)教学设想
[复习回顾]
1、正弦定理;abc2RsinAsinBsinC2、可以解决两类有关三角形的问题:
(1)已知两角和任一边。
(2)已知两边和一边的对角。
[提出问题]
联系已经学过的知识和方法,可用什么途径来解决这个问题?
用正弦定理试求,发现因A、B均未知,所以较难求边c。
由于涉及边长问题,从而可以考虑用向量来研究这个问题。A 如图1.1-5,设CBa,CAb,ABc,那么cab,则bc
ccabababb2abCa2a2ab2ab2
从而c2a2b22abcosC(图1.1-5)
同理可证a2b2c22bccosA
b2a2c22accosB
于是得到以下定理
余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角
7的余弦的积的两倍。即a2b2c22bccosA
b2a2c22accosB
c2a2b22abcosC
思考:这个式子中有几个量?从方程的角度看已知其中三个量,可以求出第四个量,能否由三边求出一角?
(由学生推出)从余弦定理,又可得到以下推论:
b2c2a
2cosA2bca2c2b2
cosBb2a2c2
cosC[理解定理]
从而知余弦定理及其推论的基本作用为:
①已知三角形的任意两边及它们的夹角就可以求出第三边;
②已知三角形的三条边就可以求出其它角。
思考:勾股定理指出了直角三角形中三边平方之间的关系,余弦定理则指出了一般三角形中三边平方之间的关系,如何看这两个定理之间的关系?
(由学生总结)若ABC中,C=900,则cosC0,这时c2a2b2
由此可知余弦定理是勾股定理的推广,勾股定理是余弦定理的特例。
[例题分析]
题型一 已知两边及夹角解三角形
例1.在ABC
中,已知a
cB600,求b及A
⑴解:∵b2a2c22accosB
=222cos450
=1221)
=8
∴b
求A可以利用余弦定理,也可以利用正弦定理:
b2c2a22221⑵解法一:∵
cosA,∴A600.asin450,解法二:∵
sinAsinB2.41.4
3.8,21.83.6,∴a<c,即00<A<900,∴A600.评述:解法二应注意确定A的取值范围。
题型二 已知三边解三角形
例2.在ABC中,已知a134.6cm,b87.8cm,c161.7cm,解三角形
(见课本第8页例4,可由学生通过阅读进行理解)
解:由余弦定理的推论得: b2c2a2
cosA
87.82161.72134.62 0.5543,A56020; c2a2b2
cosB
134.62161.7287.82 2134.6161.70.8398,B32053;
C1800(AB)1800(5602032053)
90047.题型三 正、余弦定理的应用比较
例3.在△ABC中,已知 b=3,3。B=300,求角A,角C和边a。
思考:求某角时,可以利用余弦定理,也可以利用正弦定理,两种方法 有什么利弊呢?
[补充练习]
1、在ABC中,若a2b2c2bc,求角A(答案:A=1200)
2、在△ABC中,已知(b+c):(c+a):(a+b)=4:5:6,求△ABC的最大内角。(答案:A=1200)
[课堂小结]
(1)利用余弦定理解三角形
①.已知三边求三角;
②.已知两边及它们的夹角,求第三边。
(2)余弦定理与三角形的形状
(五)作业设计
①课后阅读:课本第9页[探究与发现]
②课时作业:第10页[习题1.1]A组第3,4题。
③《名师一号》相关题目。