高中数学放缩法公式

时间:2019-05-13 21:42:31下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《高中数学放缩法公式》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《高中数学放缩法公式》。

第一篇:高中数学放缩法公式

“放缩法”证明不等式的基本策略

1、添加或舍弃一些正项(或负项)

1、已知an2n1(nN*).求证:

k

n

2

3

a1a2

a2a3

...

anan1

(nN).*

证明: 

akak

1

212

k1

1

12(2

k1

1)

13.222

k

k

1211

.k,k1,2,...,n, 32

a1a2n2

a2a3

...

anan1

n2

1111n11n1(2...n)(1n), 322223223

n2

*



a1a2

a2a3

...

anan1

(nN).若多项式中加上一些正的值,多项式的值变大,多项式中加上一些负的值,多项式的值变小。由于证明不等式的需要,有时需要舍去或添加一些项,使不等式一边放大或缩小,利用不等式的传递性,达到证明的目的。本题在放缩时就舍去了2k2,从而是使和式得到化简.2、先放缩再求和(或先求和再放缩)

2、函数f(x)=

4xx,求证:f(1)+f(2)+…+f(n)>n+

2n

11

4nn

2(nN)

*

.证明:由f(n)=

14

=1-

114

n

1

122

122

112

n

122

n

得f(1)+f(2)+…+f(n)>1

n

14(1

1214

n1

22

1)n

n1

(nN)

*

.此题不等式左边不易求和,此时根据不等式右边特征, 先将分子变为常数,再对分母进行放缩,从而对左边可以进行求和.若分子, 分母如果同时存在变量时, 要设法使其中之一变为常量,分式的放缩对于分子分母均取正值的分式。如需放大,则只要把分子放大或分母缩小即可;如需缩小,则只要把分子缩小或分母放大即可。

3、逐项放大或缩小

3、设an证明:∵∴ n

223

n

34

n

n(n1)(n1)

ann(n1)求证2

2(n

12)

n(n1)n(n1)

n(n1)

2n12

2n12,∴

n(n1)2

an

(n1)

∴ 123nan

本题利用n

13(2n1)

2n

1,对an中每项都进行了放缩,从而得到可以求和的数列,达到化简的目的。

4、固定一部分项,放缩另外的项;

4、求证:

1n

1

2

3

1n

4证明:

1n(n1)



1n1

1

1n

1n1

1n

1n



n

()().此题采用了从第三项开始拆项放缩的技巧,放缩拆项时,不一定从第一项开始,须根

据具体题型分别对待,即不能放的太宽,也不能缩的太窄,真正做到恰倒好处。

5、函数放缩

ln

2例5.求证:

ln3

3

ln4

4

ln33

n

n

3

1x

n

5n66

ln2

(nN)

ln33

*

.

ln33

nn

解析:先构造函数有

lnxx1

lnxx

1,从而



ln44

31(n



n)

因为2



n

1111111111

1nnn

213 234567892

n1

3n193339

23n13n

66918275n

6

n

5n66

ln2

所以

ln33

ln44



ln33

n

n

31

n

5n6

3

6、裂项放缩

n

例6求证:k1k

53.1n

1n

4

1

12

4n12n12n1

n

解析:因为,所以

k

k1

112511

121

2n12n133357、均值不等式放缩

例7.设

Sn

2

23

k

n(n1).求证

n(n1)

2Sn

(n1)2

.解析: 此数列的通项为a

k

k(k1)

kk

1n(n1)2

k(k1),k1,2,,n.n

n

k

12,kSn

k1

(k

k1

12),n(n1)

Sn

n2

(n1)2

.ab

ab2

注:①应注意把握放缩的“度”:上述不等式右边放缩用的是均值不等式

n,若放成k(k1)k1

则得

Sn

k1

(k1)

(n1)(n3)

(n1)2,就放过“度”了!

②根据所证不等式的结构特征来选取所需要的重要不等式,这里

n1

1an

n

1an

a1an

n

a1an

n

a1



其中,n2,3等的各式及其变式公式均可供选用。

8、二项放缩

n

(11)

n

CnCnCn2nCn0Cnn1

01n,2C

n

n

C

1n

C

2n

n

n22

n

n(n1)(n2)

第二篇:放缩法讨论

不等式的证明——放缩法

学习目标:

1、感受在什么情况下,需要用放缩法证明不等式。

2、探索用放缩法证明不等式的理论依据和技巧。

放缩法:证明不等式时,通过把不等式中的某些部分的值放大或缩小,简化不等式,从而达到证明的目的。

若是自然数,求证

11112222.2123n

2k 111,k2,3,4,,n.k(k1)k1k

常见方法:

1、分式放缩;

2、利用已知结论放缩;

3、裂项放缩;

4、先放缩后求和。

放缩法就是将不等式的一边放大或缩小,寻找一个

中间量,如将A放大成C,即AC,后证CB.常用的放缩技巧有:

(1)舍掉(或加进)一些项;

(2)在分式中放大或缩小分子或分母;

(3)应用基本不等式进行放缩.如

12312①(a)(a);242 111112,2,, ②2kk(k1)kk(k1)kkk1 2 1(以上k2且kN)kkk1

归纳延伸

1.放缩法证明不等式的理论依据主要有:

(1)不等式的传递性;

(2)等量加不等量为不等量;

(3)同分子(分母)异分母(分子)的两个分式大小的比较.

2.常用的放缩技巧:

(1)对于分子分母均取正值的分式,(Ⅰ)如果分子不变,分母缩小(分母仍为正数),则分式的值放大;

(Ⅱ)如果分子不变,分母放大,则分式的值缩小。

(2)①舍掉(或加进)一些项;②在分式中放大或缩小分子或分母;③应用均值不等式进行放缩.

第三篇:数学放缩法

放缩法的常见技巧(1)舍掉(或加进)一些项

(2)在分式中放大或缩小分子或分母。(3)应用基本不等式放缩(例如均值不等式)。(4)应用函数的单调性进行放缩(5)根据题目条件进行放缩。(6)构造等比数列进行放缩。(7)构造裂项条件进行放缩。

(8)利用函数切线、割线逼近进行放缩。

使用放缩法的注意事项(1)放缩的方向要一致。(2)放与缩要适度。

(3)很多时候只对数列的一部分进行放缩法,保留一些项不变(多为前几项或后几项)。(4)用放缩法证明极其简单,然而,用放缩法证不等式,技巧性极强,稍有不慎,则会出现放缩失当的现象。所以对放缩法,只需要了解,不宜深入。

先介绍工具

柯西不等式(可以通过向量表示形式记住即摸摸大于向量乘积)

均值不等式

调和平均数≤几何平均数≤算术平均数≤平方平均数

绝对值三角不等式

定理1:|a|-|b|≤|a+b|≤|a|+|b| 推论1:|a1+a2+a3|≤|a1|+|a2|+|a3| 此性质可推广为|a1+a2+…+an|≤|a1|+|a2|+…+|an|. 推论2:|a|-|b|≤|a-b|≤|a|+|b| 定理2:如果a,b,c是实数,那么|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥0时,等号成立.

常用放缩思想

这几个务必牢记

不常见不常用的不等式

这几个一般用不到,放的太大了,知道有印象就好了

下面就是常用思路了,主要就是裂项部分

当年apucng与V_First研究的题

二项平方和

f(x)=(a1x-b1)^2+(a2x-b2)^2+……(anx-bn)^2 由f(x)≥0可得△小于等于0

第四篇:高中数学-公式-直线

直线

1、沙尔公式:ABxBxA2、数轴上两点间距离公式:ABxBxA3、直角坐标平面内的两点间距离公式:P1P2

4、若点P分有向线段P1P2成定比λ,则λ=(x1x2)2(y1y2)2P1P PP2

xx1yy1=; x2xy2y5、若点P1P2成定比λ,则:λ=1(x1,y1),P2(x2,y2),P(x,y),点P分有向线段P

x=x1x2yy2y=111

x1x2x3y1y2y3。33若A(x1,y1),B(x2,y2),C(x3,y3),则△ABC的重心G的坐标是

6、求直线斜率的定义式为k=tg,两点式为k=

7、直线方程的几种形式:

点斜式:yy0k(xx0),斜截式:ykxb y2y1。x2x1

yy1xx1,y2y1x2x1

xy截距式:1 ab

一般式:AxByC0

经过两条直线l1:A1xB1yC10和l2:A2xB2yC20的交点的直线系方程是:A1xB1yC1(A2xB2yC2)0

kk18、直线l1:yk1xb1,l2:yk2xb2,则从直线l1到直线l2的角θ满足:tg2 1k1k2两点式:

直线l1与l2的夹角θ满足:tgk2k1 1k1k2

直线l1:A1xB1yC10,l2:A2xB2yC20,则从直线l1到直线l2的角θ满足:tgABA2B1A1B2A2B1;直线l1与l2的夹角θ满足:tg12 A1A2B1B2A1A2B1B2

Ax0By0C

AB229、点P(x0,y0)到直线l:AxByC0的距离:d

10、两条平行直线l1:AxByC10,l2:AxByC20距离是dC1C2

22AB11、直线:l1:A1xB1yC10与l2:A2xB2yC20垂直的充要条件是A1A2B1B20.

第五篇:高中数学-公式-数列

数列

1、等差数列的通项公式是ana1(n1)d,前n项和公式是:Snn(a1an)1=na1n(n1)d。22.等差数列 {an} anan1d(d为常数)2anan1an1(n2,nN*)ananbSnAn2Bn。

na1(q1)nn

12、等比数列的通项公式是ana1q,前n项和公式是:Sna1(1q)(q1)1q

2n-13.等比数列 {an}anan-1an1(n2,nN)ana1q;

4、当m+n=p+q=2t(m、n、p、q∈N)时,对等差数列{an}有:amanapaq2at;对等比数列{an}

有:amanapaqat。

5、等差数列中, am=an+(n-m)d, daman;等比数列中,an=amqn-m;q=nmn

{anbn}等也是等比数列。

7、设Sn表示数列前n项和;等差数列中有:Sn,S2nSn,S3nS2n,也是等差数列;在等比数列中,2an;am6、若{an}、{bn}是等差数列,则{kanbbn}(k、b、a是非零常数)是等差数列;若{an}、{bn}是等比数列,则{kankan}、Sn,S2nSn,S3nS2n,是等比数列。

8、等差(或等比)数列的“间隔相等的连续等长片断和序列”(如a1+a2+a3,a4+a5+a6,a7+a8+a9…)仍是等差(或等比)数列;

9、等差数列中:a1ana2an1a3an2;

等比数列中:a1ana2an1a3an2

10、对等差数列{an},当项数为2n时,S偶S奇nd;项数为2n-1时,S奇S偶a中项(n∈N*)。

11、由Sn求an,an={S1(n1)

*SnSn1(n2,nN)

一般已知条件中含an与Sn的关系的数列题均可考虑用上述公式;

12、首项为正(或为负)的递减(或递增)的等差数列前n项和的最大(或最小)问题,转化为解不等式an0an0解决; 或a0a0n1n1 注意验证a1是否包含在后面an 的公式中,若不符合要单独列出。

13、熟记等差、等比数列的定义,通项公式,前n项和公式,在用等比数列前n项和公式时,勿忘分类讨论思想;

14、若一阶线性递归数列an=kan-1+b(k≠0,k≠1),则总可以将其改写变形成如下形

式:anbk(an1b)(n≥2),于是可依据等比数列的定义求出其通项公式; k1k115、当等比数列an的公比q满足q<1时,limSn=S=

na1。一般地,如果无穷数列an的前n项和的极限n1qlimSn存在,就把这个极限称为这个数列的各项和(或所有项的和),用S表示,即S=limSn。n

下载高中数学放缩法公式word格式文档
下载高中数学放缩法公式.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    高中数学-公式-极坐标

    极坐标、参数方程 xx0at(t是参数)。 1、经过点P0(x0,y0)的直线参数方程的一般形式是:yybt0 xx0tcos2、若直线l经过点P0(x0,y0),倾斜角为,则直线参数方程的标准形式是:yy0tsin 其......

    高中数学常用公式定理汇总

    2011年高考数学资料整理高中数学常用公式定理汇总集合类:ABAABABBAB逻辑关系类:对数类:logaM+logaN=logaMNlogMaM-logaN=logaNlogaMN=NlogaM logabMN=NblogaMloga1=0logaa=1log......

    高中数学--三角函数公式大全doc

    高中数学—三角函数公式大全锐角三角函数公式sin α=∠α的对边 / 斜边cos α=∠α的邻边 / 斜边tan α=∠α的对边 / ∠α的邻边cot α=∠α的邻边 / ∠α的对边倍角公式Si......

    高中数学-三角函数公式

    两角和公式 sin(A+B) = sinAcosB+cosAsinBsin(A-B) = sinAcosB-cosAsinBcos(A+B) = cosAcosB-sinAsinBcos(A-B) = cosAcosB+sinAsinB tan(A+B) = (tanA+tanB)/(1-tanAtanB)t......

    高中数学全部公式

    集合 基本初等函数Ⅰ 函数应用空间几何体 点、直线和平面的位置关系 空间向量与立体几何直线与方程 圆与方程 圆锥曲线与方程统计 概率 离散型随机变量的分布列 三角......

    高中数学-公式-比例及其他

    高中数学概念总结 比例的几个性质 acadbc bd acbd2、反比定理: bdac acab3、更比定理: bdcd acabcd4、合比定理; bdbd acabcd5、分比定理: bdbd acabcd6、合分比定理: bdabcd aca......

    高中数学-公式-抛物线

    抛物线 1、抛物线的标准方程的四种形式: ppy22px(p0)焦点坐标是F( ,0)准线方程是x=- 22 ppy22px(p0) 焦点坐标是F( ,0) 准线方程是x= 22 ppx22py(p0)焦点坐标是F(0, )准线方......

    放缩法证明不等式

    放缩法证明不等式不等式是数学的基本内容之一,它是研究许多数学分支的重要工具,在数学中有重要的地位,也是高中数学的重要组成部分,在高考和竞赛中都有举足轻重的地位。不等式的......