第一篇:高中数学放缩法公式
“放缩法”证明不等式的基本策略
1、添加或舍弃一些正项(或负项)
例
1、已知an2n1(nN*).求证:
k
n
2
3
a1a2
a2a3
...
anan1
(nN).*
证明:
akak
1
212
k1
1
12(2
k1
1)
13.222
k
k
1211
.k,k1,2,...,n, 32
a1a2n2
a2a3
...
anan1
n2
1111n11n1(2...n)(1n), 322223223
n2
*
a1a2
a2a3
...
anan1
(nN).若多项式中加上一些正的值,多项式的值变大,多项式中加上一些负的值,多项式的值变小。由于证明不等式的需要,有时需要舍去或添加一些项,使不等式一边放大或缩小,利用不等式的传递性,达到证明的目的。本题在放缩时就舍去了2k2,从而是使和式得到化简.2、先放缩再求和(或先求和再放缩)
例
2、函数f(x)=
4xx,求证:f(1)+f(2)+…+f(n)>n+
2n
11
4nn
2(nN)
*
.证明:由f(n)=
14
=1-
114
n
1
122
122
112
n
122
n
得f(1)+f(2)+…+f(n)>1
n
14(1
1214
n1
22
1)n
n1
(nN)
*
.此题不等式左边不易求和,此时根据不等式右边特征, 先将分子变为常数,再对分母进行放缩,从而对左边可以进行求和.若分子, 分母如果同时存在变量时, 要设法使其中之一变为常量,分式的放缩对于分子分母均取正值的分式。如需放大,则只要把分子放大或分母缩小即可;如需缩小,则只要把分子缩小或分母放大即可。
3、逐项放大或缩小
例
3、设an证明:∵∴ n
223
n
34
n
n(n1)(n1)
ann(n1)求证2
2(n
12)
n(n1)n(n1)
n(n1)
2n12
2n12,∴
n(n1)2
an
(n1)
∴ 123nan
本题利用n
13(2n1)
2n
1,对an中每项都进行了放缩,从而得到可以求和的数列,达到化简的目的。
4、固定一部分项,放缩另外的项;
例
4、求证:
1n
1
2
3
1n
4证明:
1n(n1)
1n1
1
1n
1n1
1n
1n
n
()().此题采用了从第三项开始拆项放缩的技巧,放缩拆项时,不一定从第一项开始,须根
据具体题型分别对待,即不能放的太宽,也不能缩的太窄,真正做到恰倒好处。
5、函数放缩
ln
2例5.求证:
ln3
3
ln4
4
ln33
n
n
3
1x
n
5n66
ln2
(nN)
ln33
*
.
ln33
nn
解析:先构造函数有
lnxx1
lnxx
1,从而
ln44
31(n
n)
因为2
n
1111111111
1nnn
213 234567892
n1
3n193339
23n13n
66918275n
6
n
5n66
ln2
所以
ln33
ln44
ln33
n
n
31
n
5n6
3
6、裂项放缩
n
例6求证:k1k
53.1n
1n
4
1
12
4n12n12n1
n
解析:因为,所以
k
k1
112511
121
2n12n133357、均值不等式放缩
例7.设
Sn
2
23
k
n(n1).求证
n(n1)
2Sn
(n1)2
.解析: 此数列的通项为a
k
k(k1)
kk
1n(n1)2
k(k1),k1,2,,n.n
n
k
12,kSn
k1
(k
k1
12),n(n1)
即
Sn
n2
(n1)2
.ab
ab2
注:①应注意把握放缩的“度”:上述不等式右边放缩用的是均值不等式
n,若放成k(k1)k1
则得
Sn
k1
(k1)
(n1)(n3)
(n1)2,就放过“度”了!
②根据所证不等式的结构特征来选取所需要的重要不等式,这里
n1
1an
n
1an
a1an
n
a1an
n
a1
其中,n2,3等的各式及其变式公式均可供选用。
8、二项放缩
n
(11)
n
CnCnCn2nCn0Cnn1
01n,2C
n
n
C
1n
C
2n
n
n22
n
n(n1)(n2)
第二篇:放缩法讨论
不等式的证明——放缩法
学习目标:
1、感受在什么情况下,需要用放缩法证明不等式。
2、探索用放缩法证明不等式的理论依据和技巧。
放缩法:证明不等式时,通过把不等式中的某些部分的值放大或缩小,简化不等式,从而达到证明的目的。
若是自然数,求证
11112222.2123n
2k 111,k2,3,4,,n.k(k1)k1k
常见方法:
1、分式放缩;
2、利用已知结论放缩;
3、裂项放缩;
4、先放缩后求和。
放缩法就是将不等式的一边放大或缩小,寻找一个
中间量,如将A放大成C,即AC,后证CB.常用的放缩技巧有:
(1)舍掉(或加进)一些项;
(2)在分式中放大或缩小分子或分母;
(3)应用基本不等式进行放缩.如
12312①(a)(a);242 111112,2,, ②2kk(k1)kk(k1)kkk1 2 1(以上k2且kN)kkk1
归纳延伸
1.放缩法证明不等式的理论依据主要有:
(1)不等式的传递性;
(2)等量加不等量为不等量;
(3)同分子(分母)异分母(分子)的两个分式大小的比较.
2.常用的放缩技巧:
(1)对于分子分母均取正值的分式,(Ⅰ)如果分子不变,分母缩小(分母仍为正数),则分式的值放大;
(Ⅱ)如果分子不变,分母放大,则分式的值缩小。
(2)①舍掉(或加进)一些项;②在分式中放大或缩小分子或分母;③应用均值不等式进行放缩.
第三篇:数学放缩法
放缩法的常见技巧(1)舍掉(或加进)一些项
(2)在分式中放大或缩小分子或分母。(3)应用基本不等式放缩(例如均值不等式)。(4)应用函数的单调性进行放缩(5)根据题目条件进行放缩。(6)构造等比数列进行放缩。(7)构造裂项条件进行放缩。
(8)利用函数切线、割线逼近进行放缩。
使用放缩法的注意事项(1)放缩的方向要一致。(2)放与缩要适度。
(3)很多时候只对数列的一部分进行放缩法,保留一些项不变(多为前几项或后几项)。(4)用放缩法证明极其简单,然而,用放缩法证不等式,技巧性极强,稍有不慎,则会出现放缩失当的现象。所以对放缩法,只需要了解,不宜深入。
先介绍工具
柯西不等式(可以通过向量表示形式记住即摸摸大于向量乘积)
均值不等式
调和平均数≤几何平均数≤算术平均数≤平方平均数
绝对值三角不等式
定理1:|a|-|b|≤|a+b|≤|a|+|b| 推论1:|a1+a2+a3|≤|a1|+|a2|+|a3| 此性质可推广为|a1+a2+…+an|≤|a1|+|a2|+…+|an|. 推论2:|a|-|b|≤|a-b|≤|a|+|b| 定理2:如果a,b,c是实数,那么|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥0时,等号成立.
常用放缩思想
这几个务必牢记
不常见不常用的不等式
这几个一般用不到,放的太大了,知道有印象就好了
下面就是常用思路了,主要就是裂项部分
当年apucng与V_First研究的题
二项平方和
f(x)=(a1x-b1)^2+(a2x-b2)^2+……(anx-bn)^2 由f(x)≥0可得△小于等于0
第四篇:高中数学-公式-直线
直线
1、沙尔公式:ABxBxA2、数轴上两点间距离公式:ABxBxA3、直角坐标平面内的两点间距离公式:P1P2
4、若点P分有向线段P1P2成定比λ,则λ=(x1x2)2(y1y2)2P1P PP2
xx1yy1=; x2xy2y5、若点P1P2成定比λ,则:λ=1(x1,y1),P2(x2,y2),P(x,y),点P分有向线段P
x=x1x2yy2y=111
x1x2x3y1y2y3。33若A(x1,y1),B(x2,y2),C(x3,y3),则△ABC的重心G的坐标是
6、求直线斜率的定义式为k=tg,两点式为k=
7、直线方程的几种形式:
点斜式:yy0k(xx0),斜截式:ykxb y2y1。x2x1
yy1xx1,y2y1x2x1
xy截距式:1 ab
一般式:AxByC0
经过两条直线l1:A1xB1yC10和l2:A2xB2yC20的交点的直线系方程是:A1xB1yC1(A2xB2yC2)0
kk18、直线l1:yk1xb1,l2:yk2xb2,则从直线l1到直线l2的角θ满足:tg2 1k1k2两点式:
直线l1与l2的夹角θ满足:tgk2k1 1k1k2
直线l1:A1xB1yC10,l2:A2xB2yC20,则从直线l1到直线l2的角θ满足:tgABA2B1A1B2A2B1;直线l1与l2的夹角θ满足:tg12 A1A2B1B2A1A2B1B2
Ax0By0C
AB229、点P(x0,y0)到直线l:AxByC0的距离:d
10、两条平行直线l1:AxByC10,l2:AxByC20距离是dC1C2
22AB11、直线:l1:A1xB1yC10与l2:A2xB2yC20垂直的充要条件是A1A2B1B20.
第五篇:高中数学-公式-数列
数列
1、等差数列的通项公式是ana1(n1)d,前n项和公式是:Snn(a1an)1=na1n(n1)d。22.等差数列 {an} anan1d(d为常数)2anan1an1(n2,nN*)ananbSnAn2Bn。
na1(q1)nn
12、等比数列的通项公式是ana1q,前n项和公式是:Sna1(1q)(q1)1q
2n-13.等比数列 {an}anan-1an1(n2,nN)ana1q;
*
4、当m+n=p+q=2t(m、n、p、q∈N)时,对等差数列{an}有:amanapaq2at;对等比数列{an}
有:amanapaqat。
5、等差数列中, am=an+(n-m)d, daman;等比数列中,an=amqn-m;q=nmn
{anbn}等也是等比数列。
7、设Sn表示数列前n项和;等差数列中有:Sn,S2nSn,S3nS2n,也是等差数列;在等比数列中,2an;am6、若{an}、{bn}是等差数列,则{kanbbn}(k、b、a是非零常数)是等差数列;若{an}、{bn}是等比数列,则{kankan}、Sn,S2nSn,S3nS2n,是等比数列。
8、等差(或等比)数列的“间隔相等的连续等长片断和序列”(如a1+a2+a3,a4+a5+a6,a7+a8+a9…)仍是等差(或等比)数列;
9、等差数列中:a1ana2an1a3an2;
等比数列中:a1ana2an1a3an2
10、对等差数列{an},当项数为2n时,S偶S奇nd;项数为2n-1时,S奇S偶a中项(n∈N*)。
11、由Sn求an,an={S1(n1)
*SnSn1(n2,nN)
一般已知条件中含an与Sn的关系的数列题均可考虑用上述公式;
12、首项为正(或为负)的递减(或递增)的等差数列前n项和的最大(或最小)问题,转化为解不等式an0an0解决; 或a0a0n1n1 注意验证a1是否包含在后面an 的公式中,若不符合要单独列出。
13、熟记等差、等比数列的定义,通项公式,前n项和公式,在用等比数列前n项和公式时,勿忘分类讨论思想;
14、若一阶线性递归数列an=kan-1+b(k≠0,k≠1),则总可以将其改写变形成如下形
式:anbk(an1b)(n≥2),于是可依据等比数列的定义求出其通项公式; k1k115、当等比数列an的公比q满足q<1时,limSn=S=
na1。一般地,如果无穷数列an的前n项和的极限n1qlimSn存在,就把这个极限称为这个数列的各项和(或所有项的和),用S表示,即S=limSn。n