第一篇:高中数学全部公式
集合
基本初等函数Ⅰ
函数应用
空间几何体
点、直线和平面的位置关系
空间向量与立体几何
直线与方程
圆与方程
圆锥曲线与方程
统计
概率
离散型随机变量的分布列
三角函数
三角函数的图象与性质
三角恒等变换
解三角形
平面向量
数列
不等式
常用逻辑用语
导数及其应用
复数
计数原理
坐标系与参数方程
更多高考信息、高考备考方法、学习资料请关注小编微信号:2107524032
高中生最需要的高中资讯平台——微信公众号:高分网高考(ID:igaokao100)
阅读(13570)举报
0喜欢 0没劲 分享到
本文相关推荐
高中数学知识点大总结 初中数学知识点总结...高中平面向量知识点总结 高中数学参数方程知识...高中数学知识点总结 高中函数知识点总结 高中数学知识点总结框架图 初中数学几何知识点总结 高中数学知识点总结全 高中理科数学知识点总结 高中一数学知识点总结 高中数学数列知识点总结
收藏文章
登录
来说两句吧....我的社区
表情删除后不可恢复,是否删除图片正在上传,请稍后...取消上传
评论内容为空!
搜狐“我来说两句”用户公约
评论
1人参与,1条评论
最新评论
2017年1月30日 16:06 八月未央雁影南去 [河南省郑州市网友] 很适合高中生复习使用。举报回复
该评论已关闭!
第二篇:高中数学-公式-直线
直线
1、沙尔公式:ABxBxA2、数轴上两点间距离公式:ABxBxA3、直角坐标平面内的两点间距离公式:P1P2
4、若点P分有向线段P1P2成定比λ,则λ=(x1x2)2(y1y2)2P1P PP2
xx1yy1=; x2xy2y5、若点P1P2成定比λ,则:λ=1(x1,y1),P2(x2,y2),P(x,y),点P分有向线段P
x=x1x2yy2y=111
x1x2x3y1y2y3。33若A(x1,y1),B(x2,y2),C(x3,y3),则△ABC的重心G的坐标是
6、求直线斜率的定义式为k=tg,两点式为k=
7、直线方程的几种形式:
点斜式:yy0k(xx0),斜截式:ykxb y2y1。x2x1
yy1xx1,y2y1x2x1
xy截距式:1 ab
一般式:AxByC0
经过两条直线l1:A1xB1yC10和l2:A2xB2yC20的交点的直线系方程是:A1xB1yC1(A2xB2yC2)0
kk18、直线l1:yk1xb1,l2:yk2xb2,则从直线l1到直线l2的角θ满足:tg2 1k1k2两点式:
直线l1与l2的夹角θ满足:tgk2k1 1k1k2
直线l1:A1xB1yC10,l2:A2xB2yC20,则从直线l1到直线l2的角θ满足:tgABA2B1A1B2A2B1;直线l1与l2的夹角θ满足:tg12 A1A2B1B2A1A2B1B2
Ax0By0C
AB229、点P(x0,y0)到直线l:AxByC0的距离:d
10、两条平行直线l1:AxByC10,l2:AxByC20距离是dC1C2
22AB11、直线:l1:A1xB1yC10与l2:A2xB2yC20垂直的充要条件是A1A2B1B20.
第三篇:高中数学-公式-数列
数列
1、等差数列的通项公式是ana1(n1)d,前n项和公式是:Snn(a1an)1=na1n(n1)d。22.等差数列 {an} anan1d(d为常数)2anan1an1(n2,nN*)ananbSnAn2Bn。
na1(q1)nn
12、等比数列的通项公式是ana1q,前n项和公式是:Sna1(1q)(q1)1q
2n-13.等比数列 {an}anan-1an1(n2,nN)ana1q;
*
4、当m+n=p+q=2t(m、n、p、q∈N)时,对等差数列{an}有:amanapaq2at;对等比数列{an}
有:amanapaqat。
5、等差数列中, am=an+(n-m)d, daman;等比数列中,an=amqn-m;q=nmn
{anbn}等也是等比数列。
7、设Sn表示数列前n项和;等差数列中有:Sn,S2nSn,S3nS2n,也是等差数列;在等比数列中,2an;am6、若{an}、{bn}是等差数列,则{kanbbn}(k、b、a是非零常数)是等差数列;若{an}、{bn}是等比数列,则{kankan}、Sn,S2nSn,S3nS2n,是等比数列。
8、等差(或等比)数列的“间隔相等的连续等长片断和序列”(如a1+a2+a3,a4+a5+a6,a7+a8+a9…)仍是等差(或等比)数列;
9、等差数列中:a1ana2an1a3an2;
等比数列中:a1ana2an1a3an2
10、对等差数列{an},当项数为2n时,S偶S奇nd;项数为2n-1时,S奇S偶a中项(n∈N*)。
11、由Sn求an,an={S1(n1)
*SnSn1(n2,nN)
一般已知条件中含an与Sn的关系的数列题均可考虑用上述公式;
12、首项为正(或为负)的递减(或递增)的等差数列前n项和的最大(或最小)问题,转化为解不等式an0an0解决; 或a0a0n1n1 注意验证a1是否包含在后面an 的公式中,若不符合要单独列出。
13、熟记等差、等比数列的定义,通项公式,前n项和公式,在用等比数列前n项和公式时,勿忘分类讨论思想;
14、若一阶线性递归数列an=kan-1+b(k≠0,k≠1),则总可以将其改写变形成如下形
式:anbk(an1b)(n≥2),于是可依据等比数列的定义求出其通项公式; k1k115、当等比数列an的公比q满足q<1时,limSn=S=
na1。一般地,如果无穷数列an的前n项和的极限n1qlimSn存在,就把这个极限称为这个数列的各项和(或所有项的和),用S表示,即S=limSn。n
第四篇:高中数学-公式-极坐标
极坐标、参数方程
xx0at(t是参数)。
1、经过点P0(x0,y0)的直线参数方程的一般形式是:yybt0
xx0tcos
2、若直线l经过点P0(x0,y0),倾斜角为,则直线参数方程的标准形式是:yy0tsin
其中点P对应的参数t的几何意义是:有向线段P0P的数量。
若点P1、P2、P是直线l上的点,它们在上述参数方程中对应的参数分别是t1、t2和t,则:P1P2t1t2;当(t是参数)。
tt2t1t2;当点P是线段P1P2的中点时,t1。21
xarcos(是参数)。
3、圆心在点C(a,b),半径为r的圆的参数方程是:ybrsin
4、若以直角坐标系的原点为极点,x轴正半轴为极轴建立极坐标系,点P的极坐标为(,),直角坐标为(x,y),y22则xcos,ysin,xy,tg。x5、经过极点,倾斜角为的直线的极坐标方程是:或,点P分有向线段P1P2成定比时,t
经过点(a,0),且垂直于极轴的直线的极坐标方程是:cosa,经过点(a)且平行于极轴的直线的极坐标方程是:sina,
经过点(0,0)且倾斜角为的直线的极坐标方程是:sin()0sin(0)。
6、圆心在极点,半径为r的圆的极坐标方程是r;
0),半径为a的圆的极坐标方程是2acos; 圆心在点(a,圆心在点(a),半径为a的圆的极坐标方程是2asin;
220)r2。圆心在点(0,0),半径为r的圆的极坐标方程是020cos(7、若点M(1,1)、N(2,2),则MN 2122212cos(12)。
第五篇:高中数学常用公式定理汇总
2011年高考数学资料整理
高中数学常用公式定理汇总
集合类:
ABAABABBAB
逻辑关系类:
对数类:
logaM+logaN=logaMNlogMaM-logaN=logaN
logaMN=NlogaM logab
MN
=
Nb
logaMloga1=0
logaa=1loga1=-1a
loga^b
a
=b
logaa^b=blogab=alogba=1a
三角函数类:
sin,一二正
co,s一四正tan,一三正
sinsin
coscos
tantan
sin
2
cos
2
1sin2
cossin
cos2
cos
sin
cos2
2
sin
1
asinA
bsinB
csinC
2R
abcsinAsinBsinC
a*ba*b*cosa*b
cos
a*b
xx
yy
a
b
c
2bccosA
cosA
2bc
xx
221
*
yy
x
y
x
y
流程图类:
Int2.52.52(取不大于2.5的最大整数)mod10,31
平面几何类:
(取10除以3的余数)
圆标方程xa圆心:a,b
yb
r
函数类:
斜率:k
yx
y(xx
圆一般方程x
y
DxEyF0
x)
D
E
4F0
点斜式:yy
y
kx
x
x
y
两点式:
yy
xx
DE
圆心:,;半径:
22
4F
点点距离: PP
截距式:
xa
yb
1
0 ba
x2x1y2y1
一般式:AxByC韦达定理:x
x
1//2k1k2
点线距离:d
c
xx
a
A
x
B
y
C
A
B
A
x
B
yC10
与A2xB2yC20
平行:AB垂直:AA
AB BB
椭圆:ab
yb
1ab0
0
a
c
焦点:(c,0),(-c,0)
c
平行:A1xB1yC30 垂直:B1xA1yC30
平面向量类:
ab
a//b
离心率:e准线:x
a
c
双曲线:a
yb
1a,b0
b
c
a
xx,2
y
y
焦点:(c,0),(-c,0)离心率:e
a
c
xy
xy
0
准线:x渐近线:y
c
ba
x
抛物线:y
2px
(p>0)
p
焦点:F,0
2
x2x
2,11
2xx,x,x
1
离心率:eca
准线:xp2
数列类:
等差:ana1n1d
a
n
a
m
nmd
S
1
n
n
n2
n
a
nn12
d
mnpq
a
m
a
n
a
p
aq
等比:an1
na1q
a
n
a
nm
m
q
S
a11n
q
a1
anq
n
1q1q(q≠1)
mnpq
am
a
n
ap
aq
线性规划类:
n
nxn
niyixi
y
ii1bi1
i1*n2
nx2
nix
ii1i1
aybx
nxiyinxyx
i
xyiy
**bi1
n
n
x2
x2inx
i
x
i1
i1
aybx
导数类:
kxb,kC,(0C为常数)
x,1
ax,
a
x
lnaa0,且a1e
x,
ex
log
a
x
,1e
xloga
1xlna
a
0,且a1
lnx,sinx,x
cosx
cosx,sinx
fxgx,f,xg,x
Cfx,Cf,xC为常数
fxgx,f,xgxfxg,x
fx,f,xgxfxg,x
gx
g2
x
gx0 复数:
i
1
abicdiac,bd
abicdiacbdi abicdiacbdi abicdiac
bdbcadi
x2y
xyixyi
Zar,以a,0为圆心,r为半径的圆
Zabir,以a,b为圆心,r为半径的圆
1
3-2
2i
1
1i2
2i12
0
ax
bxc0,
b2
4ac0
x
b
4acb2
求根公式:
i
2a
向量与向量模关系:
Z1Z2Z1Z2Z1Z2
Z1,Z2是二次方程的根,那么即Z1abi,Z2abi
Z1,Z2共轭。
等式与不等式:
ababaabb
ac2
2a
b
aabb
b3b
a
24
abc2
3abc
ab2ab,ab2
ab,ab时取“”
ab2ab
abcabbcac
222
平面几何类:
内心:三条角平分线的交点
(到交边距离相等,为内切圆圆心)外心:三条中垂线的交点(外接圆的圆心)垂心:三条高线的交点 重心:三条中线的交点
S三角形
1
ppapbpc注:pabc
2
角平分线:中
AD
ABAC
BDDC
:
线
2AB
长
AC
BC
12
S扇形rr弧长
22
立体几何类:
S直棱柱侧ch
ch,V柱体V长方体abcSh
V球
R
S正棱锥侧S正棱台侧
1212,V椎体V台体
1313
Sh
SS,S球
4R
S,cch
hS
公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内。
公理2:如果两个平面有一个公共点,那么它们还有其他公共点,这些公共点的集合是经过这个公共点的一条直线。
公理3:经过不在同一条直线上的三点,有且只有一个平面。公理4:平行于同一条直线的两条直线互相平行。
推论1:经过一条直线和这条直线外的一点,有且只有一个平面。推论2:经过两条相交直线,有且只有一个平面。推论3:经过两条平行直线,有且只有一个平面。
定理1:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。
定理2:过平面内一点与平面外一点的直线,和这个平面内不经过该点的直线是异面直线。
点、线、平面垂直:过一点有且只有一条直线与已知平面垂直,过一点有且只有一个平面与已知直线垂直。
直线与平面平行的判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。
直线与平面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行。
直线与平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线垂直,那么这条直线垂直于这个平面。
直线与平面垂直的性质定理:如果两条直线垂直于同一个平面,那么这两条直线平行。
两个平面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。
两个平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么所得的两条交线平行。
两个平面垂直的判定定理:如果一个平面经过;另一个平面的一条垂线,那么这两个平面相互垂直。
两个平面垂直的性质定理:如果两个平面相互垂直,那么在一个平面内垂直于他们交线的直线垂直于另一个平面。