求三角形面积——海伦公式(共五则范文)

时间:2019-05-14 01:56:15下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《求三角形面积——海伦公式》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《求三角形面积——海伦公式》。

第一篇:求三角形面积——海伦公式

证明:海伦公式:若ΔABC的三边长为a、b、c,则

SΔABC=√((a+b+c)×(-a+b+c)×(a-b+c)×(a+b-c))/4(这是海伦公式的变形,“负号“-”从a左则向右经过a、b、c”,负号从x轴负轴向正轴扫描一个周期!我觉得这么记更简单,还设个什么l=(a+b=c)/2啊,多此一举!)

证明:设边c上的高为 h,则有

√(a^2-h^2)+√(b^2-h^2)=c

√(a^2-h^2)=c-√(b^2-h^2)

两边平方,化简得:

2c√(b^2-h^2)=b^2+c^2-a^2

两边平方,化简得:

h=√(b^2-(b^2+c^2-a^2)^2/(4c^2))

SΔABC=ch/2

=c√(b^2-(b^2+c^2-a^2)^2/(4c^2))/2

仔细化简一下,得:

SΔABC=√((a+b+c)×(-a+b+c)×(a-b+c)×(a+b-c))/4

用三角函数证明!

证明:

SΔABC=absinC/2

=ab√(1-(cosC)^2)/2————(1)

∵cosC=(a^2+b^2-c^2)/(2ab)

∴代入(1)式,(仔细)化简得:

SΔABC=√((a+b+c)×(-a+b+c)×(a-b+c)×(a+b-c))/4

第二篇:海伦公式与四边形面积公式

海伦公式与四边形面积公式

2007年08月01日 星期三 00:43 我们知道,已知三角形的三条边长度a,b,c(2p=a+b+c),就可以由海伦公式得到三角形的面积:

所以:已知圆内接三角形的三边长,其面积公式为海伦公式。事实上,对于圆内接四边形,已知其四边形的四边长(不妨设其为a,b,c,d,2p=a+b+c+d),也可以求其面积,而且公式的形式与海伦公式相类似:

证明:

设圆内接四边形ABCD中,AB=a,BC=b,CD=c,DA=d,设∠BAD=θ,则∠BCD=180°-θ,设其对角线BD=x,由余弦定理有:

联立两式解得:

第三篇:高中数学三角形面积公式

高中数学三角形面积公式

由不在同一直线上的三条线段首尾顺次连接所组成的封闭图形叫做三角形。平面上三条直线或球面上三条弧线所围成的图形。三条直线所围成的图形叫平面三角形;三条弧线所围成的图形叫球面三角形,也叫三边形。面积公式:

(1)S=ah/2

(2).已知三角形三边a,b,c,则(海伦公式)(p=(a+b+c)/2)S=√[p(p-a)(p-b)(p-c)]

=(1/4)√[(a+b+c)(a+b-c)(a+c-b)(b+c-a)]

(3).已知三角形两边a,b,这两边夹角C,则S=1/2 * absinC

(4).设三角形三边分别为a、b、c,内切圆半径为r

S=(a+b+c)r/2

(5).设三角形三边分别为a、b、c,外接圆半径为R

S=abc/4R

(6).根据三角函数求面积:

S= absinC/2a/sinA=b/sinB=c/sinC=2R

第四篇:三角形面积公式教案

课题: §1.2解三角形应用举例

教学目标:

知识与技能:能够运用正弦定理、余弦定理等知识和方法进一步解决有关三角形的问题, 掌握三角形的面积公式的简单推导和应用

过程与方法:本节课补充了三角形新的面积公式,引导学生证明,同时总结出该公式的特点,循序渐进地具体运用于相关的题型。

情感态度与价值观:让学生进一步巩固所学的知识,加深对所学定理的理解,进一步培养学生研究和发现能力,让学生在探究中体验愉悦的成功体验

教学重点:

推导三角形的面积公式并解决简单的相关题目。

教学难点:

三角形面积公式与正弦余弦定理的综合应用。

教学过程: Ⅰ.课题导入

师:以前我们就已经接触过了三角形的面积公式,今天我们来学习它的另一个表达公式。

121推导出下面的三角形面积公式,S=absinC,大家能推出其它的几个公式吗?

211生:同理可得,S=bcsinA, S=acsinB 22根据以前学过的三角形面积公式S=ah,应用以上求出的高的公式如ha=bsinC代入,可以Ⅱ.讲授新课

[范例讲解] 例

1、在ABC中,根据下列条件,求三角形的面积S(1)已知a=5cm,c=7cm,B=60;(2)已知B=30,C=45,b=2cm;(3)已知三边的长分别为a=3cm,b=5cm,c=7cm

分析:这是一道在不同已知条件下求三角形的面积的问题,与解三角形问题有密切的关系,我们可以应用解三角形面积的知识,观察已知什么,尚缺什么?求出需要的元素,就可以求出三角形的面积。

2、(1)锐角ABC中,S=33,BC=4,CA=3,求角C 与c边。

变式:ABC中,S=33,BC=4,CA=3,求角C与c边。(2)ABC中a=2,B=练习:课本P18练习2

3,S=,解三角形。

例3.如图,在某市进行城市环境建设中,要把一个三角形的区域改造成室内公园,经过测量得到这个三角形区域的三条边长分别为60m,100m,140m,这个区域的面积是多少?

Ⅲ.课时小结

(1)三角形面积公式正用和逆用。

(2)三角形面积公式在实际问题中的应用。Ⅳ.课后作业:(1):已知在ABC中,C=120,b=6,c=63,求a及ABC的面积S(2): 已知在ABC中,a,b,c是角A,B,C的对边,ABC的面积为S,若a=4,b=5,S=53,求c的长。

第五篇:海伦公式

海伦公式

与海伦在他的著作“Metrica”(《度量论》)中的原始证明不同,在此我们用三角公式和公式变形来证明。设三角形的三边a、b、c的对角分别为A、B、C,则余弦定理为下述推导[1]

cosC =(a^2+b^2-c^2)/2ab

S=1/2*ab*sinC

=1/2*ab*√(1-cos^2 C)

=1/2*ab*√[1-(a^2+b^2-c^2)^2/4a^2*b^2]

=1/4*√[4a^2*b^2-(a^2+b^2-c^2)^2]

=1/4*√[(2ab+a^2+b^2-c^2)(2ab-a^2-b^2+c^2)]

=1/4*√[(a+b)^2-c^2][c^2-(a-b)^2]

=1/4*√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)]

设p=(a+b+c)/2

则p=(a+b+c)/2,p-a=(-a+b+c)/2,p-b=(a-b+c)/2,p-c=(a+b-c)/2,上式=√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)/16]

=√[p(p-a)(p-b)(p-c)]

所以,三角形ABC面积S=√[p(p-a)(p-b)(p-c)]

证明⑵

中国宋代的数学家秦九韶在1247年也提出了“三斜求积术”。它与海伦公式基本一样,其实在《九章算术》中,已经有求三角形公式“底乘高的一半”,在实际丈量土地面积时,由于土地的面积并不是三角形,要找出它来并非易事。所以他们想到了三角形的三条边。如果这样做求三角形的面积也就方便多了。但是怎样根据三边的长度来求三角形的面积?直到南宋,中国著名的数学家秦九韶提出了“三斜求积术”。

秦九韶他把三角形的三条边分别称为小斜、中斜和大斜。“术”即方法。三斜求积术就是用小斜平方加上大斜平方,送到中斜平方,取相减后余数的一半,自乘而得一个数,小斜平方乘以大斜平方,送到上面得到的那个。相减后余数被4除,所得的数作为“实”,作1作为“隅”,开平方后即得面积。

所谓“实”、“隅”指的是,在方程px 2=q,p为“隅”,q为“实”。以△、a,b,c表示三角形面积、大斜、中斜、小斜,所以

q=1/4{a^2*c^2-[(a^2+c^2-b^2)/2 ]^2}

当P=1时,△ 2=q,△=√1/4{a^2*c^2-[(a^2+c^2-b^2)/2 ]^2}

因式分解得

△ ^2=1/4[4a^2c^2-(a^2+c^2-b^2)^2]

=1/4[(c+a)^2-b ^2][b^ 2-(c-a)^ 2]

=1/4(c+a+b)(c+a-b)(b+c-a)(b-c+a)

=1/4(c+a+b)(a+b+c-2b)(b+c+a-2a)(b+a+c-2c)

=1/4[2p(2p-2a)(2p-2b)(2p-2c)]

=p(p-a)(p-b)(p-c)

由此可得:

S△=√[p(p-a)(p-b)(p-c)]

其中p=1/2(a+b+c)

这与海伦公式完全一致,所以这一公式也被称为“海伦-秦九韶公式”。

S=√1/4{a^2*c^2-[(a^2+c^2-b^2)/2 ]^2}.其中c>b>a.根据海伦公式,我们可以将其继续推广至四边形的面积运算。如下题:

已知四边形ABCD为圆的内接四边形,且AB=BC=4,CD=2,DA=6,求四边形ABCD的面积

这里用海伦公式的推广

S圆内接四边形= 根号下(p-a)(p-b)(p-c)(p-d)(其中p为周长一半,a,b,c,d,为4边)

代入解得s=8√ 3

证明⑶

在△ABC中∠A、∠B、∠C对应边a、b、c

O为其内切圆圆心,r为其内切圆半径,p为其半周长

有tanA/2tanB/2+tanB/2tanC/2+tanC/2tanA/2=1

r(tanA/2tanB/2+tanB/2tanC/2+tanC/2tanA/2)=r

∵r=(p-a)tanA/2=(p-b)tanB/2=(p-c)tanC/2

∴ r(tanA/2tanB/2+tanB/2tanC/2+tanC/2tanA/2)

=[(p-a)+(p-b)+(p-c)]tanA/2tanB/2tanC/2

=ptanA/2tanB/2tanC/2

=r

∴p^2r^2tanA/2tanB/2tanC/2=pr^3

∴S^2=p^2r^2=(pr^3)/(tanA/2tanB/2tanC/2)

=p(p-a)(p-b)(p-c)

∴S=√p(p-a)(p-b)(p-c)

下载求三角形面积——海伦公式(共五则范文)word格式文档
下载求三角形面积——海伦公式(共五则范文).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    三角形面积公式的推导教案

    三角形面积公式的推导 三角形面积的计算 教学目标:1.理解三角形面积公式的推导过程,正确运用三角形面积公式进行计算. 2.培养学生观察能力、动手操作能力和类推迁移的能力.3.培养......

    三角形公式

    1 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 2 直角三角形斜边上的中线等于斜边上的一半 3勾股定理 直角三角形两直角边a、b的平方和、等于斜边......

    三角形面积公式的十五种形式

    三角形面积公式的十五种形式 —— 一次数学研究性学习课总结 崔佃金 (山东省桓台第一中学 256400) 研究性学习是素质教育新形势下的一种全新的学习方式,是全面提高学生素质的有......

    海伦公式的证明

    与海伦在他的著作"Metrica"(《度量论》)中的原始证明不同,在此我们用三角公式和公式变形来证明。设三角形的三边a、b、c的对角分别为A、B、C,则余弦定理为cosC = (a^2+b^2-c^2......

    海伦公式原理简介

    原理简介 我国宋代的数学家秦九韶也提出了“三斜求积术”,它与海伦公式基本一样。 假设在平面内,有一个三角形,边长分别为a、b、c,三角形的面积S可由以下公式求得: S=√[p(p-a)(p......

    平行四边形、三角形、梯形面积公式的推导5篇

    一、平行四边形面积公式的推导过程: 1、把平行四边形沿着它的一条高剪开,就拼成了一个长方形。 2、平行四边形的底等于长方形的长,平行四边形的高等于长方形的宽。 3、因为长方......

    三角形公式定理

    第三章 三角形公式定理第三章 三角形1 三角形的有关概念和性质1.1三角形的内角和在同一平面内,由一些不在同一条直线上的线段首位顺次相接所围成的封闭图形叫做多边形.组成......

    解三角形公式[大全]

    1、正弦定理:在C中,a、b、c分别为角、、C的对边,R为C 的外接圆的半径,则有 2、正弦定理的变形公式:① ② sinA=sinB=sinC= ③ a:b:c= ④ a......