最新三角形面积教案

时间:2019-05-15 03:27:38下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《最新三角形面积教案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《最新三角形面积教案》。

第一篇:最新三角形面积教案

北师大版数学五年级上册

《探索活动

(二)三角形面积》教学设计

教学内容:

《探索活动

(二)三角形面积》 教学目标:

在实际问题情境中认识三角形面积必要性,在自主探究中体会有计划、有目的的选择适当的探究方法,锻炼学生动手操作的能力,进一步感知转化的数学思想和方法,学会用数学语言与他人交流,体验数学公式建立的过程,发展观察对比的能力、归纳概括能力及空间想象力。能正确地利用三角形面积公式计算,解决实际问题。

教学重点:三角形面积公式的建立;利用分割与旋转进行图形转化 教学难点:三角形面积公式的概括;利用分割与旋转进行图形转化 教法设计: 教学准备:

三个三角形(两个完全相同,一个不同)一个平行四边形;剪刀。教学过程设计:

一、温故孕新,提出问题 ⒈教师谈话:同学们,到现在我们已经学过哪些图形面积的计算了?你能说一说它们的面积计算公式吗?

学生口述,教师出示长方形、正方形、平行四边形图形及公式 教师提问:谁能说一说平行四边形面积计算公式的推导过程? 学生口述,教师再现平行四边形面积计算公式的推导过程。

(设计意图:通过再现平行四边形面积公式推导过程,重温将“未知”转化为“已知”的过程,为进一步探究三角形面积计算公式做好思维上的准备)

⒉教师出示教材P27主题图

教师引导审题:什么形状,给了什么条件,要求什么问题。学生观察后口述。(设计意图:在实际问题中使学生认识三角形面积计算的必要性,激发学生学习的内驱力,为学生下面积极参与到探究过程中来做好心理上的准备)⒊教师提问:你认为今天我们应该重点研究是什么?学生口述,教师板书: 三角形面积

教师谈话:今天这节课我们将通过“动手操作、观察对比”推导出三角形面积的计算公式。

(设计意图:学生在教师的指导下自我提出学习的内容,教师明确的给出将采用的方法和学习的目标,使学生做到思维定向。)

二、观察对比,设想转化 ⒈教师提问:你能用什么办法得到三角形面积呢?学生思考口述,预计学生可能提出以下两种方案 ⑴数方格的办法,(打开教材P27,数出三角形的面积)⑵将三角形转化为已经学过的图形(平行四边形)⒉教师利用电脑课件再出示一个平行四边形(如右图),引导学生与三角形进行观察对比,思考:“怎样将三角形转化为平行四边形”,学生独立思考,分组交流,口述自己的或小组的意见。

(设计意图:将三角形与平行四边形进行对比,思考、交流转化的预想其目的都是培养学生有目的、有计划的进行探究活动,减少探究活动的盲目性和随意性,养成良好的思维习惯,发展学生空间想象的能力。)

三、动手操作,体验转化 ⒈教师谈话:下面同学们可以按照自己的想法利用自己手中的学具进行转化,并思考一下的问题:(教师出示思考题)

在转化过程中的三角形和平行四边形有什么关系? 教师引导学生分析思考的含义 ⒉学生按照自己的想法动手实践,根据思考题思考,在小组内交流,教师巡视,并作适当点拨。⒊学生汇报探究的成果 预计有以下几种情况: ⑴拼: ①用两个完全相同的三角形拼成一个平行四边形

教师提问:这两个三角形有什么关系?完全相同是什么意思?如果不完全相同的两个三角形呢? 完全相同——形状,面积都相等(板书)总结:当三角形和平行四边形等底等高时,三角形的面积是平行四边形面积的一半。(板书)②通过割补把一个三角形拼成平行四边形

教师提问:为什么选择两条边的中点连线进行分割?(原因:平行四边形的对边相等)总结:当三角形和平行四边形等底等积时,三角形的高是平行四边形高的2倍。教师利用电脑演示揭示实质:当三角形和平行四边形等底等高时,三角形的面积是平行四边形面积的一半。(板书)⑵剪:将一个平行四边形剪成两个三角形

总结:当三角形和平行四边形等底等高时,三角形的面积是平行四边形面积的一半。(板书)⒋教师提问:通过刚才一系列的活动,我们得到了一个怎样的结论? 学生思考,口述,总结:当三角形和平行四边形等底等高时,三角形的面积是平行四边形面积的一半。(或:三角形面积是与它等底等高的平行四边形面积的一半。)

(设计意图:通过动手、交流、汇报、归纳等教学活动,使学生在活动中“做”数学,体验知识形成的过程和自主获取新知的过程,积累数学实验的经验,发展分析、归纳等思维能力、空间想象能力、以及利用数学语言与他人交流的能力。)

四、建立公式,实践应用 ⒈归纳公式

教师谈话:请同学们打开教材P27,学生阅读教材。教师谈话:根据刚才得出的结论,请大家思考三角形面积应该怎样计算呢?在小组里说一说你的想法,然后把结论填在教材上

三角形面积=___________________________ 如果用S表示三角形的面积,用a和h分别表示三角形的底和高,那么三角形的面积公式可以写成: S=_______________

学生思考,交流,填写,口述,教师板书 三角形面积=底×高÷2;S=ah÷2 ⒉剖析公式:教师提问:①计算三角形面积必须知道什么条件?②底乘以高等到的是什么?③为什么除以2? ⒊回归问题:

教师谈话:现在我们能求这个三角形的面积了吗? 学生重新审题,独立完成,口述,教师板书 4×3÷2=6(cm2);答:它的面积6cm2。⒋巩固练习:完成教材P26试一试。学生独立完成,板演,教师订正

(设计意图:以教材为引领,完成自主探究的学习过程,经历数学建模。)作业设计: ⒈利用学具摆一摆、说一说三角形面积推倒的过程,复述重要的结论。⒉完成教材P28练一练第1题。

板书设计:(略)

第二篇:三角形面积教案

《三角形的面积》教案

【教学内容】

教科书第82页例1和试一试、课堂活动第1题和练习二十第2题。【教学目标】

1.运用已有经验推导出三角形的面积计算公式,并能应用这个公式熟练地求出三角形面积。

2.培养学生的动手操作能力,发展学生的创新意识。

3.在探究过程中让学生获得成功体验,坚定学生学好数学的信心。【教具学具】

教师准备多媒体课件。每个学生准备形状大小相同的直角三角形、锐角三角形、钝角三角形纸片各两张。【教学过程】

一、引入课题

教师:同学们,前面我们学习了平行四边形面积的计算方法:底乘以高等于面积,这节课我们就利用学过的平行四边形面积来研究三角形的面积,(板书课题)。

二、新课教学

1、你能用两个完全一样的直角三角形,拼成一个学过的图形吗?

学生利用学具操作,教师巡视指导,然后交流汇报。教师:你们都把三角形转化成了哪些图形? 学生到视频展示台上展示。教师:真了不起,同学们把三角形转化成了平行四边形和长方形。下面请你们拿出你们的锐角三角形拼一拼,看还能拼出哪些图形?(信封里的三角形都事先编上了序号)学生通过拼学具发现①号和③号三角形能拼成正方形,②号和⑤号三角形能拼成长方形。

教师:为什么①号和③号三角形能拼成正方形,②号和⑤号三角形能拼成长方形呢?

引导学生讨论得出:因为①号和③号是两个完全一样的等腰直角三角形,②号和⑤号是两个完全一样的直角三角形。

教师:也就是说,它们都是一些特殊的三角形,所以能拼出特殊的图形。3.推导

教师:同学们转化的这些图形都非常漂亮,而且都能够用它们推导出三角形面积计算公式,但由于时间有限,我们只选其中的两个图形来推导三角形的面积公式。大家觉得选哪个图形好呢?

如果学生选择的不是特殊三角形拼组的图形,教师则用这个图形进行推导,如果学生选择的是特殊的三角形拼组的图形,教师则告诉学生最好选一般的三角形,因为这样推导出来的面积计算公式更有代表意义。把用方法1和方法2转化成的平行四边形都分别贴到黑板上。教师:请同学们仔细观察,思考转化后的图形和原来的三角形有什么联系?

引导学生思考后讨论得出:方法1中平行四边形的底就是三角形的底,平行四边形的高是原来三角形的高的一半;方法2中两个完全一样的三角形拼成一个平行四边形,原来的三角形的面积是平行四边形面积的一半。

(课件根据学生的回答,重复演示)教师:同学们观察得真仔细,我们能根据这些关系推导出三角形的面积计算公式吗? 学生:能。

教师:请左边大组的同学用第1个转化后的图形推导三角形的面积公式,请右边大组的同学用第2个转化后的图形推导三角形的面积公式。学生分组行动,教师巡视指导,然后全班汇报。教师:请问左边大组的同学你们推导出来的公式是什么? 学生1:三角形的面积=底×(高÷2)。教师:能说说这个公式表示的意思吗?

学生1:转化后的平行四边形的高是原来三角形的一半,所以用“高÷2”,平行四边形的底是原来三角形的底,所以三角形的面积=底×(高÷2)。(教师板书在相应的位置)教师:右边大组的同学你们推导出来的三角形的面积公式又是怎样的呢?

学生2:我们推导出的公式是:三角形的面积=(底×高)÷2。教师:你们的公式又是什么意思呢?

学生2:“底×高”是平行四边形的面积,原来三角形的面积是它的一半,所以是(底×高)÷2。(教师在相应的位置板书)教师:两大组的同学都说得有道理,你们推导出来的公式是一样的吗? 教师可引导学生用两种方法验证两个公式是否一样:(1)把底和高都分别设定为相应的数,如把底设为4cm,高设为2cm,由学生分别代到两个公式中去算,看结果是否一样;(2)从算式的意义来推导,看两个公式是否一样。

学生通过实践,知道底×(高÷2)=(底×高)÷2。

教师:两个公式都是一样的,我们都把它们写作三角形的面积=底×高÷2。(板书公式)这个公式是什么意思呢?

引导学生思考后讨论得出:公式的意思是三角形的面积等于平行四边形的面积的一半。

教师:这个公式对吗?我们来验证一下,请拿出你们的平行四边形,沿对角线把它剪开。你发现了什么? 学生操作后讨论。

学生:我发现剪出的两个三角形的面积是相等的,也就是说三角形的面积确实等于平行四边形面积的一半。我们推导出的公式是正确的。4.例2教学

教师:要求三角形的面积我们必须知道哪些条件? 引导学生思考后讨论汇报。

学生:要求三角形的面积必须知道三角形的底和高。教师:想试试用公式来计算三角形的面积吗? 学生:想。

教师:(课件出示例2)三角形的高和底分别是多少? 学生:三角形的高是4cm,底是5cm。教师:能算出三角形的面积吗?

学生计算后汇报,三角形的面积是10cm2。教师:你是怎么算出结果的呢?(学生汇报,略)

三、巩固练习

(1)练习十九第1题。(学生思考后讨论,并全班汇报)(2)练习十九第2题。(先学生独立完成,再全班交流)

四、课堂总结

教师:这节课学到了什么?三角形的面积公式是怎样的?我们是怎样探讨出三角形的面积公式的?通过对公式的探讨你有哪些体会?

五、教学反思

第三篇:三角形面积教案

《三角形面积》教案

教师:严贵军

一、教学内容:三角形的面积

二、教学目标:

1.使学生理解、掌握三角形面积计算公式,并能运用它正确计算三角形的面积;

2.通过指导实际操作,培养学生抽象、概括能力和思维的创造性,发展空间观念;

3.使学生明白事物之间是相互联系,可以转化和变换的。

三、教学重点难点:

1.重点:理解、掌握三角形面积计算公式,并能运用它正确计算三角形的面积;

2.难点:明白事物之间是相互联系,可以转化和变换的四、教学过程:

(一)复习引入

1.出示平行四边形,复习它的计算公式。

2.投影锐角三角形,直角三角形,钝角三角形,看图辨识三角形各条边上的高?

师:我们已经掌握了长方形、正方形、平行四边形面积的计算方法,那么怎样计算三角形的面积呢?这节 课我们就来解决这个问题。

(二)新授 1.操作学具。

师:你能用学具袋中的两个三角形拼成一个熟知的平面图形吗?

学生拿出学具动手操作拼成一个学过的图形。

(用两个三角形拼成一个三角形示意图)

出示学生拼出的图形。2.观察与思考。

师提出问题引导学生观察:①用两个什么样的三角形才能拼成一个学过的平面图形?②平行四边形、长方 形、正方形的面积与三角形的面积有什么关系?为什么?③三角形的底和高与平行四边形的底和高有什么关系 ?与长方形的长和宽有什么关系?与正方形的边长有什么关系?

学生观察、讨论、相互交流、弄清楚面积关系以及底、高之间的关系。

师小结板书:

平行四边形面积=底×高

长方形面积=长×宽

正方形面积=边长×边长 2个三角形面积=底×高

三角形面积=底×高÷2 3.推导公式。

(1)怎么求平行四边形的面积?长方形面积?正方形面积?

(2)平行四边形面积,长方形面积,正方形面积都是由几个完全一样的三角形组成的?

(3)怎么求一个三角形的面积?

师随着完成上面的板书并引导学生小结:怎么求三角形面积?为什么? 4.深化认识。

师启发回忆

学习习近平行四边形面积时,我们运用割补的办法把平行四边形转化成了长方形,那么运用割补的办法能不能 把一个三角形转化成一个平行四边形或长方形呢?

学生动手操作、研究、讨论、相互交流,教师辅导提示,得出下图。

(割补法求三角形面积示意图)

三角形面积=底×高的一半 ;三角形面积=底的一半×高

=底×高÷2 =底×高÷2(1)说一说你是怎么割补的?

(2)议一议平行四边形的面积、长方形面积与三角形面积的关系,平行四边形的底和高,长方形的长和 宽与三角形底和高的关系?得出什么结论?

(3)师整理公式(完成上面的板书)

(4)师总结:三角形面积等于底乘以高除以2。(板书字母公式:S=ah÷2),可以理解为底×高乘积的 一半,也可以理解为底×高的一半,还可以理解为底的一半×高。

五、巩固练习

(一)理解性练习(口答)

1.三角形的底乘以高得到的是什么图形的面积?再怎么求才能得到三角形面积? 答:得到与三角形等底等高的平行四边形的面积;再将此面积除以2即得三角形面积。

2.三角形面积等于平行四边形面积的一半;对不对?为什么?

答:对的;因为平行四边形可以分为等底等高的2个三角形。

(二)运用公式的练习(口答列式)

(三)灵活运用知识的练习

已知:(如下图)正方形和一个长方形求阴影面积?

五、全课总结(略)

第四篇:三角形面积计算教案

教案标题:数学“三角形面积计算”教案

系部:教科系系小学教育专业9班

教师:张伟伟(11407050203)

授课班级:五年级

科目:数学 时间:2014年4月26日

地点:教室

一、课题名称:三角形面积计算

二、教学目标:

1、学会用旋转、平移的方法,推导三角形面积计算公式。并理解、掌握和运用三角形面积计算公式。

2、使学生能在具体的情境中,解决三角形的有关问题,并能根据给出条件求出三角形的面积。

3、让学生自主发现和解决数学问题,并从中获得成功的体验,树立学习数学的信心。

三、教学重点:三角形面积的计算

教学难点:每个三角形面积与它同底等高的平行四边形面积之间关系。

四、教学准备:

教具准备:ppt、尺子

学具准备:印发锐角三角形、钝角三角形、直角三角形各一对。

五、教学过程设计:

一)、复习导入:

1、出示一个平行四边形。

回忆:平行四边形面积怎样计算?

观察:沿平行四边形对角线剪开成两个三角形。两个三角形的状,大小有什么关系?(完全一样)

2、思考、讨论:

(1)三角形面积与原平行四边形的面积有什么关系?(2)三角形面积计算规律是什么?

说明:让学生在观察的基础上通过建立与平行四边形及面积的比较,直觉感知三角形面积计算规律,增强了整体意识,同时为下面的进一步探究,引发了深层次的心理动机

二、操作--思考--验证公式

1、提问:“底×高÷2”这个规律适用于所有形状的三角形面积计算吗?让学生利用自己的学具进行操作、剪拼、思考、归纳。

2、三角形面积计算是一个什么样的计算规律呢?

(1)有一些三角形,同学们可以利用学过的知识进行剪、摆、拼、思考一下三角形面积是不是都有“底×高÷2”的计算规律。

(2)同桌共同讨论、研究。

(3)有结论以后可到黑板前面展示其过程,并说明理由。随学生展示出现以下情况:

摆拼一:用两个完全一样的三角形摆拼

(两个锐角三角形)

(两个钝角三角形)

平行四边形面积=底×高 三 角 形 面 积=底×高÷2

(两个直角三角形)

长(正)方形面积=长×宽 三 角 形 面 积

= 底×高÷2

剪拼二:用一个三角形剪拼。同学们也可以下课后自己剪

图(1)(2)(3)三角形面积=平行四边形(长方形)面积。

(1)三角形面积=底×(高÷2)=底×高÷2

(2)三角形面积=(底÷2)×高=底×高÷2

(3)三角形面积=底×(高÷2)=底×高÷2

从而归纳三角形面积=底×高÷2

3、引导学生用字母表示面积公式.

提问:如果用S表示三角形的面积,用a和h分别表示三角形的底和高,那么三角形的面积计算公式还可以表示成:

S=ah÷2

[说明:学生怀着验证三角形面积是不是“底×高÷2”的强烈心理动机在课堂提供了较大“自由”空间里。主动进行摆拼、剪拼、思考、讨论。归纳并验证了“三角形面积=底×高÷2”的求积公式。]

4、出示第85页的例题

三、练习--思考--培养能力 1.完成第85页上的“做一做”。

2.面积相等的两个三角形能拼成一个平行四边形。

3.三角形的底扩大2倍,高变为原来的1/2,则它的面积变化 4.想一想,下面说法对不对?为什么?

(1)三角形面积是平行四边形面积的一半()

(2)两个等底等高三角形可以拼成一个平行四边形()

(3)一个三角形面积为20cm2与它等底等高平行四边形面积是40cm2 5.思考:

(1)右图中甲、乙面积是()

A.一样大

B.甲大

C.乙大

D.不能判断

(2)如右面三角形ABC的面积

为6cm2,底边AB长为4cm

在图中画出第三个顶点C的位置。

顶点C的位置仅有一处吗?

你能作几处呢?

[说明:练习分三个层次设计,第一层基本练习,旨在巩固、熟练公式;第二层设计判断练习,学生在思考中,从正、反两方面强化对求积公式的理解;第三个层次,主要训练学生思维的灵活性与逆向思维能力,同时深化对三角形求积公式的认识。]

四、课堂总结:

教师:今天这节课,我们主要学习了什么知识?你有什么收获?

板书设计:

平行四边形面积=底×高

等底等高: 三角 形 面 积=底 × 高 ÷ 2

第五篇:三角形面积公式教案

课题: §1.2解三角形应用举例

教学目标:

知识与技能:能够运用正弦定理、余弦定理等知识和方法进一步解决有关三角形的问题, 掌握三角形的面积公式的简单推导和应用

过程与方法:本节课补充了三角形新的面积公式,引导学生证明,同时总结出该公式的特点,循序渐进地具体运用于相关的题型。

情感态度与价值观:让学生进一步巩固所学的知识,加深对所学定理的理解,进一步培养学生研究和发现能力,让学生在探究中体验愉悦的成功体验

教学重点:

推导三角形的面积公式并解决简单的相关题目。

教学难点:

三角形面积公式与正弦余弦定理的综合应用。

教学过程: Ⅰ.课题导入

师:以前我们就已经接触过了三角形的面积公式,今天我们来学习它的另一个表达公式。

121推导出下面的三角形面积公式,S=absinC,大家能推出其它的几个公式吗?

211生:同理可得,S=bcsinA, S=acsinB 22根据以前学过的三角形面积公式S=ah,应用以上求出的高的公式如ha=bsinC代入,可以Ⅱ.讲授新课

[范例讲解] 例

1、在ABC中,根据下列条件,求三角形的面积S(1)已知a=5cm,c=7cm,B=60;(2)已知B=30,C=45,b=2cm;(3)已知三边的长分别为a=3cm,b=5cm,c=7cm

分析:这是一道在不同已知条件下求三角形的面积的问题,与解三角形问题有密切的关系,我们可以应用解三角形面积的知识,观察已知什么,尚缺什么?求出需要的元素,就可以求出三角形的面积。

2、(1)锐角ABC中,S=33,BC=4,CA=3,求角C 与c边。

变式:ABC中,S=33,BC=4,CA=3,求角C与c边。(2)ABC中a=2,B=练习:课本P18练习2

3,S=,解三角形。

例3.如图,在某市进行城市环境建设中,要把一个三角形的区域改造成室内公园,经过测量得到这个三角形区域的三条边长分别为60m,100m,140m,这个区域的面积是多少?

Ⅲ.课时小结

(1)三角形面积公式正用和逆用。

(2)三角形面积公式在实际问题中的应用。Ⅳ.课后作业:(1):已知在ABC中,C=120,b=6,c=63,求a及ABC的面积S(2): 已知在ABC中,a,b,c是角A,B,C的对边,ABC的面积为S,若a=4,b=5,S=53,求c的长。

下载最新三角形面积教案word格式文档
下载最新三角形面积教案.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    《三角形面积》教案5篇

    《三角形的面积》教学设计 济南市历城区洪家楼第二小学 潘洪燕 【教材分析】 本节内容是在学生充分认识了三角形的特征以及掌握了长方形、平行四边形面积计算的基础上安排的......

    三角形面积教案文档

    《三角形的面积》 于艳艳 汝州市望嵩小学 1 《三角形的面积》 一、直接引入新课 1.咱们已经学习了平行四边形的面积,今天这节课我们一起来研究三角形的面积,板书课题:三角形......

    小学五年级三角形面积教案

    小学五年级数学教案 三角形的面积 教学目标: 1、使学生理解和灵活掌握三角形面积计算的公式,能够应用公式计算三角形的面积 2、经历探索三角形面积计算方法的过程,培养学生抽象概......

    五年级上册三角形面积教案

    北师大版五年级数学上册《三角形面积》教学设计 《三角形的面积》教学设计 教学目标; 理解三角形面积公式的推导过程,掌握三角形面积公式和计算方法,能正确计算三角形的面积......

    公开课《三角形的面积》教案

    三 角 形 的 面 积 教学内容: 人教版五年级上册 教学目标: 1、引导学生用多种方法推导三角形面积的计算公式,理解长方形、平行四边形和三角形之间的内在联系。 2、通过操作使学......

    《三角形的面积》名师教案

    小学数学精选教案 《三角形的面积》名师教案 郑上路小学 秦金璐 一、学习目标 (一)学习内容 《义务教育教科书数学》(人教版)五年级上册第91页及例2。本课时是本单元的第二课时,......

    三角形面积的计算教案

    《三角形面积的计算》教案 台儿庄区林桥小学 王颖 教学内容: 三角形面积的计算 学习目标: 1.能够利用转化的方法推导出三角形面积的计算公式 2.能够利用三角形计算公式正确......

    《三角形面积》教案设计

    教学内容:《三角形面积》教案设计 兴国县南坑中心小学刘祖汤 一、教案背景 1、学习对象:小学五年级学生 学科:数学 2、课时:2 3、学生课前准备:三角板、三根不同长度的小棒、直尺......