数学归纳法证题步骤与技巧实战篇

时间:2019-05-14 15:37:34下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《数学归纳法证题步骤与技巧实战篇》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《数学归纳法证题步骤与技巧实战篇》。

第一篇:数学归纳法证题步骤与技巧实战篇

数学归纳法证题步骤与技巧

在数学问题中,有一类问题是与自然数有关的命题。自然数有无限多个,不可能就所有自然数—一加以验证,所以用完全归纳法是不可能的。但就部分自然数进行验证即用不完全归纳法得到的结论,又是不可靠的。这就需要寻求证明这一类命题的一种切实可行而又满足逻辑严谨性要求的新方法——数学归纳法。1.数学归纳法的范围

数学归纳法是以自然数的归纳公理做为它的理论基础的。因此,数学归纳法的适用范围仅限于与自然数有关的命题。它能帮助我们判断种种与自然数n有关的猜想的正确性。

2.数学归纳法两个步骤的关系

第一步是递推的基础,第二步是递推的根据,两个步骤缺一不可,有第一步无第二表,属于不完全归纳法,论断的普遍性是不可靠的;有第二步无第一步中,则第二步中的假设就失去了基础。只有把第一步结论与第二步结论联系在一起,才可以断定命题对所有的自然数n都成立。3.第二数学归纳法

第二数学归纳法的证明步骤是: 证明当n=1时命题是正确的;

②k为任意自然数,假设n<k时命题都是正确的,如果我们能推出n=时命题也正确,就可以肯定该命题对一切自然数都正确。数学归纳法和第二归纳法是两个等价的归纳法,我们把数学归纳法也叫做第一归纳法。有些命题用第一归纳法证明不大方便,可以用第二归纳法证明。4.数学归纳法的原理

数学归纳法证明的是与自然数有关的命题,它的依据是皮亚诺提出的自 然数的序数理论,就是通常所说的自然数的皮亚诺公理,内容是:(1)l是自然数。

(2)每个自然数a有一个确定的“直接后继”数a’,a也是自然数。(2)a’≠1,即1不是任何自然数的“直接后继”数。(4)由 a’=b’,推得 a=b,即每个自然数只能是另外的唯一自然的“直接后继”数。

(5)任一自然数的集合,如果包含 1,并且假设包含 a,也一定包含 a的“直接后继”数a’,则这个集合包含所有的自然数。皮亚诺公理中的(5)是数学归纳法的依据,又叫归纳公理数学归纳法的应用及举例。2k+1k+2 因为由假设知4 +3能被13整除,13·42k+1也能被13整除,这就是说,当n=k+1时,f(k+l)能被13整除。根据(1)、(2),可知命题对任何n∈N都成立。下面按归纳步中归纳假设的形式向读者介绍数学归纳法的几种不同形式以及它们的应用。

(l)简单归纳法。即在归纳步中,归纳假设为“n=k时待证命题成立”。这是最常用的一种归纳法,称为简单归纳法,大家都比较熟悉,这里不再赘述。(2)强归纳法。这种数学归纳法,在归纳步中,其归纳假设为“n≥k时待证命题成立”。我们称之为强归纳法,又叫串值归纳法。通常,如果在证明 p(n+l)成立时,不仅依赖于p(n)成立,而且还可能依赖于以前各步时,一般应选用强归纳法,下面举例说明其应用。

有数目相等的两堆棋子,两人轮流从任一堆里取几项棋子,但不能不取也不能同时从两堆里取,规定凡取得最后一项者胜。求证后者必胜。证:归纳元n为每堆棋子的数目。设甲为先取者,乙为后取者。奠基 n=l,易证乙必胜。

归纳

设N n≤k时,乙必胜。现证 n=k+l时也是乙必胜。

设甲在某堆中先取r颗,O<r≤k。乙的对策是在另一堆中也取r颗。有 二种可能:

(1)若 r<k,经过两人各取一次之后,两堆都只有 k-r颗,k-r<k,现在又轮到甲先取,依归纳假设,乙必胜。

(2)若r=k,显然是乙胜,证毕。

上述形式的归纳法虽然比较简单,但如使用不当,往往会发生错误,有两点应注意:第一,在使用归纳假设时防止无形中引入不相干的假设。第二,在证明过程中应注意数学规律的正确性。下面我们引入一个反例,在这个反例中,由于错误的证明导致证得了错误的待证命题。

反倒:证明任意n条直线均能重合成一条直线。

下面给出错误的证明:

证:奠基

n=1时该命题成立。

归纳

利用强归纳法,可以有如下的归纳假设:任意1条,2条,3条,„,k条直线均重合成一条直线,要证 k+1条直线也重合成一条直线,设这 k+1条直线为l、l、„,l,l由强归纳假设得 l,„,l„重合为一条直线,1 2 k k+1 1 k记为 l。又由强归纳假设得l和lk+1重合为一条直线,于是任意n条直线便重合一条直线了。细心的读者也许已经发现这里的错误了,这是由于错误地使用了强归纳假设而造成的。具体地说,这是在“l和 lk+1这两条直线重合为一条直线”这一点把强归纳假设使用错了。强归纳假设中并没有包含这一条件,因为我们这里奠的基是n=l,因此待证命题“k+1条直线重合为一条直线”要求对于一切大于等于1的k成立,而上面证明中所假设的l和lk+1重合为一条直线实际上是要求k≥2,这就是错误的所在。

(3)参变归纳法。在待证命题中含有参数的时候,例如P(u,n),则用数学归纳法证明P(u,n)对一切n成立时,在奠基步中,应证P(u,0)对一切u成立。在归纳步中,假设P(u,k)对一切u成立,证明P(u,k+1)对一切u成立。这里,“P(u,k)”对一切u成立称之为参变归纳假设,这种证明方法叫做参变归纳法,U起着参数的作用。(n+1)3 例

求证当n≥3时有n ≥(n+1)。

本题证明的困难主要在于归纳步骤,无论采用哪种归纳假设,都难于证

明。如果我们对该待证命题施展一定的技巧,把该式中的部分 n写成 u(视 作参数),部分n保持不变,即写成 n n nu≥(u+l),则可用参变归纳法证明当u≥n≥3时上式成立,原命题即可得证。奠基n=3时,对u≥3的一切u均有3 3 2 右端=3u=u+u·u·u 3 ≥u+3u+gu 3 2 >u+3u+3u+1 3 =(u+1)=右端 归纳

n=k+1时,左端=(k+1)Uk+1=u(k+1)·uk =(uk十u)uk≥(uk十k)Uk =k(u+l)uk≥(n+1)(u+1)k =(U+l)k+1=右端。

n n 所以当 u≥n≥3时,有nu>(u+l)。n+1 n 令u=n,上式便为n ≥(n+l),即为原不等式,故原不等式得证。值得指出的是,上面三种形式的数学归纳法,都要求待证命题含有自然

数变元n,对n施行归纳,n称为归纳变元,但是在数学的一些分支中,有些 待证命题表面上看来似乎不含自然数变元 n,但仔细一分析,实际上是含有 自然数变元的,当我们一旦把n的含义明确以后,用数学归纳法去证明这些 待证命题就迎刃而解了。举一个简单的例子。

证明由{a,b,c,d}四个标识符利用+、-运算符组成的任意算术 表达式中,所含标识符的个数一定等于这个表达式中运算符的个数加1。证:设任意的表达式为 f,而归纳变元 n为 f中所含运算符的个数。奠基

n=0,则f由一个标识符组成(因为没有运算符),所以命题成立。归纳

假设 n≤k时本命题成立,现证 n=k+1时本命题也成立。f一 定是下述两种情况之一:

f是 f+f或f是f-f。1 2 1 2 其中f,f所含的运算符个数都小于k+l,对f,f使用归纳假设,可 1 2 1 2 得f+f,f-f中所含标识符个数也比各自所含的运算符的个数多1。1 2 1 2(4)广义归纳法。数学归纳法不仅可用于含有自然数变元n的命题,经 推广后,还可用于含有某些其它集合上的命题。这种集合,称为归纳集。对 于一个含有某个归纳集上的变元x的待证命题P(x),所用的归纳法称之为 广义归纳法。

定义:设有一个集合A,如果它满足下面三个性质:(1)a,a„,a是A中的元素(n≥1); 1 2 n(2)如果x是A中元素,则 f(x),f(x),„f(x)也是A中 11 12 1n1 的元素(n、>0);

如果x,y是 A是元素,则 f(x、y),f(x,y),„f(x,y)21 22 2n2 也是A中元素(n>0);„; 2 如果x1„,xm是 A中元素,则 f x„x),f(x„,x),„f m1 l m m2 l m mnm(x„,x)也是A中元素(m≥l,nm>0)。m(3)A中的元素仅限于此。

则A称之为归纳集a,a,„a称为该集的开始元素,诸fij称为该集 1 2 n 的生成函数(其中第一下标为该函数的元素,第二下标以区分具有同样元素 的各函数)。

按照上述的定义,自然数集是归纳集,它的开始元素是0,生成函数是f(x)=x+1。

前例中集{a,b,c,d}的元素利用“+”,“-”运算所构成的一切表

达式的集合是归纳集,开始元素是是 a,b,c,d,生成函数为 f(x,y)21 =x+y,f(x,y)=x-y。22 在证明含有某个归纳集A上的变元X的待证命题P(x)时,可用如下的 广义归纳法。

奠基步要证明(a),P(a),„„P(a)成立,这里 a,a„,an l 2 n l 2 是 A中的开始元素。归纳法要证明对于 1≤i≤m及1≤j≤n的所有 i、j对于 A中的任何元 素x,x„,x,如果P(x),P(x),„,P(x)成立,则 P(fij(xx1,„,1 2 i l 2 1 xi))也成立。在例

4中,因为表达式所组成的集合是归纳集(记为

A),我们可用广义归纳法证之。

奠基:对于A中的四个开始元素a,b,C,d,因为它们的标识符个数为 1,而运算符个数均为0,所以命题成立。

归纳:对于A中的元素 x,y,f(x,y)=x+y中,我们设 x+y标识 21 符个数为m,运算符个数为n;

x中标识符个数为m,运算符个数为n; l l x中标识符个数为m,运算符个数为n; 2 2 则

m=m+m=(n1+1)+(n+1)l 2 2(n+n+1)+1=n+1.l 同理可证 f(x,y)=x-y也有如上的结果,故依广义归纳法,本命题 22 成立。

第二篇:浅谈材料解析题的解题步骤与技巧

材料解析题是一种考查学生理解能力、好范文版权所有,全国文秘工作者的114!归纳能力和文字表达能力的综合考查题型。它本身既源于教材,又高于教材,将课本知识和课外知识相结合。因此,它具有制作巧、容量大、灵活性和区分度强的特点。许多学生在考试中无从下手失分严重,那么,怎样才能作好这一题型呢?我认为

应掌握三个环节,即读、找、答。

一、读解题的基础

⒈阅读教材正文和设问

第一遍要细读,要注意对材料作具体分析。要了解材料涉及到的时间、地点、人物、事件,注意各段材料间的联系,找到材料叙述的核心内容。中国古代史的材料多为文言文,必须像语文课分析古文一样,对每句话每个字词都要字斟句酌,读透材料的本义并挖掘其引申义,万不可囫囵吞枣,不求甚解。世界史的材料多为外来的翻译文,有的句子很长,很难读懂。此时,可按语语文课中划分句子成分的办法来处理:先找主、谓、宾语,再找定、补、状语。

第二遍,结合设问重点读。这是最重要的一步。设问的实质是使对材料的解析定向化。设问的定向作用表现在:①确定信息提取方向,帮助考生提取有效信息,搁置其余信息。如年高考第题所引《南海县志》和《捷报》的两条材料,信息量相当大,但设问只要求考生从中提取与继昌隆缫丝厂创业与经营有关的信息。②确定与相关知识联系的方向。如年第题有一问是大生产运动以农业为主体,在当时有何特殊意义?这实际上就是规定考生要用有关抗日战争相持阶段陕甘宁边区遇到的困难的知识来解析材料。③确定能力考查的方向。如年第题第②问要求考生比较年和年的几组统计数字,比较二字就确定此问主要考查学生的比较能力。正因为设问为解析材料确定了方向,所以读材料时,一定要认真审读设问,明确设问的要求,然后带着设问再回过头来有重点地读材料,从中获取有效信息。

⒉除阅读材料正文和设问外,还要特别注意那些说明性文字。

⑴注意从材料介绍(多在材料的开头)和材料出处(多注在材料末尾)获取时间、人物、事件等要素。因为这些说明性文字,往往给考生某种暗示和引导。有可能埋伏着解题所需的信息,考生可从中受到启发,收到得来全不费功夫的效果。如阅读以下四段反映同一朝代的史料,同一朝代就是考生解题所必需的一个非常重要的信息;再如:以下材料是肥水之战前,前秦君臣对战争形势的分析,这里就提供了一个重要信息材料的历史背景。因此,对这些说明性文字,千万不能掉以轻心。

⑵注意从主体材料(正文)的开头、结尾和省略号两边获取有效信息。材料的原文一般很长,试题中只能摘录其中一小部分。从某句开始摘到某句为止,这开头和结尾两句,当然得考虑为答题服务;省略号删去的是次要的,两边所剩的肯定是重要的,肯定隐含着重要信息。

二、找解题的关键

在实际解题过程中,找与读往往是一致的,不需要将两者截然分开。

⒈从材料中找出有助于解题的信息。

具体做法是:先分析材料,长材料分成几段,分别找出每段的信息;短材料分句,找出各句的含义;如果材料只是一句话,就找出它的字词如时间、地点、人物、对事件的评价等要素。这样层层剖析,找出材料所包含的所有信息。

例如:年高考题题有关陈启沅创办继昌隆缫丝厂的材料,要求考生通过阅读材料概括出继昌隆缫丝厂投产后艰苦创业,生产经营的情况。因为材料很长,可将此材料分成四段,分别找出各段包含的信息。从而得出正确结论。

⒉找出材料与教材的相似点。

尽管材料解析题具有新材料、新情况、新问题的特点,但不管多新,必定与课本有不可分割的联系。把材料中的重点信息与课本中的重要史实和观点相对照,确定材料所述与教材的具体章节的关联,这样材料便与课本联系在一起。再深入好范文版权所有,全国文秘工作者的114!读材料,解析的大方向就有了,回答问题就不难了。

⒊找材料与设问的相关点。

读材料是为了回答设问,回答设问离不开材料。因为,论从史出,结论要从对材料的发掘、升华中得出。所以,读材料时要处处想着设问,把设问放到材料中互相对照;或从材料中找出回答设问的信息;或从设问行文的信息中重新获得读材料时忽略了的重要之处;然后,通过推测判断,得出答案。这样,从设问到材料,再从材料到设问,问题就容易解决了。

三、答落脚点

⒈解答好每一个问题是关键。

一般情况下,一个材料解析题设好几问,而设问大都是相互联系着的。往往答对了第一问,其它总是便迎刃而解了。因此,答第一问时一定要细心,要注意对材料作多方面的考虑,既要考虑材料的显性含义,又要分析材料的隐性含义,全面考虑问题的正反面,力求全面准确。

⒉坚持论从史出。

即结论要从对材料的发掘、升华中得出,同时要注意透过现象深入到本质

第三篇:四级真题做题步骤及技巧

四级真题做题步骤及技巧

一、写作部分

1、基本形式--三段落式:按照题目提纲划分段落,提纲即是每段中心句;运用列举法,使段落结构清晰;要避免使用一些过于熟悉的词汇和短语;

2、写作黄金三原则:①翻译提纲句作为中心句,放在段首;②确定主体段落,主体段落要列举和分类,并运用连接词;③加入醒目、吸引评卷人眼球的细节信息,句子要正确、出彩。

二、快速阅读部分

1、做题的方法和步骤:⑴通过标题和分标题把握文章基本脉络;⑵由题干关键词快速定位原文,寻读原文句子得到相关信息,做出判断。①首先看标题和分标题; ②做题顺序:不一定按题目顺序做题,而是优先做容易定位的题目,比如先定位具有明显信息(包括大写、数据、特殊标点符号)的题目;其他题目按照题文同序原则做题。

三、听力部分⑴短对话:明确出题方式,同义替换(往往是正确答案),考查细节(要速记,要听清问题),转折(要听清转折后的内容);

⑵长对话:①“先纵后横”预测选项:纵向确定场景(工作、学习、生活及旅游);横向排除干扰选项,了解每道小题的内容。②解题三原则:“开头原则”即第一道题一般在开头部分;“问答原则”即回答的内容往往是答案所在;“转折原则”即转折词后的内容为重要内容。

③作答时注意出题点:开头原则;转折和因果原则;表达观点原则;时间地点原则;列举原则;概括性选项比细节性选项正确率高原则。

⑷复合式听写:①单词部分:第一遍简写单词;第二遍听音辨词。②长句部分:第一遍听懂文章,了解文章大意,写下一些关键词;第二遍尽量用自己的话把句子写完整,但不要犯太多语法错误。③第三遍整体检查。

四、仔细阅读

(一)选词填空 预判所填词的词性及搭配,细分所给词(如动词的时态、语态、单复数等);注意同义词的辨析。

(二)传统精读

1、从题目角度关注三个层面:①做题顺序:先看题干,分析题干前后联系,再读原文;②各种题型的答题技巧具体参看星火试卷;③对选项的分析:不仅对正确选项而且对错误选项分析。

2、从文章角度,要精读真题文章,以了解出题的趋势、难度、方向和出题点。

3、精读真题的六大原则:精确把握真题中的词;分析句法结构;句子功能;句间关系;段落结构和篇章行文结构。

五、综合部分

1、完形填空 词义辨析(加强对同义词、形近意异词的辨析能力);上下文逻辑关系辨析能力(加强连接词运用,包括表示并列、转折、因果和正反关系的连接词)。

2、翻译 常见短语和短语搭配;语法中的虚拟语气,比较结构及定语从句等。

第四篇:第二部分证题技巧

第二部分证题技巧

第一章证题技巧之一——几何证明中应注意的问题

一、关于添加辅助线问题

1、目的:正确的命题,其条件和结论之间是存在着必然的内在联系的。证题的过程就是要揭示和利用这种内在联系,根据已知条件推出结论。然而这种内在联系往往是隐含的,不易直接看出,需要证题时,通过添加辅助线,使条件和结论之间所隐含的这种内在联系明澈化,以利于揭示和利用,所以,添加辅助线的目的应包括:

①通过添加辅助线,使图形的某些部分建立起联系,化未知为已知。

②通过添加辅助线,改变图形中某一部分的位置,为证题创设条 件。

③通过添加辅助线,构成新的图形,以便利用题中的已知和隐含条件。

2、添加辅助线应遵循的原则:

①在初步确定证题方法后以考虑的。

②添加辅助线必须建立在已知条件(包括图示条件)基础上,为 充分利用已知条件服务。

二、证题时分析问题的思路

1、根据结论前推,以确定方法。

2、根据条件初定方法。

3、根据条件确定添线。①添不添②添什么③添在哪。

第五篇:第五讲委派工作的步骤与技巧

第五讲 委派工作的步骤与技巧(上)

委派前的沟通

在委派之前要事先做一些沟通,要告诉下属为什么要由他承担这项工作,强调积极因素,比如对他的肯定、欣赏和关注,强调领导对他的信任和重视。

在沟通的过程中,要关注他的心理状态,要先处理心情,再处理事情,要让他先有意愿的积极性和价值感,要做一个前瞻性的描述,让下属知道在这个工作过程中他所负有的重要职责,以及完成这个任务以后能够给他带来的好处,这些实际上都是属于舆论的准备。

(一)委派沟通的原则

在委派工作的时候不能“山路十八弯”,一定要简单、明了、准确、高效,所以在委派部分的沟通,管理者要遵循三个原则:

 要越简单越好,不能太复杂;

 要准确;

 要高效。

所以,在委派工作的时候,跟下属沟通的时候需要多花一点时间,告知下属应该做的事,对经验不足的下属应该帮他分析,提供技能的培训,要简洁明了告诉他要完成交付的工作所需的必要条件、必要的结果和必须的效果以及衡量的标准。

【案例】

你必须要在本周内完成这份报表,因为总经理室礼拜六开会要用,如果不能按时完成,可能会影响到你的加薪;今天即使要加班,也要修好B商店的车子。因为这个商店的老板明天上午一定要用车。如果管理者事先不说明,只是简单地下达一个命令,下属就会觉得是在命令他,他的配合性、主动性就可能不够。

【案例】

上级跟下级面对面做沟通,上级说:“小王,你这一季度业绩怎么不如上一季度好,你要加把油。”员工听到了会想:“完了,上级要把我咔嚓掉了。”

其实上级真实的意思是想鼓励他,“小王,你要加油,这一季度希望你能够取得好成绩,而且我相信你一定能做得到。”上级心里是这样想的,但是讲出来的话却是另外一个意思。

给下属下达明确的工作指令时要在后面加一个解释,否则指令下达得不清楚、不具体、太模糊,下属就会用模糊回绝。

(二)委派沟通的方式

委派的沟通方式是非常重要的,沟通方式主要有以下几种:

 面对面是最好的一种沟通的方式

面对面的交流可以看到现场的反馈,管理者可以讲得很完整,同时可以观察到下属的面部表情、肢体动作,能够知道表情、动作里包含的一些信息。管理者还可以运用自己的表情、眼神和肢体动作,如拍拍肩膀等,表示出管理者对下属的一种信任,这种体态语言表达的效果,要远远胜过口头语言的表达。

 电话沟通

电话沟通本身就是有障碍的,但是现在很多领导在委派任务的时候很喜欢用电话。电话

沟通通常存在以下一些问题:

① 打电话说完了可能会忘记;

② 打电话可能会推卸责任,因为没有证据;

③ 电话沟通是单向媒介的沟通,看不到对方的反应,很难实现双向的交流。

 多媒介沟通

多媒介沟通包括通过声音、语言和非语言的方式进行的沟通。只有声音的语言叫口头;没有声音的语言叫书面;没有声音的非语言叫体态;有声音的非语言叫副语言。语音、语气、语调、节奏和副语言是影响沟通效果的重要因素,其中体态的作用占了55%,副语言占38%,其他的语言只占7%。

【案例】

从小学到中学到大学,不难发现讲课效果稍微好一点的老师,都有一些特点:“张牙舞爪、绘声绘色、抑扬顿挫”。如果一名老师做不到这三点,他肯定不是一个受学生欢迎的老师,因为他既没有体态,又没有抑扬顿挫的语调,这样的老师一讲课,大家就开始睡着了,不晓得他在讲什么。

点评:在沟通的过程中,要充分运用自己的体态因素和副语言的因素。例如中国人说一句话通常有三层意思,话里面是一个话,话外面是一个话,说的话还是一句话,所以叫话中有话,弦外之音。

在一对一的沟通时,最好要给下属一个任务书,或者给他一个小便签。如果要委派的人不能见面,但必须要对他委派,就只能通过电话,电话就是媒介,但最好也发一个传真或者E-mail,然后再对着电话逐条讨论,如果有书面,有口头,但不能看到体态和副语言,这时可以通过网络视频电话,开视频会议解决问题。

沟通过程的核心是进行委派时的上下级交流。委派能不能成功,与沟通交流得好不好有关,沟通交流的结果应该由下属做出承诺,上级确信他能够达成最终目标。

委派不仅仅是把工作交给下属,其实还是一个磋商和安排工作的过程,沟通交流是需要技巧的,是需要融洽和信任的,需要理解和鼓励的,这也是支持式的沟通,委派沟通交流步骤的步骤如下:

 尽可能地描述该工作的目标任务和全部信息,以及预期的结果;

 绩效标准和完成时间达成一致,共同制定一个进度表;

 确认需要哪些帮助和技能培训,何时来提供这些培训;

 界定各种参数和所有资源以及预算;

 明确告诉下属自己期望得到的结果,以及期望得到的反馈信息、反馈方式、反馈频率和反馈通路;

例如一周要报告一次,在每个礼拜六上午召开的周检讨会上,要做15分钟的周进度汇报。或者说不一定要听报告,但是每个礼拜一上午9点钟之前,必须要看到上一周的进度汇报,不论是书面的、会议的、面对面的、简报式的、图表式的,管理者一定要有这个东西。

 要事先约定,明确告诉下属所委派职权的大小,把下属能力的信任程度和复杂程度,向其他人通报的必要性等做一个衡量,同时告诉其他沟通者,碰到什么困难要找谁,什么样的情形下找谁。

按计划进行委派分配工作

按照计划进行委派分配,也就是分配工作已经制定好了一个完善的计划,要按照计划有条不紊地进行。在委派计划里面大概包括有以下几个方面的内容:

 需要完成的目标;

 完成的期限;

 可以评估的、衡量的标准;

 委派的权力、资源的大小。

针对计划进行必要的训练

根据计划安排多种方案,把每一个关键的环节和要点整理出来,对没有把握的、难度较大的环节做训练。

教育不等于训练,教育是关于基础的知识、基本的理论和基本的概念,但是它没有技能,教育是教观念和思维的,而训练是针对技能的。

【案例】

学开车,考驾照要进行应知应会考试,应知是理论,要通过交通法规考试,应会要到训练场去开,开够规定的小时数才有资格参加考试。

假设今天要学原地掉头。师傅首先要告诉学员什么时候可以掉头,什么时候不可以掉头,看到什么情形应该怎么办,第一步怎么做,第二步怎么做。然后师傅坐在驾驶员的位子上,学员坐在副驾驶的位子上,师傅开给学员看。一边开一边做说明,示范完了就要由学员自己操作,学员坐在驾驶员的位置上,师傅在副驾驶的位子上,这叫演练。学员有可能会犯错,犯错的时候,师傅帮忙纠正,督导,这就叫技能训练。

下载数学归纳法证题步骤与技巧实战篇word格式文档
下载数学归纳法证题步骤与技巧实战篇.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    2016事业单位申论技巧:申论概括题解题步骤详解(精)

    2016事业单位申论技巧:申论概括题解题步骤详解 【导读】 2016年中公事业单位考试网为考生提供事业单位申论热点、2016申论答题技巧、申论写作技巧等,今天为大家带来的是申论概......

    人际交往的意识与技巧题

    人际交往的意识与技巧题:先“类型化再“技巧化” 四大关系: 1.与领导的关系; 2.与同事的关系; 3.与下属的关系; 4.与亲友的关系。 在回答此类问题时,可以遵循四个步骤: 步骤一:阐......

    公务员面试真题与技巧

    公务员面试真题汇总 1.假如你是某镇的领导,在一次“政务公开”过程中,有人举报你公布的内容不完整,你怎么办? 2.一位科学院院士说,他对社会的贡献主要是在成为院士前,而不是成为院......

    财会人员礼仪与沟通技巧题

    1. 礼仪对构建和谐社会有什么作用? 以礼为核心的中国传统礼仪蕴含着特殊的意义。礼仪的政治意蕴主要包括两个方面:它是一种政治秩序,有利于维护社会政治稳定;它是一种政治手段,有......

    古诗鉴赏题思路与技巧

    中考古诗词鉴赏答题技巧 一、考点分析及应对措施 《语文课程标准》明确提出:诵读古代诗词,有意识地在积累、感悟和运用中,提高自己的欣赏品位和审美情趣。 纵观各地中考试卷,古......

    七年级数学奥数题(数与代数)

    数学奥数题(数与代数) 1.已知ab1,求a33abb3的值。 2. 已知xy3x3y5xy的值。 2,求代数式xyx3xyy abc的值。 abc 24. 已知m、x、y满足下列条件:(1)(x5)25|m|=0;(2)2a2b11y与3a2b3 3 是同......

    七年级数学奥数题(数与代数)

    数学奥数题(数与代数) 1.已知ab1,求a33abb3的值。 2. 已知xy3x3y5xy的值。 2,求代数式xyx3xyyabc的值。 abc24. 已知m、x、y满足下列条件:(1)(x5)25|m|=0;(2)2a2b11y与3a2b33是同类项......

    小学数学说课的方法与技巧

    小学数学说课的方法与技巧 小学数学说课的方法与技巧 说课,是提高教师的教研能力、训练教学基本功的重要手段,目前也成为提高教师课堂教学水平的一种有效的练兵形式。 八月份,......