第一篇:1.初中证明直线垂直、平行的方法
证明两条直线垂直(直角)的常用方法
(一)相交线与平行线
1.定义法:两条直线相交成直角则两直线垂直。
2.两条平行线中有一条垂直第三直线,则另一条也垂直第三直线。即:若a‖b,a⊥c,则b⊥c。
3.邻补角的平分线互相垂直。
4.到线段两端的距离相等的点在线段的垂直平分线上。
(二)三角形
5.证直角三角形:直角三角形的两直角边互相垂直。①三角形的两内角互余,则第三个内角为直角。
②三角形一边上的中线等于这条边的一半,则这边所对的内角为直角。
③勾股定理的逆定理:三角形一边的平方等于其他两边的平方和,则这边所对的内角为直角。
6.三线合一法:等腰三角形的顶角平分线或底边的中线垂直于底边。7.三角形相似法:证一个三角形与直角三角形相似。8.三角形全等法:证一个三角形与直角三角形全等。
(三)四边形
9.矩形的两邻边互相垂直。
10.菱形的两条对角线互相垂直平分,且平分每一组对角。
(四)圆
12.半圆或直径所对的圆周角是直角。13.圆的切线垂直于过切点的半径。
(五)图形变换法
14.轴对称图形的对称轴垂直平分对应点之间的连线。15.同一法或反证法(不要求掌握)
证明直线平行的常用方法
(一)平行线与相交线:
1.在同一平面内,两条不相交的直线互相平行。
2.在同一平面内,垂直于同一直线的两直线互相平行。3.平行于同一直线的两直线互相平行。4.平行线的判定方法:
(1)同位角相等,两直线平行;(2)内错角相等,两直线平行;(3)同旁内角互补,两直线平行。
(二)三角形
5.三角形中位线定理:三角形的中位线平行且等于第三边的一半。
6.一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,则这条直线平行于三角形的第三边。
(三)四边形 7.平行四边形的两组对边互相平行。8.梯形的两底边平行。
9.梯形的中位线平行于两底。
(四)同一法或反证法(不要求掌握)
证明两线段相等的常用方法
(一)三角形
1.等角对等边:两线段在同一三角形中,证明等腰或等边三角形。2.证明三角形全等:全等三角形的对应边相等。
3.三线合一:等腰三角形顶角的平分线或底边上的高平分底边。
4.线段中垂线性质:线段垂直平分线上的点到这条线段两端的距离相等。5.角平分线性质:角平分线上的点到这个角两边的距离相等。6.过三角形一边的中点平行于另一边的直线必平分第三边。
(二)特殊四边形
7.平行四边形的对边相等、对角线互相平分。8.矩形的对角线相等,菱形的四条边都相等。9.等腰梯形两腰相等,两条对角线相等。
(三)圆
10.同圆或等圆的半径相等。
11.垂径定理:垂直于弦的直径平分这条弦。
12.圆的旋转不变性:同圆或等圆中,如果两个圆心角、两条弦或两条弧中有一组量相等,那么对应的其余各组量也相等。
13.切线长定理:从圆外一点引圆的两条切线,它们的切线长相等。
(四)其他
14.等量代换:若a=b,b=c,则a=c。
15.等式性质:若a=b,则a-c=b-c;若,则a=b。
16..等量的一半相等。
17.计算长度:证明两线段相等。
18.面积相等法:面积相等的三角形(或平行四边形),若底(高)相等,则高(底)相等。
19.平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等。20.图形变换法
(1)轴对称图形(或成轴对称的两个图形)的对应线段相等,对应角相等。(2)平移、轴反射、旋转不改变图形的形状与大小。(3)位似变换不改变图形的形状。22.同一法或反证法(不要求掌握)
acbc证明两角相等的常用方法
(一)平行线与相交线
1.同角(或等角)的余角相等、补角相等。2.两直线平行,同位角相等、内错角相等。
3.证角平分线:到角的两边距离相等的点,在角的平分线上。
(二)三角形
5.全等三角形的对应角相等。
6.相似三角形的对应角相等。7.同一个三角形中,等边对等角。
8.三线合一:等腰三角形底边上的高、底边上的中线与顶角平分线互相重合。
(三)特殊四边形
9.平行四边形的对角相等。
10.菱形的对角线互相垂直平分,且平分每一组对角。
(四)圆
11.同圆等圆中,同弧或等弧所对的圆周角、圆心角相等。
12.切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分这两条切线的夹角。
13.圆的内接四边形的每一个外角等于它的内对角。14.补充:圆的弦切角等于它所夹的弧所对的圆周角。
(五)15.计算角度,证明两角相等。
16.等量代换:若a=b,b=c,则a=c。17.等式性质。
18.等量的一半相等。
19.等量加等量,其和相等;等量减等量,其差相等。20.若,则a=b.21.若a+c=b+c,则a=b.22.图形变换法
(1)轴对称图形(或成轴对称的两个图形)的对应线段相等,对应角相等。(2)平移、轴反射、旋转不改变图形的形状与大小。(3)位似变换不改变图形的形状。23.同一法或反证法(不要求掌握)acbc证明线段的和差倍分
1.作两条线段的和,证明与第三条线段相等。
2.在第三条线段上截取一段等于第一条线段,证明余下部分等于第二条线段。3.延长短线段为其二倍,再证明它与较长的线段相等。4.取长线段的中点,再证其一半等于短线段。
5.三角形中位线定理:三角形的中位线平行且等于第三边的一半。6.直角三角形中30度锐角所对的直角边等于斜边的一半。7.直角三角形斜边上的中线等于斜边的一半。8.利用相似三角形对应边比例的性质。9.利用锐角的三角函数值。
证明角的和差倍分
1.与证明线段的和、差、倍、分思路相同。2.利用角平分线的定义。
3.三角形的一个外角等于和它不相邻的两个内角的和。
证明比例式或等积式
1.利用相似三角形对应线段成比例。2.平行线分线段成比例:两条直线被一组平行线所截,截得的对应线段的长度成比例。3.直角三角形射影定理:直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项,每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。4.利用比利式或等积式化得。
5.与圆有关的比例定理---相交弦定理、切割线定理及其推论。
第二篇:初中几何证明两直线平行和垂直的方法
初中几何证明两直线平行和垂直的方法大全
三、证明两直线平行
1.垂直于同一直线的各直线平行。
2.同位角相等,内错角相等或同旁内角互补的两直线平行。
3.平行四边形的对边平行。
4.三角形的中位线平行于第三边。
5.梯形的中位线平行于两底。
6.平行于同一直线的两直线平行。
7.一条直线截三角形的两边(或延长线)所得的线段对应成比例,则这条直线平行于第三边。
四、证明两直线互相垂直
1.等腰三角形的顶角平分线或底边的中线垂直于底边。
2.三角形中一边的中线若等于这边一半,则这一边所对的角是直角。
3.在一个三角形中,若有两个角互余,则第三个角是直角。
4.邻补角的平分线互相垂直。
5.一条直线垂直于平行线中的一条,则必垂直于另一条。
6.两条直线相交成直角则两直线垂直。
7.利用到一线段两端的距离相等的点在线段的垂直平分线上。
8.利用勾股定理的逆定理。
9.利用菱形的对角线互相垂直。
10.在圆中平分弦(或弧)的直径垂直于弦。
11.利用半圆上的圆周角是直角。
第三篇:证明直线平行
证明直线平行
证明:如果a‖b,a‖c,那么b‖c证明:假使b、c不平行则b、c交于一点O又因为a‖b,a‖c所以过O有b、c两条直线平行于a这就与平行公理矛盾所以假使不成立所以b‖c由同位角相等,两直线平行,可推出:内错角相等,两直线平行。同旁内角互补,两直线平行。因为a‖b,a‖c,所以b‖c(平行公理的推论)
2“两直线平行,同位角相等.”是公理,是无法证明的,书上给的也只是说明而已,并没有给出严格证明,而“两直线平行,内错角相等“则是由上面的公理推导出来的,利用了对等角相等做了一个替换,上面两位给出的都不是严格的证明。
一、怎样证明两直线平行证明两直线平行的常用定理(性质)有:1.两直线平行的判定定理:①同位角相等,两直线平行;②内错角相等,两直线平行;③同旁内角互补,两直线平行;④平行(或垂直)于同一直线的两直线平行.2、三角形或梯形的中位线定理.3、如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边.4、平行四边形的性质定理.5、若一直线上有两点在另一直线的同旁).(A)艺l=匕3(B)/2=艺3(C)匕4二艺5(D)匕2+/4=18)分析:利用平行线判定定理可判断答案选C认六一值!小人﹃夕叱的一试勺洲洲川JLZE一B/(一、图月一飞/匕一|求且它们到该直线的距离相等,则两直线平行.例1(2003年南通市)已知:如图l,下列条件中,不能判断直线l,//l:的是(B).例2(2003年泉州市)如图2,△注Bc中,匕BAC的平分线AD交BC于D,④O过点A,且和BC切于D,和AB、Ac分别交B于E、F,设EF交AD于C,连结DF.(l)求证:EF//Bc
(1)根据定义。证明两个平面没有公共点。
由于两个平面平行的定义是否定形式,所以直接判定两个平面平行较困难,因此通常用反证法证明。
(2)根据判定定理。证明一个平面内有两条相交直线都与另一个平面平行。
(3)根据“垂直于同一条直线的两个平面平行”,证明两个平面都与同一条直线垂直。
2.两个平行平面的判定定理与性质定理不仅都与直线和平面的平行有逻辑关系,而且也和直线与直线的平行有密切联系。就是说,一方面,平面与平面的平行要用线面、线线的平行来判定;另一方面,平面
与平面平行的性质定理又可看作平行线的判定定理。这样,在一定条件下,线线平行、线面平行、面面平行就可以互相转化。
3.两个平行平面有无数条公垂线,它们都是互相平行的直线。夹在两个平行平面之间的公垂线段相等。
因此公垂线段的长度是唯一的,把这公垂线段的长度叫作两个平行平面间的距离。显然这个距离也等于其中一个平面上任意一点到另一个平面的垂线段的长度。
两条异面直线的距离、平行于平面的直线和平面的距离、两个平行平面间的距离,都归结为两点之间的距离。
1.两个平面的位置关系,同平面内两条直线的位置关系相类似,可以从有无公共点来区分。因此,空间不重合的两个平面的位置关系有:
(1)平行—没有公共点;
(2)相交—有无数个公共点,且这些公共点的集合是一条直线。
注意:在作图中,要表示两个平面平行时,应把表示这两个平面的平行四边形画成对应边平行。
2.两个平面平行的判定定理表述为:
4.两个平面平行具有如下性质:
(1)两个平行平面中,一个平面内的直线必平行于另一个平面。
简述为:“若面面平行,则线面平行”。
(2)如果两个平行平面同时和第三个平面相交,那么它们的交线平行。
简述为:“若面面平行,则线线平行”。
(3)如果两个平行平面中一个垂直于一条直线,那么另一个也与这条直线垂直。
(4)夹在两个平行平面间的平行线段相等
用反证法
A平面垂直与一条直线,设平面和直线的交点为p
B平面垂直与一条直线,设平面和直线的交点为Q
假设A和B不平行,那么一定有交点。
设有交点R,那么
做三角形pQR
pR垂直pQQR垂直pQ
没有这样的三角形。因为三角形的内角和为180
所以A一定平行于B
第四篇:Z证明直线垂直的方法
证明直线垂直的方法
(一)相交线与平行线:
①两条直线相交所成的四个角中,有一个角是直角,则这两条直线互相垂直。②两平行线中有一条垂直第三直线,则另一条也垂直第三直线。
(二)三角形:
①直角三角形的两直角边互相垂直。
②三角形的两内角互余,则第三个内角为直角。
③三角形一边上的中线等于这条边的一半,则这边所对的内角为直角(图1)。
④三角形一边的平方等于其他两边的平方和,则这边所对的内角为直角。⑤三角形(或多边形)一边上的高垂直于这条边。
⑥等腰三角形顶角的平分线、或底边上的中线垂直于底边。
(三)四边形:
①矩形的两邻边互相垂直。
②菱形的两对角线互相帮助垂直。
(四)圆:
①平分弦(非直径)的直径垂直于这条弦,平分弦所对的弧的直径垂直于这条弦。②半圆或直径所对的圆周角是直角(图2)。
③圆的切线垂直于过切点的半径。
④相交现圆的连心线垂直于两圆的公共弦。
证明直线平行的方法
(一)平行线与相交线:
①在同一平面内两条不相交的直线平行。
②同平行、或同垂直于第三直线 的两条直线平行。
③同位角相等、或内错角相等、或外错角相等、或同旁内角互补、或同旁外角互补的两条直线平行。
(二)三角形:
①三角形的中位线平行于第三边。
②一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,则这条直线平行于三角形的第三边(图3、4)。
(三)四边形:
①平行四边形的对边平行。
②梯形的两底边平行。
③梯形的中位线平行于两底。
(四)圆:
①夹两等弧且在圆内不相交的二弦平行(图5)。
②二等圆的两条外公切线平行。
第五篇:证明两直线垂直的方法
证明两直线垂直的方法
1.矩形四个内角
2.三角形中的两角之和为90°,则另一角必为直角
3.证明两直线中的一条是等腰三角形的底边,另一边是顶角平分线或底边上的中线
4.勾股定理逆定理
5.圆直径所对的圆周角
6.垂径定理的判定
7.利用菱形的对角线互相垂直
8.利用正方形的对角线互相垂直
9.圆的切线垂直于过切点的半径
10.证这两直线中的一直线与第三直线平行,另一直线与第三直线垂直;或证明这两直线各与已知的两垂线平行
11.相交两圆的连心线垂直平分公共弦
12.轴对称那类的图形,对应点垂直于轴
13.到线段两边距离相等的点在这个线段的中垂线上
14.如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形
15.与直角三角形相似的三角形 对应角是直角
16.与直角三角形全等的三角形 对应角是直角
17.利用邻角相等:两直线相交所成的两个邻角相等,可确定两直线垂直
18.点到直线最短的线段
19.45圆周角所对的圆心角
20.等边三角形中,任一顶点与内心所在直线垂直于底边
21.利用已知的直角或其余角:证两直线的夹角等于已知的直角,或证明两直线的夹角是两锐角互余的三角形的第三角
22.矩形中位线垂直他所在的两边
23.利用反证法、同一法
24.平面直角坐标系x、y轴垂直