第一篇:证明平行的方法
空间的平行关系
1. 证明线线平行的方法:
(1)面面平行的判定:如果两个平行平面同时与第三个平面相交,那么它们的交线平行。
(2)线面平行的性质:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和两平面的交线平行。
(3)平行线的定义:在同一平面内不相交的两条直线。
(4)基本性质四:平行于同一直线的两直线互相平行。
(5)线面垂直的性质:垂直同一平面都两条直线平行
2.证明线面平行的方法:
①面面平行的性质:如果不在一个平面内的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行。
②线面平行的性质:如果不在一个平面内的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行。
③定义:直线a与平面a没有公共点,则直线与平面平行。
3.证明面面平行的方法:
(1)定义:如果两个平面没有公共点,则这两个平面互相平行。
(2)面面平行的判定:如果一个平面内有两条相交直线平行于另一个平面,那么这两个平面平行。
(3)面面平行的性质:如果一个平面内有两条直线分别平行于另一个平面的两条直线,则这两个平面平行。
(4)线面垂直的性质:垂直通一条直线的两个平面平行
(5)面面平行的判定定理:同时与第三个平面平行的两平面平行
第二篇:证明平行的方法
证明平行的方法
高中立体几何的证明主要是平行关系与垂直关系的证明。方法如下(难以建立坐标系时再考虑):
Ⅰ.平行关系:
线线平行:1.在同一平面内无公共点的两条直线平行。2.公理4(平行公理)。3.线面平行的性质。4.面面平行的性质。5.垂直于同一平面的两条直线平行。
线面平行:1.直线与平面无公共点。2.平面外的一条直线与平面内的一条直线平行。3.两平面平行,一个平面内的任一直线与另一平面平行。
面面平行:1.两个平面无公共点。2.一个平面内的两条相交直线分别与另一平面平行。
Ⅱ.垂直关系:
线线垂直:1.直线所成角为90°。2.一条直线与一个平面垂直,那么这条直线与平面内的任一直线垂直。
线面垂直:1.一条直线与一个平面内的任一直线垂直。2.一条直线与一个平面内的两条相交直线都垂直。3.面面垂直的性质。4.两条平行直线中的一条垂直与一个平面,那么另一直线也与此平面垂直。5.一条直线垂直与两个平行平面中的一个,那么这条直线也与另一平面垂直。
面面垂直:1.面面所成二面角为直二面角。2.一个平面过另一平面的垂线,那么这两个平面垂直。
方法1:
两组对边分别平行方法2:对角线互相平分方法3:一组对边平行且相等楼上的:试问
两组对边相等
证明两直线平行1.垂直于同一直线的各直线平行。2.同位角相等,内错角相等或同旁内角互补的两直线平行。3.平行四边形的对边平行。4.三角形的中位线平行于第三边。5.梯形的中位线平行于两底。6.平行于同一直线的两直线平行。7.一条直线截三角形的两边(或延长线)所得的线段对应成比例,则这条直线平行于第三边。证明两条直线互相垂直1.等腰三角形的顶角平分线或底边的中线垂直于底边。2.三角形中一边的中线若等于这边一半,则这一边所对的角是直角。3.在一个三角形中,若有两个角互余,则第三个角是直角。4.邻补角的平分线互相垂直。5.一条直线垂直于平行线中的一条,则必垂直于另一条。6.两条直线相交成直角则两直线垂直。7.利用到一线段两端的距离相等的点在线段的垂直平分线上。8.利用勾股定理的逆定理。9.利用菱形的对角线互相垂直。*10.在圆中平分弦(或弧)的直径垂直于弦。*11.利用半圆上的圆周角是直角。
在空间中一定是平行四边形吗?
证明两直线平行1.垂直于同一直线的各直线平行。2.同位角相等,内错角相等或同旁内角互补的两直线平行。3.平行四边形的对边平行。4.三角形的中位线平行于第三边。5.梯形的中位线平行于两底。6.平行于同一直线的两直线平行。7.一条直线截三角形的两边(或延长线)所得的线段对应成比例,则这条直线平行于第三边。证明两条直线互相垂直1.等腰三角形的顶角平分线或底边的中线垂直于底边。2.三角形中一边的中线若等于这边一半,则这一边所对的角是直角。3.在一个三角形中,若有两个角互余,则第三个角是直角。4.邻补角的平分线互相垂直。5.一条直线垂直于平行线中的一条,则必垂直于另一条。6.两条直线相交成直角则两直线垂直。7.利用到一线段两端的距离相等的点在线段的垂直平分线上。8.利用勾股定理的逆定理。9.利用菱形的对角线互相垂直。*10.在圆中平分弦(或弧)的直径垂直于弦。
第三篇:证明面面平行的方法
证明面面平行的方法
利用向量方法判断空间位置关系,其难点是线面平行与面面垂直关系问题.应用下面的两个定理,将可建立一种简单的程序化的解题模式.定理1设MA→、MB→不共线,pQ→=xMA→+yMB→(x,y∈R),则①p∈平面MABpQ平面MAB;②p平面MABpQ∥平面MAB.定理2设向量AB→、AC→不共线,DE→、DF→垂直于同一平面的两个平面互相平行
这个是错误的,比如立方体相邻三个面,两两垂直,显然不符合你说的平行条件,证明面面平行可以用垂直于同一直线来证,但垂直于同一平面是错的2
1,线面垂直到面面垂直,直线a垂直于平面1,直线a平行与或包含于平面2,所以平面1垂直于平面2
2,(最白痴的一个)平面1垂直于平面2,平面1平行于平面3,所以平面3垂直于平面2
3,通过2面角的夹角,如果2面角的夹角是90度,那么两个平面也是垂直的这些方法前面都要通过其他方法证明,一步步才能证到这儿,譬如方法1,要先证明线面垂直,所以你也得知道线面垂直的证法有哪些。学立体几何,重要的是空间感,没事多揣摩揣摩比划比划,把每个定理的内容用图形表示出来,并记在脑子中,这样考试的时候才能看到图和题就会知道用什么定理了,熟记并熟练掌握哪些定理的运用才行。还有像这样比较好,证明每个东西都有哪些方法,有几种途径,那么做题的时候想不起来用哪个就可以根据题目条件一步步排除,并选择对的方法,一般老师上课都会总结的。还是好好听课吧~~
判定:
平面平行的判定一如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。
平面平行的判定二垂直于同一条直线的两个平面平行。
性质:
平面平行的性质一如果两个平行平面同时与第三个平面相交,那么它们的交线平行。
平面平行的性质二如果一条直线在一个平面内,那么与此平面平行的平面与该直线平行。
这五个条件?哪五个?
判定一中:两条相交的直线是可以确定一个平面的,所以“两条相交直线都平行于另一个平面,那么这两个平面平行。”
判定二中。如果一个直线垂直与一个平面,那么直线垂直于平面内的所有直线,则有垂直于同一条直线的两个平面平行。
线线平行证2条线成倍数就行,倍数属于R线面平行找面的法向量,它的法向量与线平行就OK面面平行先找两个面的法向量,只要2个法向量成成倍数就行
第四篇:证明线面平行的方法
证明线面平行的方法
线面平行重点难点剖析
线面平行关系的判断和证明是空间线面位置关系的研究重点之一,它包括直线与直线的平行,直线与平面的平行以及平面与平面的平行.本节复习包括首先要系统梳理有关判断、证明线面平行关系的各种依据,其中既包括有关定义、公理,还包括相应的判定定理或性质定理.梳理中不仅要明确有关判断、证明各有哪些依据,还要体会不同的依据在思维策略上给我们的指导.例如判断线面平行可有三种思维策略:
(1)从概念考虑,即依据线面平行的定义作思考,这就需要证明直线和平面没有公共点.证明方法通常选择反证法.(2)从降级角度考虑,即通过证明线线平行来证明线面平行.其依据为:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行.证明方法通常是把平面外的这条直线经过平移,移到这个平面中去.(3)从升级角度考虑,即通过证明面面平行来证明线面平行.其依据为:两个平面平行,其中一个平面内的直线必平行于另一个平面.证明方法是找出一个与这个平面平行的平面,并且使这条直线正好在所找的平面内.其中思维策略的选择不仅要注意建立这种意识,还要根据不同问题的不同条件,才能作出恰当的选择.在复习中应注意积累这种思考、选择的经验.2题目如图1,已知四边形ABCD,ABEF为两个正方形,MN分别在其对角线BF和AC上,且FM=AN,求证:MN∥平面EBC.一、找“线线平行”思考1如图2,过M作MH∥EF交BE于H,则MHEF=BBMF.过N作NG∥AB交BC于G,则NGAB=CANC.由于四边形ABCD,ABEF为两个全等正方形,则BF=AC,EF=AB,又因为FM=AN,所以MH∥NG且MH=NG,故四边形MHGN为平行四边形,所以MN∥平面EBC.思考2如图3,连结AM并延长交BE于K,则CK在平面EBC内.由题意,知△AFM∽△BKM,则AMMK=BFMM,因为FM=AN,BF=AC,则FMBM=ANNC,所以在△ACK中,有AMMK=ANNC,则MN∥CK,所以MN∥平面EBC.注在平面内找一条直线与平面外直线平行,通常有两种方法可找:①构造平行四边形;②构造三角形,利用对应边成比例.二、找“面面平行”思考3如图4,过M作MH∥BE,交AB于H,连结NH,则BMBF=BBHA.由于四边形ABCD,ABEF为全等的的正方形,又因为FM=AN,则有BMBF=CCNA,所以在3
线面的我已经给你了
我来补充线线的1.垂直于同一平面的两条直线平行
2.平行于同一直线的两条直线平行
3.一个平面与另外两个平行平面相交,那么2条交线也平行
4.两条直线的方向向量共线,则两条直线平行
第五篇:线面平行证明的常用方法
湖北民族学院学报(自然科学版)20081
2线面平行证明的常用方法
摘要:立体几何在高考解答题中每年是必考内容,线面平行的证明经常出现,很多同学总觉得证明方法很多很繁,在这里给大家用作辅助线的常用方法及空间坐标系的方法进行阐述。
关键词:找平行线;找第三个点;作平行平面;建立空间坐标系
立体几何在高考解答题中每年是必考内容,必有一个证明题;证明的内容包括以下内容:平行与垂直(线线平行、线面平行、面面平行、线线垂直、线面垂直、面面垂直等),我们现在对线面平行这一方面作如下探讨:
在线面平行这节里有三个重要的定理:
直线与平面平行的判定性定理:如果不在一个平面内的一条直线和平面内的一条
直线平行,那么这条直线和这个平面平行。
直线与平面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平
面和这个平面相交,那么这条直线和这个交线平行。
平面与平面平行的性质定理:如果两个平面是平行,那么在其中一个平面内的直
线和另一个平面平行。
从前面两个定理不难发现:要证线面平行(那么这条直线一定是平行于这个平面的),由性质定理可以得到这样一个结论:只要过这条直线作一个与平面相交的平面,那这个直线一定是与交线平行得。这样我们就可以找到与平面内的直线平行的直线。那么关键是怎样作一个平面与已知平面相交且过直线的平面。下面给大家介绍
方法一:两平行线能确定一个平面,过已知直线的两个端点作两条平行线使它们
与已知平面相交,关键:找平行线,使得所作平面与已知平面的交线。
(08浙江卷)如图,矩形ABCD和梯形BEFC所在平面互相垂直,BE//CF,BCF=CEF=90,AD=3,EF=2。求证:AE//平面DCF.分析:过点E作EG//AD交FC于G,DG就是平面
与平面DCF的交线,那么只要证明AE//DG即可。
证明:过点E作EGCF交CF于G,连结DG,可得四边形BCGE为矩形,又ABCD为矩形,∥EG,从而四边形ADGE为平行四边形,所以AD 故AE∥DG.
因为AE平面DCF,DG平面DCF,所以AE∥平面DCF.
方法二:直线与直线外一点有且仅有一个平面,关键:找第三个点,使得所作平
面与已知平面的交线。
(06北京卷)如图,在底面为平行四边形的四棱锥PABCD中,ABAC,PA平面ABCD,且PAAB,点E是PD的中点.求证:PB//平面AEC.分析:由D、P、B三点的平面与已知平面AEC的交线最易找,第三个点选其它的点均不好找交线.证明:连接BD,与 AC 相交于 O,连接
∵ABCD 是平行四边形,∴O 是 BD 的中点又 E 是 PD 的中点∴EO∥PB.又 PB平面 AEC,EO平面 AEC,∴PB∥平面 AEC.方法三:两个平面是平行, 其中一个平面内的直线和另一个平面平行,关键:作
平行平面,使得过所证直线作与已知平面平行的平面
(08安徽卷)如图,在四棱锥OABCD中,底面ABCD四边长为1的菱形,
ABC, OA底面ABCD, OA2,M为OA的中点,N为BC的中
点,证明:直线MN‖平面OCD 分析:M为OA的中点,找OA(或AD)中点,再连线。
证明:取OB中点E,连接ME,NE
ME‖AB,AB‖CD,ME‖CD
又NE‖OC,平面MNE‖平面OCD MN‖平面OCD
方法四:(向量法)所证直线与已知平面的法向量垂直,关键:建立空间坐标系
(或找空间一组基底)及平面的法向量。
(07全国Ⅱ•理)如图,在四棱锥SABCD中,底面ABCD为正方形,侧棱SD⊥底面ABCD,E,F分别为AB,SC的中点.证明EF∥平面SAD;
分析:因为侧棱SD⊥底面ABCD,底面ABCD是正方形,所以很容易建立空间直角坐标系及相应的点的坐标。
证明:如图,建立空间直角坐标系Dxyz.
0,0),S(0,0,b),则B(a,a,0),C(0,a,0),设A(a,Eaa,0
,F0ab222,
EFba,0
2.
因为y轴垂直与平面SAD,故可设平面的法向量为n
=(0,1,0)
则:EFnba,0
2
(0,1,0)
=0 因此EFn
所以EF∥平面SAD.