第一篇:面面平行的证明
面面平行的证明
判定定理:如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行。
反证:记其中一个平面内的两条相交直线为a,b。假设这两个平面不平行,设交线为l,则a∥l(过平面外一条与平面平行的直线的平面与该平面的交线平行于该直线),b∥l,则a∥b,与a,b相交矛盾,故假设不成立,所以这两个平面平行。
2证明:∵平面α∥平面β
∴平面α和平面β没有公共点
又a在平面α上,b在平面β上
∴直线a、b没有公共点
又∵α∩γ=a,β∩γ=b
∴a在平面γ上,b在平面γ上
∴a∥b.3用反证法
命题:已知α∥β,AB∈α,求证:AB∥β
证明:假设AB不平行于β
则AB交β于点p,点p∈β
又因为p∈AB,所以p∈α
α、β有公共点p,与命题α∥β不符,所以AB∥β。
4【直线与平面平行的判定】
定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。
【判断直线与平面平行的方法】
(1)利用定义:证明直线与平面无公共点;
(2)利用判定定理:从直线与直线平行得到直线与平面平行;
(3)利用面面平行的性质:两个平面平行,则一个平面内的直线必平行于另一个
5用反证法
命题:已知α∥β,AB∈α,求证:AB∥β
证明:假设AB不平行于β
则AB交β于点p,点p∈β
又因为p∈AB,所以p∈α
α、β有公共点p,与命题α∥β不符,所以AB∥β。
6证明:∵平面α∥平面β
∴平面α和平面β没有公共点
又a在平面α上,b在平面β上
∴直线a、b没有公共点
又∵α∩γ=a,β∩γ=b
∴a在平面γ上,b在平面γ上
∴a∥b.证明:∵平面α∥平面β
∴平面α和平面β没有公共点
又a在平面α上,b在平面β上
∴直线a、b没有公共点
又∵α∩γ=a,β∩γ=b
∴a在平面γ上,b在平面γ上
∴a∥b.【直线与平面平行的判定】
定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。
【判断直线与平面平行的方法】
(1)利用定义:证明直线与平面无公共点;
(2)利用判定定理:从直线与直线平行得到直线与平面平行;
(3)利用面面平行的性质:两个平面平行,则一个平面内的直线必平行于另一个
5用反证法
命题:已知α∥β,AB∈α,求证:AB∥β
证明:假设AB不平行于β
则AB交β于点p,点p∈β
又因为p∈AB,所以p∈α
α、β有公共点p,与命题α∥β不符,所以AB∥β。
第二篇:怎么证明面面平行
怎么证明面面平行
线面垂直:1.一条线与平面内两条相交直线垂直
2.一条线在一个平面内,而这个平面与另外一个平面垂直,那么这条线与另外一个平面垂直
面面垂直:一条线与平面内两条相交直线垂直,且有一个平面经过这条线
2证明:∵平面α∥平面β
∴平面α和平面β没有公共点
又a在平面α上,b在平面β上
∴直线a、b没有公共点
又∵α∩γ=a,β∩γ=b
∴a在平面γ上,b在平面γ上
∴a∥b.3用反证法
命题:已知α∥β,AB∈α,求证:AB∥β
证明:假设AB不平行于β
则AB交β于点p,点p∈β
又因为p∈AB,所以p∈α
α、β有公共点p,与命题α∥β不符,所以AB∥β。
4【直线与平面平行的判定】
定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。
【判断直线与平面平行的方法】
(1)利用定义:证明直线与平面无公共点;
(2)利用判定定理:从直线与直线平行得到直线与平面平行;
(3)利用面面平行的性质:两个平面平行,则一个平面内的直线必平行于另一个
5用反证法
命题:已知α∥β,AB∈α,求证:AB∥β
证明:假设AB不平行于β
则AB交β于点p,点p∈β
又因为p∈AB,所以p∈α
α、β有公共点p,与命题α∥β不符,所以AB∥β。
线线平行→线面平行如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。
线面平行→线线平行如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行。
线面平行→面面平行如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。
面面平行→线线平行如果两个平行平面同时和第三个平面相交,那么它们的交线平行。
线线垂直→线面垂直如果一条直线和一个平面内的两条相交直线垂直,那么这条直线垂直于这个平面。
线面垂直→线线平行如果连条直线同时垂直于一个平面,那么这两条直线平行。
线面垂直→面面垂直如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。
线面垂直→线线垂直线面垂直定义:如果一条直线a与一个平面α内的任意一条直线都垂直,我们就说直线a垂直于平面α。
面面垂直→线面垂直如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。
三垂线定理如果平面内的一条直线垂直于平面的血现在平面内的射影,则这条直线垂直于斜线。
第三篇:证明面面平行的方法
证明面面平行的方法
利用向量方法判断空间位置关系,其难点是线面平行与面面垂直关系问题.应用下面的两个定理,将可建立一种简单的程序化的解题模式.定理1设MA→、MB→不共线,pQ→=xMA→+yMB→(x,y∈R),则①p∈平面MABpQ平面MAB;②p平面MABpQ∥平面MAB.定理2设向量AB→、AC→不共线,DE→、DF→垂直于同一平面的两个平面互相平行
这个是错误的,比如立方体相邻三个面,两两垂直,显然不符合你说的平行条件,证明面面平行可以用垂直于同一直线来证,但垂直于同一平面是错的2
1,线面垂直到面面垂直,直线a垂直于平面1,直线a平行与或包含于平面2,所以平面1垂直于平面2
2,(最白痴的一个)平面1垂直于平面2,平面1平行于平面3,所以平面3垂直于平面2
3,通过2面角的夹角,如果2面角的夹角是90度,那么两个平面也是垂直的这些方法前面都要通过其他方法证明,一步步才能证到这儿,譬如方法1,要先证明线面垂直,所以你也得知道线面垂直的证法有哪些。学立体几何,重要的是空间感,没事多揣摩揣摩比划比划,把每个定理的内容用图形表示出来,并记在脑子中,这样考试的时候才能看到图和题就会知道用什么定理了,熟记并熟练掌握哪些定理的运用才行。还有像这样比较好,证明每个东西都有哪些方法,有几种途径,那么做题的时候想不起来用哪个就可以根据题目条件一步步排除,并选择对的方法,一般老师上课都会总结的。还是好好听课吧~~
判定:
平面平行的判定一如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。
平面平行的判定二垂直于同一条直线的两个平面平行。
性质:
平面平行的性质一如果两个平行平面同时与第三个平面相交,那么它们的交线平行。
平面平行的性质二如果一条直线在一个平面内,那么与此平面平行的平面与该直线平行。
这五个条件?哪五个?
判定一中:两条相交的直线是可以确定一个平面的,所以“两条相交直线都平行于另一个平面,那么这两个平面平行。”
判定二中。如果一个直线垂直与一个平面,那么直线垂直于平面内的所有直线,则有垂直于同一条直线的两个平面平行。
线线平行证2条线成倍数就行,倍数属于R线面平行找面的法向量,它的法向量与线平行就OK面面平行先找两个面的法向量,只要2个法向量成成倍数就行
第四篇:怎样证明面面平行
怎样证明面面平行
线线平行→线面平行如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。
线面平行→线线平行如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行。
线面平行→面面平行如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。
面面平行→线线平行如果两个平行平面同时和第三个平面相交,那么它们的交线平行。
线线垂直→线面垂直如果一条直线和一个平面内的两条相交直线垂直,那么这条直线垂直于这个平面。
线面垂直→线线平行如果连条直线同时垂直于一个平面,那么这两条直线平行。
线面垂直→面面垂直如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。
线面垂直→线线垂直线面垂直定义:如果一条直线a与一个平面α内的任意一条直线都垂直,我们就说直线a垂直于平面α。
面面垂直→线面垂直如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。
三垂线定理如果平面内的一条直线垂直于平面的血现在平面内的射影,则这条直线垂直于斜线。
2证明:∵平面α∥平面β
∴平面α和平面β没有公共点
又a在平面α上,b在平面β上
∴直线a、b没有公共点
又∵α∩γ=a,β∩γ=b
∴a在平面γ上,b在平面γ上
∴a∥b.3用反证法
命题:已知α∥β,AB∈α,求证:AB∥β
证明:假设AB不平行于β
则AB交β于点p,点p∈β
又因为p∈AB,所以p∈α
α、β有公共点p,与命题α∥β不符,所以AB∥β。
4【直线与平面平行的判定】
定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。
【判断直线与平面平行的方法】
(1)利用定义:证明直线与平面无公共点;
(2)利用判定定理:从直线与直线平行得到直线与平面平行;
(3)利用面面平行的性质:两个平面平行,则一个平面内的直线必平行于另一个
5用反证法
命题:已知α∥β,AB∈α,求证:AB∥β
证明:假设AB不平行于β
则AB交β于点p,点p∈β
又因为p∈AB,所以p∈α
α、β有公共点p,与命题α∥β不符,所以AB∥β。
第五篇:面面平行练习题
高一数学第3周周末作业
一、选择题
1.下列条件中,能判断两个平面平行的是()A.一个平面内的一条直线平行于另一个平面;B.一个平面内的两条直线平行于另一个平面 C.一个平面内有无数条直线平行于另一个平面 D.一个平面内任何一条直线都平行于另一个平面
2. 直线a,b,c及平面,,使a//b成立的条件是()
A.a//,bB.a//,b//C.a//c,b//cD.a//,b
3.若直线m不平行于平面,且m,则下列结论成立的是()A.内的所有直线与m异面B.内不存在与m平行的直线 C.内存在唯一的直线与m平行D.内的直线与m都相交.,β是两个不重合的平面,a,b是两条不同直线,在下列条件下,可判定∥β的是()
A.,β都平行于直线a,bB.内有三个不共线点到β的距离相等 C.a,b是内两条直线,且a∥β,b∥β
D.a,b是两条异面直线且a∥,b∥,a∥β,b∥β
5.两条直线a,b满足a∥b,b,则a与平面的关系是()
A.a∥B.a与相交C.a与不相交
D.a
6.设a,b表示直线,,表示平面,P是空间一点,下面命题中正确的是()A.a,则a//B.a//,b,则a//b
C.//,a,b,则a//bD.Pa,P,a//,//,则a
7.一条直线若同时平行于两个相交平面,那么这条直线与这两个平面的交线的位置关系是()
A.异面B.相交C.平行D.不能确定
8.直线和平面平行是指该直线与平面内的()
(A)一条直线不相交(B)两条直线不相交(C)无数条直线不相交(D)任意一条直线都不相交
9.若直线a,b都与平面平行,则a和b的位置关系是()(A)平行(B)相交(C)异面(D)平行或相交或是异面直线
二、填空题
1.如下图所示,四个正方体中,A,B为正方体的两个顶点,M,N,P分别为其所在棱的中点,能得到AB//面MNP的图形的序号的是
①②③④
2.正方体ABCD-A1B1C1D1中,E为DD1中点,则BD1和平面ACE位置关系是.
3.a,b,c为三条不重合的直线,α,β,γ为三个不重合的平面,直线均不在平面内,给出六个命题:
①
a∥cb∥c∥b;②a∥∥c
aa∥b;③∥;b∥∥c
④
∥c
a∥;⑤∥∥∥⑥
a∥a∥c∥a∥
其中正确的命题是________________.4.如图,正四棱柱ABCD-A1B1C1D1中,E,F,G,H分别是棱CC1,C1D1,DD1,DC中点,N是BC中点,点M在四边形EFGH及其内部运动,则M满足时,有MN∥平面B1BD D1.
三、解答题
1、已知E、F、G、H为空间四边形ABCD的边AB、BC、CD、DA
上的点, A
且EH∥FG. 求证:EH∥BD.E
HB
D
FC
2.如图,在正四棱锥PABCD中,PAABa,点E在棱PC上. 问点E在何处时,PA//平面EBD,并加以证明.PE
C
A
B3、已知正方体ABCDA1B1C1D1,O是底ABCD对角线的交点.D
1求证:(1)C1O∥面AB1D1;(2)面OC1D//面AB1D1.A 1
C
A
B
4.在长方体ABCDA1B1C1D1中,E、F、E1、F1分别是AB、CD、A1B1、C1D1的中点.
求证:平面A1EFD1∥平面BCF1E1.5.在正方体ABCD-A1B1C1D1中,E、F、G、P、Q、R分别是所在棱AB、BC、BB、AD、DC、DD的中点,求证:平面PQR∥平面EFG。
C
E
6.如图,在正方体ABCD-A1B1C1D1中,O为底面ABCD的中心,P是DD1的中点,设Q是
CC1上的点,问:当点Q在什么位置时,平面D1BQ∥平面PAO?