导数应用中的化归与转化思想

时间:2019-05-14 15:41:26下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《导数应用中的化归与转化思想》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《导数应用中的化归与转化思想》。

第一篇:导数应用中的化归与转化思想

导数应用中的化归与转化思想

在数学的知识和技能中,蕴含着具有普遍性的数学思想,它是数学的精髓和灵魂,是知识转化为能力的桥梁,是数学知识和方法产生的根本源泉,对数学思想的应用,是数学学习走向更深层次的一个标志,它能指导我们有效地应用数学知识,探寻解题方向.数学对象的内部或者不同的数学对象之间,往往会以某种形式相互联系,在一定的条件下能够相互转化,针对面临的数学问题,实施或转化问题的条件,或转化问题的结论或转化问题的内在结构,或转化问题的外部表现形式等行动策略去解决有关的数学问题,能促进问题的解决,可以说,数学解题的过程就是不断化归与转化的过程.在应用导数解决问题的过程中,对于一时难以解决的问题,可运用转化与化归思想经过观察、分析、类比、联想等思维过程,运用恰当的数学方法进行变换,将原问题化归为一类已经能解决或者比较容易解决的问题.而导数综合问题的主要类型有:

(1)不等式的恒成立问题;(2)证明不等式问题;(3)方程的求解问题.通常,应用化归与转化思想解决导数的综合问题时有一个基本的解题思路,即:将不等式的恒成立问题转化为函数的最值问题;将证明不等式问题转化为函数的单调性与最值问题;将方程的求解问题转化为函数的零点问题、两个函数图象的交点问题等.为了完成上述转化,要把握两个关键:(1)针对问题的需要,合理地构造函数,找到问题转化的突破口;(2)通过“再构造、再求导”,实现问题的深度转化.下面通过具体例题,对上述两个关键进行一些探究.点评:一次函数、二次函数、指对数函数、幂函数、简单的分式根式函数、绝对值函数的图象力求清晰准确,一些综合性的问题基本上是这些函数的组合体,如果适当分解和调配就一定能找到问题解决的突破口,使问题简单化、明确化.问题二:如何再次构造新函数,实现“二次求导”

在求导的过程中,常常会发现导函数大于0或小于0时对应的自变量取值无法确定,这时可考虑再次构造新函数,从而实现 “二次求导”.评注:本题通过转化,使求解a的取值范围问题转化为求函数的值域问题,再利用函数的连续性,进而转化为函数的最值问题.在对本题解法的探究中,转化是关键,构造函数是途径,“二次求导”是方法和策略.综上所述,通过构造函数再利用导数这一研究函数的有力工具,能够使解题思路自然流畅、过程清晰,正是应用化归与转化这一重要数学思想在解题中具有普遍指导意义的有力体现。其中构造函数的方式、方法是实现转化的重要途径,虽是“小构造”但体现了解题的“大智慧”.平时教学中,特别是高考总复习中,应加强化归与转化思想的渗透,强化训练,从而有效地提高学生解题的能力.??S编辑 谢尾合

第二篇:化归转化思想提升数学解题能力思考看法

著名的数学家,莫斯科大学教授c.a.雅洁卡娅曾在一次向数学奥林匹克参赛者发表《什么叫解题》的演讲时提出:“解题就是把要解的题化归转化为已经解过的题”。化归转化就是把未知解的问题转化到在已有知识范围内可解问题的一种重要的数学思想方法。数学的解题过程,就是通过不断的化归转化,从未知向已知、从不规范向规范、从复杂向简单的化归转化过

程。历年高考,化归转化思想无处不见,化归方法在中学数学教材中是普遍存在,到处可见,与中学数学教学密切相关。本文就教学实践中如何强化化归转化思想,提高数学解题能力谈一些粗浅的看法。

一、化归转化的目标和方向

同一个数学问题,由于观察的角度不同,对问题的分析、理解的层次不同,可以导致转化目标的不同与解题方法的不同.但目的只有一个,化归转化后所得出的问题,应是已经解决或是较为容易解决的问题。因此,化归转化的方向应是尽量做到化繁为简、化隐为显、化难为易、化未知为已知、化一般为特殊、化抽象为具体.而化归转化的思想实质就在于不应以静止的眼光,而应以运动、变化、发展以及事物间的相互联系和制约的观点去看待问题。即应当善于对所要解决的问题进行变形和转化,这实际上也是在数学教学中辨证唯物主义观点的生动体现。

二、化归转化的等价性与不等价性

化归转化包括等价转化和非等价转化两种.等价转化思想方法的特点是具有灵活性和多样性。在应用等价转化的思想方法去解决数学问题时,没有一个统一的模式去进行。它可以在数与数、形与形、数与形之间进行转换;它可以在宏观上进行等价转化,如在分析和解决实际问题的过程中,普通语言向数学语言的翻译;它可以在符号系统内部实施转换即恒等变形。等价转化是将恒等变形在代数式方面的形变上升到保持命题的真假不变。等价转化要求转化过程中的前因后果是互相可逆推的.但事实上并不是所有的转化都是等价的,因此在转化过程中,一定要注意转化前后的等价性,如出现不等价转化,则需附加约束条件,而在非等价转化过程中常常会产生思维的闪光点,是找到解决问题的突破口.在数学操作中实施等价转化时,我们要遵循熟悉化、简单化、直观化、标准化的原则,即把我们遇到的问题,通过转化变成我们比较熟悉的问题来处理;或者将较为繁琐复杂的问题变成比较简单的问题,比如从超越式到代数式、从无理式到有理式、从分式到整式等;或者比较抽象的问题,转化为比较直观的问题,以便准确把握问题的求解过程,比如数形结合法;或者从非标准型向标准型进行转化。按照这些原则进行数学操作,转化过程省时省力,有如顺水推舟,经常渗透等价转化思想,可以提高解题的水平和能力。

三、化归转化的方法

化归转化方法有分割法、映射法、恒等变形法、换元法、函数法、数形结合法等等,(1)分割法

在几何教学中,常常对复杂的几何图形或几何体进行分割,使之成为简单的几何图形或几何体的组合。这是几何中实现化归转化的常用方法。

例1 如图三棱柱abc—a1b1c1中,若e,f分别为ab,ac的中点,平面

多面体befc—b1c1是不规则几何体,只有利用割补法用三棱柱abc—a1b1c1的体积减去三棱台aef—a1b1c1的体积才能解决,割补法是求解立体几何问题的重要方法,在高考中也多次出现。

eb1c1f将三棱柱分成体积为v1,v2两部分,求v1:v2.(2)换元法:解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。换元变形法用处很多,化简代数式如使用换元法可以简化计算过程,分解因式时使用换元法可以减少项数,便于发现关系,解方程时有些分式方程,指数方程和对数方程通过换元可以变成整式方程。有些高次方程通过换元可以达到降次的目的,有些无理方程通过换元可以去掉或减少根号。证明条件等式时,使用换元容易发现已知条件和待证等式之间的联系。通过换元引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。总之换元变形法用处十分广泛,学生应该熟练掌握在解题实践中灵活地、创造性地去运用。

(3)映射法:学习了集合与映射后用映射来定义函数,而把反函数的概念建立在一一映射的基础上,而确定反函数y=f(x)的映射是一个从原函数值域集合到定义域集合上的一个一一映射。映射法是实现化归的一种重要方法,如由于建立了直角坐标系,使平面上的点与有序实数对,曲线与方程建立了对应关系,几何问题转化为代数问题。此外复数与复平面上的点、向量也建立起一一对应

关系,把向量引进了代数,使复数的代表运算可用向量的几何运算来进行。

例:已知f(x)= 10x-1-2,则f-1(8)等于()

a.2 b.4 c.8 d.1

2解析:原式即求反函数式y=f-1(x)中当自变量取8时的函数值.根据互为反函数之间 的关系,只须求原函数式中函数值y=8时的x值即可

.故8=10x-1-2得x=2.故选(a)

4)恒等变形法

无论在代数还是三角教材中,恒等变形都占有十分重要的位置,特别是在求解代数方程和三角方程时,利用恒等变形以实现未知向已知的化归,使我们能比较容易求得方程的解。例略

(5)函数法

几何问题、方程问题、不等式问题和某些代数问题可以转化为与其相关的函数问题,即用函数思想解答非函数问题。

例:实数q在什么范围内取值时,方程cos2x + sinx = q 有实数解?

解:原题就是求函数q=f(x)= cos2x + sinx的值域,由q=cos2x + sinx=-2 sin2x+ sinx+1易解.可见将参数的问题化归转化为函数问题来处理使问题变得浅显易解.(6)数形结合法

例 已知方程 有两个不 相等的实数根,求实数b的取值范围。

【分析】如果将无理方程转化为有理方程则会产生增根,宜将之转化为

y= 和y=x+b结合图形解之

四、强化化归转化思想,提高数学解题能力

(1)指导学生运用化归转化的思想方法,提高学生思维能力

数学本身具有严谨的逻辑结构,对培养学生的逻辑思维能力有着很大的作用,它能养成学生从事确定的,有顺序的,有依据的思维习惯,学生在掌握数学基础知识和技能的同时就可以发展逻辑思维能力。上面举的化归转化方法和例题,在教学教材中是普遍存在的。因此在教学中如何体现化归转化思想,如何运用化归转化方法,提高学生思维能力是很重要的。在教学中我采用讲练结合,练为主线的方法有意识地引导和培养学生认识化归转化思想,强化解决数学问题中的应变能力,从而提高学生思维能力和技能、技巧。

(2)掌握化归转化基本方法,提高学生的认知活动能力

化归转化思想在教学中乃至社会实践中都是一个重要的思想方法,化归转化思想的形成需要教师在教学中有意识地引导和培养。例如把二元二次方程组通过降次消元化归转化为一元一次方程求解;将无理方程化归转化为有理方程求解;又如平面几何中解一般三角形的实际问题化归转化为解直角三角形;把弓形的有关计算化归转化为解直角三角形;在立体几何中求二面角的度数可将问题化归转化到平面几何的角(平面角)来求,又如证明面面平行问题化归转化为线面平行或线线平行,再如求四边形的内角和只要作一条对角线,就把问题化归转化到求三角形内角和。

(3)掌握化归转化实质,提高学生的解题能力

化归转化的实质是不断变更问题,因此可以从改变问题的成分这方面去考虑,也可以从实现化归转化的常用方法去考虑。在实际解题过程中,这两个方面是互相渗透,互相补充的。另外,利用数式的运算另辟捷径来提高解题能力。例如锐角α,β,γ满足cos2α+cos2β+cos2γ=1,求证tgαtgβtgγ≥2, 证明时可借助已知条件构作一长方体,使它的三边分别为a.b.c且记相交于一点的三棱a.b.c分别与a1c交成α.β.γ角,于是原有的三角证式就变更为代数证式。

总而言之,在数学教学中有意识地让学生去观察和思考问题揭示教材的内在联系和层次性,善于运用化归转化的意识,找到正确的化归转化的方向和途径,能提高学生的思维能力,提高学生的解题能力。

第三篇:化归思想在方程教学中的应用

数学专业论文

学院:数学与统计学院 班级:11级数应四班

姓名:白

化归思想在方程教学中的应用

摘 要:在数学教学过程中,应用数学思想进行数学中的方程教学,非常有利于方程知识的传授,其中,划归思想是应用最广泛的一种数学思想。关键词:转化;变形;实现化归;解决数学问题

一、用化归思想正确引导解题思路

数学是探求、认识和刻划自然规律的重要工具。在学习数学的各个环节中,解题的训练占有十分重要的地位。它既是掌握所学数学知识的必要手段,也是培养和提高数学能力的重要途径。解题的实质就是把数学的一般原理运用于习题的条件或条件的推论而进行的一系列推理,直到求出习题解答为止的过程。解决问题的过程,实际是转化的过程,即对问题进行变形、转化,直至把它化归为某些已经解决的问题,或容易解决的问题。如抽象转化为具体,未知转化为已知,立体转化为平面,高次转化为低次,多元转化为一元,超越运算转化为代数运算等等。这就是在数学方法论中我们学习到的一种新的思维方法--化归,这种方法与我们常见的分析和综合、抽象和概括、归纳和演绎、比较和类比等思想方法不同,“化归”方法在中学数学教材中是普遍存在,到处可见,与中学数学教学密切相关。初中数学教学广泛应用了化归思想进行数学教学,其中,在一元一次方程和二元一次方程的教学中化归思想的应用是非常明显的。在人教版七年级上册在引导学生利用等式的性质解方程时,必须要有以下的分析过程:要使方程x+6=26转化为x=a(常数)的形式,要去掉方程左边的6,必须两边要减6,这实际上是以最简方程x=a作为解一元一次方程的化归目标。在讲解过程中,必须让学生明确解一元一次方程的最终目标是将一元一次方程化为x=a(常数)的形式,有了这种化归思想方法的指引,学生在解方程的过程中就会寻找所给方程与目标方程的差异,想办法消除差异,达到化归目标,从而简化方程。

二、巧用化归思想简化解题过程

“化归”方法很多,有分割法,映射法,恒等变形法,换元变形法,参数法,数形结合法等等,但有一个原则是和原来的问题相比,“化归”后所得出的问题,应是已经解决或是较为容易解决的问题。因此“化归”的方向应是由未知到已知,由难到易,由繁到简,由一般到特殊。而“化归”的思想实质就在于不应以静止的眼光,而应以运动、变化、发展以及事物间的相互联系和制约的观点去看待问题。即应当善于对所要解决的问题进行变形和转化,这实际上也是在数学教学中辨证唯物主义观点的生动体现。转化与化归思想方法是数学中最基本的思想方法。数学中一切问题的解决都离不开转化与化归,数形结合思想方法体现了数与形的相互转化;函数与方程思想体现了函数方程、不等式间的相互转化。目标简单化、和谐统一性、目标具体化、标准形式化和低层次化都是化归的原则;各映射法、分割法和变形法都是转化的策略;一般化与特殊化的转化、正与反的转化、实际问题数学化、常量与变量的转化等都是化归的基本策略。实现化归的方法是多种多样的。因此,与前面所举的具体方法相比,更重要的就是应掌握化归的中心思想。这就是说,我们不应以静止的眼光而应以可变的观点去看待问题,应用巧妙的化归思想简化数学问题。化归的基本思想是化未知为已知,化复杂为简单,化陌生为熟悉,化困难为容易。在初中阶段,解方程(组)使用的方法“消元”“降次”“有理数”“整式”等,都是为了将方程(组)化为一元一次方程,这就是人们在化归思想的指导下创设这些方法的。由化归思想作为指导解方程(组),将问题由复杂变简单的过程,即在教学时,将二元一次方程(组)作为化归对象,一元一次方程作为化归目标,在这种化归思想的指导下,学生在解方程组就会想到“消元”,教师在教学过程中通过创设恰当的问题情境,使代入消元法和加减消元法呼之欲出,将问题由复杂变简单。

三、以化归思想为主多种思想为辅

在应用化归思想解决方程问题的过程中,还会应用到其他许多的数学思想。例如:等量代换,数形结合,分类,归纳,转换,配方法,换元法,分解与组合,变量与不变量等等多种数学思想。解决数学问题时,需要用到许多必要的数学基础知识和基本的数学方法,但更重要的是如何把数学基本方法有机地联系起来,因此,化归思想就成为解决数学问题的最重要的数学思想方法。例如:有些方程问题又可以借助量与量之间的变化来实现。这就是在化归思想指导下,借助了等量代换等思想。因此,在应用化归思想解决数学问题的同时,渗透了许多的其他数学思想,从而将复杂的问题简单化,将陌生的问题熟悉化,达到解决问题的目的。总之,当前对化归定义、化归方法、化归原则的研究都有一定的理论深度,但是对化归思想方法教学的研究相对比较薄弱,还没有形成较为成熟的研究模式或理论体系,与此有关的研究大多是结合具体内容进行化归原则或是化归方法的罗列。另外还想补充一下内容:化归思想方法的教学原则包含:化隐为显原则、螺旋上升原则、系统教学原则、启发诱导原则。这些原则在方程的教学中得到广泛应用。当然,本人只是将划归思想在方程教学中的应用做了一点肤浅的见解,望教师们能够科学的、广泛的应用它。

第四篇:导数在不等式中的应用

指导教师:杨晓静

摘要:本文探讨了利用拉格朗日中值定理,函数的单调性,极值,幂级数展开式,凹凸性等进行不等式证明的具体方法,给出了各种方法的适用范围和证明步骤,总结了应用各种方法进行证明的基本思路。

关键字:导数的应用不等式证明方法

引言

不等式的证明在初等数学里已介绍过若干种方法,比如比较法、分析法、综合法、放缩法、反证法、数学归纳法和构造法等。然而,有些不等式用初等数学的方法是很难证明的,但是应用导数证明却相对较容易些,在处理与不等式有关的综合性问题时,也常常需要构造辅助函数,把不等式的证明转化为利用导数来研究函数的性态。因此,很多时候可以以导数为工具得出函数的性质,从而解决不等式问题,现具体讨论导数在解决不等式有关的问题时的作用。

一、利用拉格朗日中值定理证明不等式

拉格朗日中值定理的意义在于建立了导数与函数之间的关系,证明不等式则是它的一个简单应用。

拉格朗日中值定理:若函数f(x)满足如下条件:(1)f在闭区间a,b上连续;(2)在开区间a,b内可导,则在a,b内至少存在一点,使得f()'f(b)f(a)

ba 应用拉格朗日中值定理证明的不等式的类型有f(b)f(a)M(ba)或 证明步骤:(1)恰当的选取函数f(x)并使函数f(x)满足拉格朗日中值定理的条件,并考虑f(x)的导数形式和M或m形式上的联系。

(2)通过求拉格朗日中值定理得到不等式:f(b)f(a)f()(ba),(a,b)

'(3)考察f(x)的有界性,若f(x)M,xa,b,则由上述等式得到不等式

f(b)f(a)M(ba),或由的不确定性,计算出若f'(x)的取值范围m,M,xa,b,则进而有不等式m(ba)

例:证明nbn1f(b)f(a)M(ba)(ab)ab

nnnnan1(ab)证明:构造函数f(x)x,则显然f在区间b,a上满足拉格朗日中值定理,且

f(x)nx

nn'n1,n1有abn(ab),又

第五篇:导数在高中数学中的应用

导数在高中数学中的应用

导数是解决高中数学问题的重要工具之一,很多数学问题如果利用导数的方法来解决,不仅能迅速找到解题的切入点,甚至解决一些原来只是解决不了的问题。而且能够把复杂的分析推理转化为简单的代数运算,化难为易,事半功倍的效果.如在求曲线的切线方程、方程的根、函数的单调性、最值问题;数列,不等式等相关问题方面,导数都能发挥重要的作用。

导数(导函数的简称)是一个特殊函数,所以它始终贯穿着函数思想。随着课改的不断深入,新课程增加了导数的内容,导数知识考查的要求逐渐加强,而且导数已经在高考中占有很重要的地位,导数已经成为解决问题的不可缺少的工具。函数是中学数学研究导数的一个重要载体,近年好多省的高考题中都出现以函数为载体,通过研究导函数其图像性质,来研究原函数的性质。本人结合教学实践,就导数在函数中的应用作个初步探究。

导数在高中数学中的应用主要类型有:求函数的切线,判断函数的单调性,求函数的极值和最值,利用函数的单调性证明不等式,尤其函数的单调性和函数的极值及最值,是高中数学学习的重点之一,预计也是“新课标”下高考的重点。

一、用导数求切线方程

方法提升:利用导数证明不等式是近年高考中出现的一种热点题型。其方法可以归纳为“构造函数,利用导数研究函数最值”。

总之,导数作为一种工具,在解决数学问题时使用非常方便,尤其是可以利用导数来解决函数的单调性,极值,最值。在导数的应用过程中,要加强对基础知识的理解,重视数学思想方法的应用,达到优化解题思维,简化解题过程的目的,更在于使学生掌握一种科学的语言和工具,进一步加深对函数的深刻理解和直观认识。

下载导数应用中的化归与转化思想word格式文档
下载导数应用中的化归与转化思想.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    导数在不等式证明中的应用

    导数在不等式证明中的应用 引言 不等式的证明是数学学习中的难点,而导数在不等式的证明中起着关键的作用。不等式的证明是可以作为一个系列问题来看待,不等式的证明是数学学......

    导数在高中数学教学中的应用

    导数在高中数学教学中的应用 【摘要】导数是近代数学的重要基础,是联系初、高等数学的纽带,它的引入为解决中学数学问题提供了新的视野,是研究函数性质、证明不等式、探求函数......

    导数在不等式证明中的应用

    龙源期刊网 http://.cn 导数在不等式证明中的应用 作者:唐力 张欢 来源:《考试周刊》2013年第09期 摘要: 中学不等式证明,只能用原始的方法,很多证明需要较高技巧,且证明过程太难,......

    小学数学中的转化思想

    小学数学中的转化思想 光明小学 肖承焕 【摘要】小学是学生学习数学的启蒙阶段,这一阶段让学生真正理解并掌握一些基本的数学思想便显得尤为重要。转化思想是数学思想的重要......

    第二章与第三章:函数导数与导数的应用

    第二章与第三章:函数导数与应用1、求函数在一点的导数 例如:设函数f(x)xcosx,则f'(0)? 2、讨论函数yx在定义域范围内的单调性 3、记住结论: 函数在某点不可导,函数所表示的曲线在......

    导数在证明不等式中的应用[5篇范文]

    1.【作 者】 杨建辉;布春霞【刊 名】中学生数理化(学研版)【出版日期】2011【期 号】第11期【页 码】2-3【参考文献格式】杨建辉,布春霞.导数在证明不等式中的应用[J].中学......

    导数在研究不等式中的应用举例

    导数在研究不等式中的应用举例陕西张磊导数问题和不等式问题相互交织构成了高考试题中的一道亮丽的风景线,常见的题型有四种.基本方法:构造函数,利用导数研究函数的单调性来......

    数学建模在导数教学中的应用

    数学建模在导数教学中的应用 【摘要】 作为导数教学中的一个重要方法,数学建模有着不可替代的重要的作用。在数学教学的过程中必须保证其建模的准确性。因为建模的准确性直接......