大学中常用不等式

时间:2019-05-14 16:00:51下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《大学中常用不等式》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《大学中常用不等式》。

第一篇:大学中常用不等式

大学中常用不等式,放缩技巧 一: 一些重要恒等式

ⅰ:12+22+…+n2=n(n+1)(2n+1)/6 ⅱ: 13+23+…+n3=(1+2+…+n)2 Ⅲ:cosa+cos2a+…+cos2na=sin2n+1a/2n+1sina ⅳ: e=2+1/2!+1/3!+…+1/n!+a/(n!n)(0

︱︱x︱-︱y︱︱≤∣x±y∣≤︱x︱+︱y︱(别看简单,常用)2:伯努利不等式

(1+x1)(1+x2)…(1+xn)≥1+x1+x2+…+xn(xi符号相同且大于-1)3:柯西不等式

(∑ ai bi)2≤∑ai2∑bi2 4:︱sin nx︱≤n︱sin x︱ 5;(a+b)p≤2pmax(︱ap︱,︱bp︱)(a+b)p≤ap+ bp(0

1)6:(1+x)n≥1+nx(x>-1)7:切比雪夫不等式

若a1≤a2≤…≤an, b1≤b2≤…≤bn ∑aibi≥(1/n)∑ai∑bi 若a1≤a2≤…≤an, b1≥b2≥…≥bn ∑aibi≤(1/n)∑ai∑bi 三:常见的放缩(√是根号)(均用数学归纳法证)1:1/2×3/4×…×(2n-1)/2n<1/√(2n+1); 2:1+1/√2+1/√3+…+1/√n>√n;3:n!<【(n+1/2)】n 4:nn+1>(n+1)n n!≥2n-1 5:2!4!…(2n)!>{(n+1)!}n 6:对数不等式(重要)x/(1+x)≤㏑(1+x)≤x 7:(2/∏)x≤sinx≤x 8:均值不等式我不说了(绝对的重点)9:(1+1/n)n<4 四:一些重要极限

(书上有,但这些重要极限需熟背如流)

假如高等数学是棵树木得话,那么 极限就是他的根,函数就是他的皮。树没有跟,活不下去,没有皮,只能枯萎,可见这一章的重要性。

为什么第一章如此重要? 各个章节本质上都是极限,是以函数的形式表现出来的,所以也具有函数的性质。函数的性质表现在各个方面

首先 对 极限的总结 如下

极限的保号性很重要 就是说在一定区间内 函数的正负与极限一致 极限分为 一般极限,还有个数列极限,(区别在于数列极限时发散的,是一般极限的一种)

2解决极限的方法如下:(我能列出来的全部列出来了!!!你还能有补充么???)等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用 但是前提是必须证明拆分后极限依然存在)e的X次方-1 或者(1+x)的a次方-1等价于Ax 等等。全部熟记

(x趋近无穷的时候还原成无穷小)LHopital 法则(大题目有时候会有暗示 要你使用这个方法)

首先他的使用有严格的使用前提!!!

必须是 X趋近而不是N趋近!!!!(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件

(还有一点 数列极限的n当然是趋近于正无穷的 不可能是负无穷!)

必须是 函数的导数要存在!!!!(假如告诉你g(x), 没告诉你是否可导,直接用无疑于找死!)

必须是 0比0 无穷大比无穷大!!!!!

当然还要注意分母不能为0 LHopital 法则分为3中情况 1 0比0 无穷比无穷 时候 直接用 2 0乘以无穷 无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以 无穷大都写成了无穷小的倒数形式了。通项之后 这样就能变成1中的形式了 0的0次方 1的无穷次方 无穷的0次方

对于(指数幂数)方程 方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候 LNX趋近于0)

3泰勒公式(含有e的x次方的时候,尤其是含有正余旋 的加减的时候要 特变注意!!)

E的x展开 sina 展开 cos 展开 ln1+x展开 对题目简化有很好帮助

4面对无穷大比上无穷大形式的解决办法

取大头原则 最大项除分子分母!!!!!!

看上去复杂处理很简单!!!!!

5无穷小于有界函数的处理办法

面对复杂函数时候,尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。面对非常复杂的函数 可能只需要知道它的范围结果就出来了!!

6夹逼定理(主要对付的是数列极限!)

这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。

7等比等差数列公式应用(对付数列极限)(q绝对值符号要小于1)

8各项的拆分相加(来消掉中间的大多数)(对付的还是数列极限)可以使用待定系数法来拆分化简函数

9求左右求极限的方式(对付数列极限)例如知道Xn与Xn+1的关系,已知Xn的极限存在的情况下,xn的极限与xn+1的极限时一样的,应为极限去掉有限项目极限值不变化 2 个重要极限的应用。这两个很重要!!!对第一个而言是X趋近0时候的sinx与x比值。地2个就如果x趋近无穷大 无穷小都有对有对应的形式

(地2个实际上是 用于 函数是1的无穷的形式)(当底数是1 的时候要特别注意可能是用地2 个重要极限)还有个方法,非常方便的方法 就是当趋近于无穷大时候

不同函数趋近于无穷的速度是不一样的!!!!!!!!

x的x次方 快于 x!快于 指数函数 快于 幂数函数 快于 对数函数(画图也能看出速率的快慢)!!!当x趋近无穷的时候 他们的比值的极限一眼就能看出来了 换元法 是一种技巧,不会对模一道题目而言就只需要换元,但是换元会夹杂其中

13假如要算的话 四则运算法则也算一种方法,当然也是夹杂其中的

14还有对付数列极限的一种方法,就是当你面对题目实在是没有办法 走投无路的时候可以考虑 转化为定积分。一般是从0到1的形式。

15单调有界的性质

对付递推数列时候使用 证明单调性!!!

16直接使用求导数的定义来求极限,(一般都是x趋近于0时候,在分子上f(x加减麽个值)加减f(x)的形式,看见了有特别注意)(当题目中告诉你F(0)=0时候 f(0)导数=0的时候 就是暗示你一定要用导数定义!!)

(从网上发现,谢谢总结者)

大学中常用不等式,放缩技巧 一: 一些重要恒等式

ⅰ:12+22+…+n2=n(n+1)(2n+1)/6 ⅱ: 13+23+…+n3=(1+2+…+n)2 Ⅲ:cosa+cos2a+…+cos2na=sin2n+1a/2n+1sina ⅳ: e=2+1/2!+1/3!+…+1/n!+a/(n!n)(0

︱︱x︱-︱y︱︱≤∣x±y∣≤︱x︱+︱y︱(别看简单,常用)2:伯努利不等式

(1+x1)(1+x2)…(1+xn)≥1+x1+x2+…+xn(xi符号相同且大于-1)3:柯西不等式

(∑ ai bi)2≤∑ai2∑bi2 4:︱sin nx︱≤n︱sin x︱ 5;(a+b)p≤2pmax(︱ap︱,︱bp︱)(a+b)p≤ap+ bp(0

1)6:(1+x)n≥1+nx(x>-1)7:切比雪夫不等式

若a1≤a2≤…≤an, b1≤b2≤…≤bn ∑aibi≥(1/n)∑ai∑bi 若a1≤a2≤…≤an, b1≥b2≥…≥bn ∑aibi≤(1/n)∑ai∑bi 三:常见的放缩(√是根号)(均用数学归纳法证)1:1/2×3/4×…×(2n-1)/2n<1/√(2n+1); 2:1+1/√2+1/√3+…+1/√n>√n;3:n!<【(n+1/2)】n 4:nn+1>(n+1)n n!≥2n-1 5:2!4!…(2n)!>{(n+1)!}n 6:对数不等式(重要)x/(1+x)≤㏑(1+x)≤x 7:(2/∏)x≤sinx≤x 8:均值不等式我不说了(绝对的重点)9:(1+1/n)n<4 四:一些重要极限

(书上有,但这些重要极限需熟背如流)10

第二篇:大学中常用的不等式

大学中常用不等式,放缩技巧 一: 一些重要恒等式

ⅰ:12+22+…+n2=n(n+1)(2n+1)/6 ⅱ: 13+23+…+n3=(1+2+…+n)2

Ⅲ:cosa+cos2a+…+cos2na=sin2n+1a/2n+1sina ⅳ: e=2+1/2!+1/3!+…+1/n!+a/(n!n)(0

︱︱x︱-︱y︱︱≤∣x±y∣≤︱x︱+︱y︱(别看简单,常用)2:伯努利不等式(11)(1+x2)…(1+xn)≥1+x1+x2+…+xn(xi符号相同且大于-1)3:柯西不等式(∑ ai bi)2≤∑a2i∑b2i 4:︱sin nx︱≤n︱sin x︱ 5;(a+b)p≤2pmax(︱ap︱,︱bp︱)(a+b)p≤ap+ bp(0

1)6:(1+x)n≥1+nx(x>-1)7:切比雪夫不等式

若a1≤a2≤…≤an, b1≤b2≤…≤bn ∑aibi≥(1/n)∑ai∑bi

若a1≤a2≤…≤an, b1≥b2≥…≥bn ∑aibi≤(1/n)∑ai∑bi

三:常见的放缩(√是根号)(均用数学归纳法证)1:1/2×3/4×…×(2n-1)/2n<1/√(2n+1); 2:1+1/√2+1/√3+…+1/√n>√n;3:n!<【(n+1/2)】n

4:nn+1>(n+1)n n!≥2n-1 5:2!4!…(2n)!>{(n+1)!}n 6:对数不等式(重要)x/(1+x)≤㏑(1+x)≤x 7:(2/∏)x≤sinx≤x 8:(1+1/n)n<4 3

第三篇:大学数学中不等式的证明方法

龙源期刊网 http://.cn

大学数学中不等式的证明方法

作者:吴莹

来源:《学园》2013年第01期

【摘 要】不等式在科学研究中的地位很重要,但对不等式的证明有些同学无从下手,用什么方法是个难题,所以本文对大学数学中遇到的不等式的各种证明方法进行归纳总结,并给出了相应的例子。

【关键词】数学归纳法 导数 单调性 中值定理 最值 积分

【中图分类号】O211 【文献标识码】A 【文章编号】1674-4810(2013)01-0076-02

第四篇:考研数学中的不等式证明

考研数学中的不等式证明

陈玉发

郑州职业技术学院基础教育处450121

摘要:在研究生入学考试中,中值定理是一项必考的内容,几乎每年都有与中值定理相关的证明题.不等式的证明就是其中一项.在不等式的证明中,利用函数的单调性,构造辅助函数是一种常用并且非常有效的方法.但是,有时这种方法非常繁琐.巧用中值定理可使一些不等式的证明简化.

关键词:考研数学不等式中值定理幂级数

(作者简介:陈玉发,男,汉族,出生于1969年5月工作单位:郑州职业技术学院,副教授,硕士,从事数学教育研究.邮编:450121)

微分中值定理是微积分学中的一个重要定理,在研究生入学考试中,几乎每年都会有与中值定理相关的证明题.不等式就是其中一项。下面就考研数学中的不等式证明谈一下中值定理的应用. 在不等式的证明中,利用函数的单调性,构造辅助函数是一种常用并且非常有效的方法.但是,有时这种方法非常繁琐.巧用中值定理可以使一些不等式的证明过程得到简化.下面就历年考研数学中的不等式证明题谈一下.

例1(1993年全国硕士研究生入学统一考试数学(一)试卷第六题)

(2)设bae,证明ab ba

xa对此不等式的证明,一般我们会想到构造辅助函数,f(x)ax,f(a)0,然后证明

在xa时,f(x)0.这个想法看似简单,而实际过程非常繁琐,有兴趣的读者可以试着证明一下.下面笔者给出几个简便的证明.

证:Ⅰ利用拉格朗日中值定理:abbabalogabbalnb lna

lnblna lna

lnblnalna baa

1lna,其中eablnabaa

1

1lna,其中eab. a

原命题得证.

证:Ⅱ 利用微分中值定理,abeblnaalnb

blnb alnablnblna1 alnab1b1ln alnaab1b1(lnln1)alnaablnln1lna(微分中值定理)1a

1

lna,(1b)a

原命题得证.

证明Ⅲ 利用幂级数展开:

设bax,原不等式等价于

aaxa (ax)aaaax(a)x

xa(1

而 xa),a

ln2a2a1lnaxx2!xlnnanxn!,xxa(a1)x2a(a1)(an1)xn(1)a1a()(). aa2!an!a

a(a1)(an1)n由于x0,ae,所以lna1,lna.通过比较以上两个级数可知原na

不等式成立.

对于不等式a(1

一下.

例2(1992年全国硕士研究生入学统一考试数学(一)试卷第六题)xxa)的证明仍可以利用拉格朗日中值定理证明,有兴趣的读者可以自己证a

设f(x)0,f(0)0,证明对任何x10,x20,有f(x1x2)f(x1)f(x2). 证:不妨设x1x2,f(x1x2)f(x1)f(x2)f(x1x2)f(x2)f(x1)

f(x1x2)f(x2)f(x1)f(0)(x1x2)(x2)x10

f(1)f(2),x21x1x2,02x1x2,显然21,而f(x)0,所以f(x)单调递减.原不等式得证.

例3(1999年全国硕士研究生入学统一考试数学(一)试卷第六题)

论证:当x0时,(x21)lnx(x1)2 .(x21)lnx

证:(x1)lnx(x1)(x1)21 22

(x1)lnx1 x1

(x1)lnx(11)ln11,(柯西中值定理)x1

ln(1)

1,(介于1与x之间)

1ln0. 当1时,上式显然成立;当01时,我们可以证明,

命题得证.

例4(2004年全国硕士研究生入学统一考试数学(一)试卷第三题)

(15)设eabe2,证明lnblna

22224(ba). 2e4ln2bln2a4证:lnblna2(ba)2 e(ba)e

142ln2,(eabe2)e

1

ln2,2e

因为eabe2,所以,lnelne222. eee

所以,原不等式成立.

例5(2006年全国硕士研究生入学统一考试数学三试题第(17)题)

证明:当0ab时,bsinb2cosbbasina2cosaa.

证:令f(x)xsinx2cosxx

bsinb2cosbbasina2cosaa

f(b)f(a) 0

f(b)f(a)0 ba

f()cossin0,0ab

令f(x)xcosxsinx,f()0,f(x)cosxxsinxcosxxsinx0,0axb,所以在(0,)内,f(x)单调减少,即f(x)0.

原命题得证.

例6(2010年全国硕士研究生入学统一考试数学(一)试卷第(17)题

(1)比较1

0lnt[ln(1t)]ndt与tnlnt的大小,说明理由。01

解:因为lnt[ln(1t)]n

tnlnt[ln(1t)]n tn

[ln(1t)nln(1t)ln(10)n][](拉格朗日中值定理)tt0

()1,0t1,1n

所以lnt[ln(1t)]tlnt。即nn1

0lntt)]dtn10tnlnt。

例7(2012年全国硕士研究生入学统一考试数学三试题第(18)题)

1xx2

cosx1,(1x1).证明:xln1x2

证:原不等式等价于:

x2

x[ln(1x)ln(1x)]1cosx 2

xx2

(仅当x0时取等号)x[ln(1x)ln(1x)]2sin222

[ln(1x)ln(1x)]1(当x0时)2xxx2sin222

11111,(柯西中值定理,其中0x1),sinx

21,0x1 2(sin)(1)x

因为(sin)(12)22x,所以不等式成立.

利用同样的方法可以证明当1x0时,不等式成立.

综上所述,原不等式成立.

xx例8 证明:当x0时,xe1xe.

证:当x0时,ex1xxe1xe1e xxx

exe0

1ex,(利用柯西中值定理)x0

1eex,其中0x.

原不等式成立.

例9 证明:当0x

2时,sinxtanx2x.

证明:sinxtanx2xsinxtanx2 x

sinxtanx(sin0tan0)2 x0

cossec22(柯西中值定理)1

cossec22,因为

cossec2所以,原不等式成立.

中值定理是证明不等式时常用的一个非常有效的工具.我们习惯于构造辅助函数,利用单调性来证明不等式.而函数的单调性还是通过拉格朗日中值定理进行证明的.因此,利用单调性证明不等式的基础还是微分中值定理.以上几例体现了中值定理在证明不等式时的效果.

2,

第五篇:导数在不等式中的应用

指导教师:杨晓静

摘要:本文探讨了利用拉格朗日中值定理,函数的单调性,极值,幂级数展开式,凹凸性等进行不等式证明的具体方法,给出了各种方法的适用范围和证明步骤,总结了应用各种方法进行证明的基本思路。

关键字:导数的应用不等式证明方法

引言

不等式的证明在初等数学里已介绍过若干种方法,比如比较法、分析法、综合法、放缩法、反证法、数学归纳法和构造法等。然而,有些不等式用初等数学的方法是很难证明的,但是应用导数证明却相对较容易些,在处理与不等式有关的综合性问题时,也常常需要构造辅助函数,把不等式的证明转化为利用导数来研究函数的性态。因此,很多时候可以以导数为工具得出函数的性质,从而解决不等式问题,现具体讨论导数在解决不等式有关的问题时的作用。

一、利用拉格朗日中值定理证明不等式

拉格朗日中值定理的意义在于建立了导数与函数之间的关系,证明不等式则是它的一个简单应用。

拉格朗日中值定理:若函数f(x)满足如下条件:(1)f在闭区间a,b上连续;(2)在开区间a,b内可导,则在a,b内至少存在一点,使得f()'f(b)f(a)

ba 应用拉格朗日中值定理证明的不等式的类型有f(b)f(a)M(ba)或 证明步骤:(1)恰当的选取函数f(x)并使函数f(x)满足拉格朗日中值定理的条件,并考虑f(x)的导数形式和M或m形式上的联系。

(2)通过求拉格朗日中值定理得到不等式:f(b)f(a)f()(ba),(a,b)

'(3)考察f(x)的有界性,若f(x)M,xa,b,则由上述等式得到不等式

f(b)f(a)M(ba),或由的不确定性,计算出若f'(x)的取值范围m,M,xa,b,则进而有不等式m(ba)

例:证明nbn1f(b)f(a)M(ba)(ab)ab

nnnnan1(ab)证明:构造函数f(x)x,则显然f在区间b,a上满足拉格朗日中值定理,且

f(x)nx

nn'n1,n1有abn(ab),又

下载大学中常用不等式word格式文档
下载大学中常用不等式.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    高等数学中不等式的证明方法

    高等数学中不等式的证明方法摘要:各种不等式就是各种形式的数量和变量之间的相互比较关系或制约关系,因此, 不等式很自然地成为分析数学与离散数学诸分支学科中极为重要的工具,......

    数学归纳法中不等式类解法

    数学归纳法中不等式类解法 数学归纳法的思想比较特殊,原理是用类似于“多骨诺米牌效应”的方法,从n=1,n=2推到所可以达到的终点,从而推出式子的正确性。也正是如此,数学归纳法在......

    青年干部成长中的三个不等式

    青年干部成长中的三个不等式 章景海 青年干部的成长要靠组织培养,也离不开自身的努力。青年干部加强自我培养,必须主动解开成长中的三个不等式,让自己尽快崭露头角、脱颖而出。......

    信息论中有关信源熵的不等式(5篇)

    论文题目: 信息论中有关各种熵之间关系的证明 学院:数学科学学院 专业:信息与计算科学 姓名:周艳君 学号:20071115158 信息论中有关各种熵之间......

    导数在不等式证明中的应用

    导数在不等式证明中的应用 引言 不等式的证明是数学学习中的难点,而导数在不等式的证明中起着关键的作用。不等式的证明是可以作为一个系列问题来看待,不等式的证明是数学学......

    高等数学中几个常见不等式及其应用(共5篇)

    本科毕业论文(设计) 题 目:高等数学中几个常见不等式及其应用 学 生: 学号: 学 院: 专业: 入学时间: 年 月 日 指导教师: 职称: 完成日期: 年 0 月 日 1 高等数学中几个常见不等式及其......

    论文数学分析中证明不等式的若干方法

    数学分析中证明不等式的若干方法 耿杰 (安徽师范大学数学与应用数学专业0707046) 摘要:本文主要应用数学分析中的单调性,微分中值定理,Taylor公式,凸函数的定义,极值,极限以及积分等......

    导数在不等式证明中的应用

    龙源期刊网 http://.cn 导数在不等式证明中的应用 作者:唐力 张欢 来源:《考试周刊》2013年第09期 摘要: 中学不等式证明,只能用原始的方法,很多证明需要较高技巧,且证明过程太难,......