第一篇:稳定性回报分析提供材料 2
稳定回报论证报告
《项目稳定回报论证》报告是国际投、融资领域投资商确定项目投资与否的重要依据。任何投资人,对于其所投资的项目,永远追求的不是高额利润,而是稳定的投资回报。主要对项目背景和由来、投资环境、相关产业状况、项目地地理环境、项目企业资源和能力、SWOT、产品市场情况、销售策略、财务详细评价、项目价值估算,尤其是项目收益估算和投资风险规避等进行客观的分析和研究,反映项目各项经济指标,得出科学、客观的投资结论。
项目稳定回报论证报告是在全面系统分析目标企业和项目背景的基础上,按照国际通行的企业财务测算方法,站在第三方角度客观公正地对企业、项目的投资回报进行分析。不仅为投融资双方充分认识投资项目的投资价值与风险,更重要的是通过充分评定项目优势,加速企业或项目法人拥有的人才、管理、技术、市场、项目经营权等无形资源与企业的有形资本的有机融合,对企业和投资机构提供重要的投融资决策参考依据。
项目稳定回报论证报告的意义:
追求稳定的投资回报是投资领域奉行的一贯准则,因此,投资人最为关心的是稳定的投资回报,并将可能出现的风险控制在自己可以预防的范围。而可控的风险标准就是:是否能够达到稳定的预期的投资回报。利用精确、科学、可靠的风险预测分析手段,对未来将可能
出现的投资风险,提出周密的防范措施和解决办法,避免可能带来的经济损失。
为顺利完成贵公司稳定性回报分析,应结合公司以下一些材料说明,1、公司介绍
主要包括有:公司简介、股权构成、发展历程、经营目标、管理制度。
2、产品产品与技术
主要包括有:产品介绍、公司的主要产品、产品加工技术性能。
3、市场分析
产品市场供需分析、产品市场供需分析、公司的目标市场客户、相关行业政策。
4、竞争分析:
行业竞争格局分析、行业的巨头、国内产业特点与趋势、国内市场竞争能力分析、公司产品竞争优势。
5、市场营销
产品定价机制分析、产品价格影响分析、产品供销格局分析、产品供应渠道分析
6、投资前景预测
投资背景、公司当前运营情况、融资用途、股本结构、2014-2015年发展战略、投融资策略分析。
7、风险分析
市场风险、生产风险、竞争风险、政策风险、成本控制风险、财
政风险
8、管理
公司组织结构、管理团队、管理目标、产业管理机制。
9、附件
营业执照、组织机构代码证、税务登记证、组织机构代码证、安全生产许可证、公司的资产负债表、公司产品的图片。
第二篇:地基稳定性分析
建筑地基的稳定性分析和评价
《岩土工程勘察规范》(GB 50021-2001)(2009年版)4.1.11第3款规定应“分析和评价地基的稳定性„„”,由于该部分内容在规范中较分散,各位同行在岩土工程勘察报告编写时,往往感到无从下笔,现归纳如下,供参考,不当之处望不吝赐教。
一、地基稳定性
地基稳定性是指主要受力层的岩土体在外部荷载作用下沉降变形、深层滑动等对工程建设安全稳定的影响程度,避免由此地基产生过大的变形、侧向破坏、滑移造成地基破坏从而影响正常使用。按照(GB 50021-2001)(2009年版)14.1.3、14.1.4规定,岩土体的变形、强度和稳定应在定性分析的基础上进行定量分析。评价地基稳定性问题时按承载力极限状态计算,评价岩土体的变形时按正常使用极限状态的要求进行验算。
二、地基稳定性分析评价内容
影响地基稳定性的因素,主要的是场地的岩土工程条件、地质环境条件、建(构)筑物特征等。一般情况下,需要对经常受水平力或倾覆力矩的高层建筑、高耸结构、高压线塔、锚拉基础、挡墙、水坝、堤坝和桥台等建(构)筑物进行地基稳定性评价。
通常情况下,涉及到主要的内容有:(1)岩土工程条件包括组成地基的岩、土物理力学性质,地层结构。特别是有特殊性岩土,隐伏的破碎或断裂带,地下水渗流等特殊情况;(2)地质环境条件包括是否建造在斜坡上、边坡附近、山区地基上,建(构)筑物与不良地质作用、特殊地貌的关联度和可能引起地基破坏失稳的各种自然因素或组合。如岩溶、滑坡、崩塌、采空区、地面沉降、地震液化、震陷、活动断裂、岸边河流冲刷等。按照《岩土工程勘察规范》(GB 50021-2001)(2009年版)、《高层建筑岩土工程勘察规程》(JGJ72-2004)和《建筑抗震设计规范》(GB 50011-2010)规定,对山东地区该问题常见的几种情况罗列如下:
1、地基承载力计算与验算
验算地基稳定性实质上就是验算地基极限承载能力是否满足要求。应严格按照《建筑地基基础设计规范》(GB 50007-2011)5.2和《高层建筑岩土工程勘察规程》(JGJ 72-2004)8.2.6~8等条款执行。
2、变形验算
建筑物的地基变形计算值,不应大于建筑物地基允许变形值。在勘察阶段往往建筑物特征参数不明确,一味要求勘察报告中能有准确的结论也勉为其难,但在岩土工程勘察报告中应提供符合规范要求的岩土变形参数,供上部结构计算条件具备时按照(GB 50007-2011)5.3、(JGJ 72-2004)8.2.9~12和《建筑地基处理技术规范》(JGJ 79-2002)有关条款计算。
3、基础埋置深度的确定
对高层建筑和高耸构筑物基础的埋置深度,应满足地基承载力、变形和稳定性要求。位于岩石地基上的高层建筑,其基础埋深应满足抗滑稳定性要求。天然地基上的箱形或或筏形基础埋置深度不宜小于1/15H;桩箱或桩筏基础不宜小于1/18H,H为建筑物高度。
4、位于稳定土坡坡顶上的建筑
应根据建(构)筑物基础形式,按照(GB 50007-2011)5.4.1~2有关规定确定基础距坡顶边缘的距离和基础埋深。需要时,还应按照《建筑边坡工程技术规范》(GB 50330-2002)5.1~3有关规定验算坡体的稳定性。验算方法对均质土可采用圆弧滑动条分法,发育软弱结构面、软弱夹层及层状膨胀岩土时,应按最不利的滑动面验算。当坡体中分布膨胀岩土时应考虑坡体含水量变化的影响;具有胀缩裂缝和地裂缝的膨胀土边坡,应进行沿裂缝滑动的验算。
5、受水平力作用的建(构)筑物
①山区应防止平整场地时大挖大填引起滑坡;
②岸边工程应考虑冲刷、因建筑物兴建及堆载引起地基失稳。
6、土岩组合地基
该类地基下卧基岩面为单向倾斜时,应描述岩面坡度、基底下的土层厚度、岩土界面上是否存在软弱层(如泥化带)。
7、岩石地基
①地基基础设计等级为甲、乙级的建筑物,同一建筑物的地基存在坚硬程度不同,两种或多种岩体变形模量差异达2倍及2倍以上,应进行地基变形验算;
②地基主要受力层深度内存在软弱下卧岩层时,应考虑软弱下卧岩层的影响进行地基稳定性验算; ③当基础附近有临空面时,应验算向临空面倾覆和滑移稳定性。
岩土工程勘察报告中,应提供岩层产状、岩石坚硬程度、岩体完整程度、岩体基本质量等级,以及软弱结构面特征等。
8、软弱地基
首先,应判定地基产生失稳和不均匀变形的可能性;当工程位于池塘、河岸、边坡附近时,应验算其稳定性。其次,其承载力特征值应根据室内试验、原位测试、当地经验结合地层物理力学特征和建(构)筑物特征以及施工方法和程序等多因素综合确定。该类地基应按照(GB 50007-2011)第7章和《软土地区岩土工程勘察规程》(JGJ 83-2011)7.2~4有关规定分析评价其稳定性;抗震设防烈度等于或大于7度的厚层软土分布区,应按照(JGJ 83-2011)第6章判别软土震陷的可能性和估算震陷量。
9、存在液化土层的地基
地面下存在饱和砂土和饱和粉土时,除6度外,应进行液化判别。按照(GB 50011-2010)4.3.3~6规定进行。
10、岩溶和土洞
在碳酸盐岩为主的可溶性岩石地区,当存在岩溶(溶洞、溶蚀裂隙等)、土洞等现象时,应考虑其对地基稳定的影响。按照(GB 50021-2001)5.1.10~12和《建筑地基基础设计规范》(GB 50007-2011)6.6的规定分析评价地基稳定性。
11、填土
当地基主要受力层中有填土分布时,如填土底面的天然坡度大于20%时,应验算其稳定性。
12、桩土复合地基
对需验算复合地基稳定性的工程,提供桩间土、桩身的抗剪强度。
13、桩基
①应选择较硬土层作为桩端持力层。
②嵌岩桩深度应综合荷载、上覆土层、基岩、桩径、桩长诸因素确定;
③嵌岩灌注桩桩端以下3倍桩径且不小于5m范围内应无软弱夹层、断裂破碎带和洞穴分布,且桩底应力扩散范围内应无临空面。
④当基桩持力层为倾斜地层,基岩面凹凸不平或岩土中有洞穴时,应评价桩基的稳定性,并提出处理措施的建议。
14、箱形基础
箱形基础地基的破坏形式,除地基内饱和松砂在地震液化和局部软弱夹层侧向的问题外,它的破坏形式主要表现在偏心时水平荷载下的整体倾斜或倾覆。
一般情况下,该类基础形式均匀地基同时满足以下条件时,可不进行地基稳定性分析评价: ①基础边缘最大压力不超过地基承载力特征值20%;
②在抗震设防区,考虑了瞬时作用的地震力,同时基础埋置深度不小于1/10H; ③偏心距小于或等于1/6b。
特殊条件下,应根据地基岩土条件和地质环境条件进行分析评价。
15、地下水的影响
当场地内地下水位升降时,应考虑可能引起地基土的回弹、附加沉降和附加的托浮力对地基的影响;对软质岩石、强风化岩石、残积土、湿陷土、膨胀岩土和盐渍土,应评价地下水的聚集和散失所产生的软化、崩解、湿陷、胀缩和潜蚀的有害作用。
四、地基稳定性验算方法
1、地基整体稳定性验算方法
在竖向和水平荷载共同作用下,当不能确定最危险滑动面时,对于均匀地基,一般采用极限平衡理论的圆弧滑动条分法。应满足下式要求:
MR/MS≥FS
MR——抗滑力矩(kN•m)MS——滑动力矩(kN•m)
FS——抗滑稳定安全系数。当滑动面为圆弧时,取1.2;当滑动面为平面时取1.3。
2、抗水平滑动验算
对于承受较大水平推力、地基可能发生侧向滑动的建(构)筑物,应满足下式要求: E/H≥FS
E——水平抗力(kN)
H——作用于基础底面的水平推力(kN)
FS——抗滑稳定安全系数。当滑动面为圆弧时,取1.2~1.3。
目前国际上关于刚性桩复合地基支承路堤的稳定分析方法是英国加筋土及加筋填土规范(《Code of practice for strengthened/reinforced soils and other fills》BS8006:1995)[107]对于桩-网支承路堤的整体稳定性提出了建议方法,即仍采用传统的复合地基稳定分析方法进行计算,当桩体和加筋垫层存在时,将滑动面经过的桩的作用按下法考虑,如图1-12所示,即将滑动面以下桩的竖向承载力作为阻滑力作用在滑动面上,而不是考虑桩体截面的抗剪强度,对于加筋垫层考虑其最大张拉力提供抗滑贡献,具体计算模式见图1-12。采用传统的复合地基稳定分析方法计算时,通常采用有效应力参数,并考虑孔隙水压力,但如果进行短期稳定分析,则应采用不排水条件下的参数。为保证路堤的整体稳定性,需要满足如下条件:
MDMRSMRPMRR
式中,MD为土体滑动力矩;MRS为土体抗滑力矩;MRP为桩体提供的抗滑力矩;MRR为加筋垫层提供的抗滑力矩。
其中土体滑动力矩MD为:
MD[(Wibiwsi)sini]Rd
土体抗滑力矩MRS为:
MRS[{cibiseci((Wibiwsi)cosiuibiseci)tancvi}]Rd
桩体提供的抗滑力矩MRP为:
MRPFPiXPi
加筋垫层提供的抗滑力矩MRR为:
MRRTYi
式中,Wi为条块i的自重;bi为条块i的宽度;i为条块i的切线与水平线的夹角;ci为条块i的粘聚力;cvi为条块i的内摩擦角;ui为作用在条块i的平均孔隙压力;wsi为路堤顶面的均布荷载;Rd为圆弧滑动面的半径;FPi为第i根桩的竖向承载力,这里取滑动面与桩相交处桩的轴力;Ti为加筋垫层的最大张拉力;XPi为第i根桩到滑动中心的水平距离;Y为加筋垫层到滑动中心的竖向距离。
圆弧滑动中心XP2XiXP1荷载ws路堤Y土条i填土Wibi桩体加筋体桩帽Rd圆弧滑动面α地基土体FP1FP2
第三篇:电压稳定性分析
电压稳定性分析
目录 电压稳定基本概念 2 电压稳定分析方法的分类 3 潮流雅可比矩阵奇异法 4 电压稳定研究方向展望 5 改善电压稳定的技术 6 结论 7 参考文献
电压稳定性是指系统维持电压的能力.当负荷导纳增大时,负荷功率亦随之增大,并且功率和电压都是可控的.电压崩溃是指由于电压不稳定导致系统内大面积、大幅度的电压下降的过程。压稳定性分析则是对这一过程进行理论分析,使得这个过程变得可以认为控制。
随着负荷需求的不断增长和电源点越来越远离负荷中心,我国电力系统正在向远距离、大容量、超高压输电方式发展。同时由于电力市场的引入带来的经济性及可能出现的环境保护等方面的压力,迫使电力系统运行状态正逐渐趋近于极限状态,电网的稳定性问题将变得日益突出。
电力系统的稳定性问题是多种多样的,其中机电方面的稳定问题可以简化为:(1)单机——无穷大系统(纯功角稳定问题):
(2)单机通过阻抗接在“静态”负荷上(纯电压稳定问题)。
在实际电力系统中,上述两个问题可能同时存在或相继发生。功角稳定问题现在从理论和数学分析上都已完全解决了。相反,电压稳定问题的发生机理现在仍不完全清楚,更不用说可以被广泛接受的分析工具了。近年来,由于电压崩溃恶性事故的相继发生,如1983年12月27日瑞典电网、1987年法国西部电网、1987年7月23日日本东京电网等,运行和研究单位都逐渐关注电压大幅下降前,母线角度及电网频率都相对稳定,显然经典的功角稳定性已不适于上述事故的分析。在这些电网事故发生前,由于母线电压角度、电网频率甚至电压幅值都相对稳定,常规的报警装置没有发挥作用,其中1987年的日本东京电网事故过程长达20分钟,可是运行人员并没有采取手动切换负荷等安全措施来阻止电压崩溃事故的发生,这也说明了进行电压稳定性研究的重要性。
具体到安徽电网的实际分析,我们认为导致电压稳定破坏事故可能有以下两个问题:1.在淮北电厂及淮北二电厂小开机方式下,淮北通过系统联络线受进较大潮流,若发生淮北母线故障等大扰动,使淮北电网同时失去大量发电出力及与系统的联络线;2.江北小开机大负荷方式下,若发生洛河电厂Ⅰ母线故障,使江北电网同时失去洛河电厂#5联变及洛河电厂#1机。我们使用了BPA程序对以上问题进行了经典的功角稳定仿真计算,发现功角的震荡和电压的剧烈下降是同时发生的,到底是电压崩溃造成的功角失步还是失步造成的电压崩溃呢,若是电压崩溃事故,那么现有的预防稳定破坏事故措施都是针对于功角稳定破坏事故的,并不适应于电压稳定破坏事故。显然我们迫切需要了解电压稳定问题的机理,掌握电压稳定分析的工具,同时采取相应的预防措施。为此,我们对众多关于电压稳定问题的研究成果进行了调研,通过分析和总结,希望能够对电压稳定问题有一个比较清晰的概念,得到适合实际应用的工具。 电压稳定基本概念
电压稳定性这一概念对于电力系统运行人员并不陌生。在低压配电系统中,电压稳定破坏这一现象早已被发现。但直到近些年,这一现象才在高压输电系统中发现,并越来越被重视起来。
现在,一般认为电压稳定破坏事故是这样发生的:当出现扰动、负荷增大使电压下降至运行人员及自动装置无法控制时,系统就会进入电压不稳定的状态,电压的下降时间可能只需要几秒钟,也可能长达几十分钟。在电压下降过程中,以下几个方面有着重要影响:
(1)有载调压变压器的动作将使低压配电网的电压上升,高压输电网的电压下降,民用有功、无功负荷将逐渐回升,导致一次侧的高压输电网电压进一步下降,一次系统中的线路充电功率和电容器的无功补偿均将减少,同时一次网络中的无功损耗将增加,因此,一次侧电压进一步下降。如此循环下去,有载调压变压器将处于或接近极限运行位置。
(2)工业负荷主要是感应电动机负荷对于电压变化非常敏感,在电压起初的下降过程中,它随着电压的下降而下降,但当电压进一步下降时,由于转差的增大而使电流增大,因而电动机漏抗中消耗的无功功率急剧增大,当电动机因不稳定而停止转动时,将吸收大量无功功率。这时由于级联效应,会有更多的电动机停转,最终将出现大范围的电压崩溃事故。
(3)发电机励磁调节器在电压下降过程中,将增加无功出力,帮助维持电压。然而当无功负荷超过发电机的容量时,电厂的运行人员、发电机的过励保护、过流保护等自动装置将降低励磁,减少无功出力,使无功缺额增大,迫使远方发电机承担起维持电压的任务,致使一次网络中的无功损耗增加,电压进一步下降。
(4)电压问题如同线路过负荷一样容易造成级联停运。当重载线路的受端电压下降时,施加在送瑞系统上的无功功率可能是受端所收到的无功功率的许多倍。
如果电压不停地衰减下去,电压崩溃事故就会发生。因为这一过程持续时间在几秒到几十分钟的范围内,所以有些文献根据这一过程的持续时间将电压稳定问题划分为暂态电压稳定(时间从零秒到大约10秒钟)、经典电压稳定(时间从1分钟到5分钟)、长期电压不稳定(包含20到30分钟的电压恶化)。
2电压稳定问题的研究历程
电压稳定的研究最早可追溯到40年代,但直到1978年法国大电网的灾难性电压崩溃事故前,这一课题并没有得到电力系统的广泛注意。从70年代末期以来,人们对电压稳定进行了大量研究。过去十年中,有两次大规模的调查活动进一步强调了电压稳定问题的重要意义。一项是IEEE电压稳定专题工作组于1988年进行的,目的是确定在工业中,这一问题存在的范围。另一项由EDF主持的研究,发现全球有20次重大故障可以归咎于电压稳定问题。
过去很长一段时间内,在电压稳定问题的研究上一直存在着争论,这就是:电压稳定问题究竟是静态的还是动态的,相应的分析方法也就分为基于潮流方程性质的静态方法和基于微分方程性质的动态方法。近年来,随着研究工作的进一步深入,用静态方法研究电压稳定遇到了越来越多的困难,计算结果与实际事故相比较,也难以令人信服。现在,人们普遍认为电压稳定问题是一个动态问题,应该用基于微分方程的动态分析方法加以解决。鉴于这种情况,国际大电网会议(CIGRE)于1993年提出专题报告,从动态角度严格定义了电压稳定问题,在此基础上将其分为小干扰电压稳定性、暂态电压稳定性和长期电压稳定性。 3 电压稳定分析方法的分类
结合国外电网的经验和我省电网的实际,我们认为对电压稳定问题的分析要解决以下三个问题:
a.当前系统离电压崩溃点的距离即电压稳定裕度是多少?
b.电压崩溃发生时,影响电压稳定的关键因素是什么,电压薄弱点在哪儿,哪些区域是电压不稳定的? c.在大扰动发生后,当前稳定的系统是否有可能发生电压崩溃事故?
确定一个电压稳定程序是否符合要求,要根据以上要求进行判断。虽然电压稳定静态分析方法从原理上讲并不严格,所得结果也令人难以信服,但有着计算简单,不需要较难获得的元件动态模型等优点。目前的实用化电压稳定分析程序基本采用了静态分析方法,其中P-V曲线法、灵敏度分析法、潮流多解法、雅可比矩阵奇异法使用较广泛,下面我们将详细介绍这四种方法。
(1)P-V曲线法
这是一种基于物理概念的计算分析。给定系统基态潮流计算结果,逐步增加系统负荷,求出系统各运行点,利用负荷特性,从而得到反映负荷实际吸收功率与节点电压关系的一系列(P,V)点,将这些相连便可得到P-V曲线。与功角曲线相似,这条曲线的拐点处被认为是电压稳定的分界点,拐点右侧高电压区,被认为是电压稳定点,拐点左侧低电压区被认为是电压不稳定点。当前系统运行点距离拐点的距离远近反映了系统的电压稳定裕度。然而,在考虑了系统元件的特性后,这一判据的正确与否值得进一步研究,例如电网技术1998年第九期中刊出的《电力系统动态元件特性对于电压稳定性的影响》一文中指出,负荷电压静特性、发电机励磁系统稳态增益对于电压稳定极限点的影响巨大。在某些情况下,系统有可能在P-V曲线的右侧高电压区就已失稳,也有可能直到P-V曲线的左侧低电压区仍能保持电压稳定。利用P-V曲线拐点判断电压稳定性造成的误差究竟是偏保守还是偏冒进难以估算。
(2)灵敏度分析法
给定基态潮流计算结果,通过增加有功、无功负荷来获得电压幅值和电压角度的变化量。所有受控变量的敏感度由电压幅值和电压角度的敏感度得到,受控变量包括受限的无功源、受限的联络线传输功率、变压器分接头的变化等。通过对受控变量的敏感度指标进行排序,得出与电压下降密切相关的无功源、联络线等强相关变量集,同时得出电压下降最大的节点集称为弱节点集。
灵敏度分析方法可以应用于电压稳定的在线监控,其中强相关变量集说明了当前系统中影响电压稳定的关键因素,如哪些发电机的停运、联络线的检修对电压稳定至关重要。而弱节点集说明了哪些区域是电压不稳定,系统最可能首先在这些区域内失稳,要对这些弱节点进行监控,同时考虑增加对这些节点的无功补偿。
(3)潮流多解法
潮流解的非唯一性的提法首先在1975年由KLOS和KERNER发表的专著《thenon-uniquenessofloadflowsolution》中提出,文中提出潮流的解往往是成对出现的,解的个数随着负荷水平的加重而减少,当系统接近极限运行状态时,将只存在两个解。在所有这些解中,只有一个解是和电力系统的实际运行状态相对应的,称为“可运行”的解。其余的解对应于电力系统的不稳定运行点,在电压稳定分析中,这些不稳定的解叫做“低电压解”。但是也有文献指出,在重负荷情况下,潮流方程的解由高电压解转移到低电压解这一跳跃现象,并未在动态仿真中出现过,更不曾在实际运行状态中观察到,潮流多解仅仅是潮流方程非线性的数学结果,各解稳定与否不取决于解的本身,而取决于电力系统各元件的动态特性,例如如果考虑负荷等元件的动态特性而认为是恒阻抗负荷时,高、低电压解将都是稳定的解。
目前潮流多解研究的主要意义在于为计算系统的极限运行状态提供一种简单方法,多解的个数及多解之间的距离是反映系统接近极限运行状态的指标。
电压稳定性分析电压稳定研究方向展望
综合各有关电压稳定问题的研究成果,结合实际电网运行的需要,以下几方面还需进一步研究,这些方面的研究可以使我们更好地理解电压失稳现象,并有可能象功角暂态稳定理论一样提供电压失稳的判据,最终得到电压动态稳定分析的实用化程序。(1)元件动态模型的建立
尽管有关电压稳定问题的文献很多,但是电压失稳特别是在动态、非线性方面的机理还不十分清楚。非线性动态理论为解决这方面的问题提供了适合的数学工具,元件动态特性的建模越来越受到重视。元件的动态特性包括发电机、负荷、OLTC有载调压器等等,其中负荷模型的完善最为重要。对于发电机来说,已有研究成果严格证明了系统是否发生非周期电压失稳与发电机调节系统的结构和时间常数无关,只取决与它的稳态增益《电力系统动态元件特性对于电压稳定性的影响》一文更进一步证明了对于发电机来说,系统电压稳定极限与原动机及其调速系统的稳态增益无关,只与励磁系统的稳态增益有关。(2)在线电压稳定监控
电压稳定监控程序应帮助调度员根据当前或未来一段时间内可能出现的运行状态,迅速、准确地做出判断,诸如当前系统是否可能发生电压崩溃等等,从而正确采取预防措施,因此非常需要在线电压稳定监控指标及其相应的程序。目前,国内电力系统在这一方面也开展了相当多的研究,例如天津大学利用局部L指标,对电力系统在线电压稳定局部监控做了相关研究,提出了只对弱节点集即系统内负荷关键点实施监控的方案。(3)数字仿真技术
属于时域仿真分析法,能够很好地反映电压崩溃的全过程,但是无法提供敏感度和稳定域度的信息。同时模拟过程需要占用大量的CPU时间,对硬件要求很高,对结果的分析需要消耗大量的人工。为了能准确、快速的得出结果,可能需要发展一种应用专家系统或神经网络等技术的专门的分析方法。改善电压稳定的技术
前面已经通过分析得出了在电压崩溃过程中的一些关键因素,从而可以定性地给出一些防止电压崩溃的技术手段。(1)使用串联和并联电容器
对于110-35kV的架空线路,如线路长度很长、负荷变化范围很大,可在线路上串联电容器。使用串联电容器可以有效地减小线路电抗,从而降低无功网损。线路可以从送端向无功短缺的受端送更多的无功,从而减小线路级联效应对电压稳定的负作用。虽然过多使用并联电容器可能是导致电压不稳定的部分原因,但适当使用并联电容器可在发电机中留出“旋转无功储备”,这部分旋转无功储备对保持电压稳定起着积极的作用。(2)使用SVC静止无功补偿器
SVC的使用可以有效的控制电压和防止电压崩溃。(3)使用低电压切负荷装置
过重的负荷是导致电压崩溃的直接原因,根据一次侧电压的下降切除受端系统的部分负荷,对于防止电压崩溃非常有效。(4)发电机的控制
根据灵敏度分析,可以指出系统中哪些发电机的停运使电压下降最明显,只要有可能,就应该投入这些发电机,以提供电压支持。发电机励磁系统受限是导致电压崩溃的重要原因,因此要进一步定义无功过负荷的能力,训练运行人员使用它,并重新整定保护装置以便不再阻碍无功过负荷的使用。在无功短缺地区,应当选用额定功率因数为0.85或0.8的低功率因数发电机。(5)有载调压变压器OLTC的控制
根据电压稳定在线监控,如果当前系统的电压稳定域度较小,那么为防止电压崩溃现象的发生,调度员在电压持续降低时,应当停止上调有载调压变压器低压侧的分接头,而采用手动切负荷的方法来恢复电压。结论
(1)现有的电压稳定分析程序大多基于静态电压稳定分析,可以解决前面提出的第一、第二两个问题,即给出当前系统运行状态的电压稳定裕度,指出系统中影响电压崩溃的关键因素和可能首先发生电压崩溃的区域等。需要指出的是,现在普遍认为,用静态分析方法得出的结果,难以令人信服,需要接受动态机理的检验。要解决前面提出的第三个问题即大扰动下系统是否发生电压崩溃,需要采取动态的电压稳定分析方法,现在这方面还处于研究过程,缺乏实用化程序。
(2)要进行动态的电压稳定分析方法,首先要建立系统的动态元件模型。因此下一阶段的工作重点在于建模,具体包括发电机励磁系统的稳态增益、OLTC的动作、负荷模型等,其中负荷动态模型的建立是关键。同时要进一步研究发电机无功过负荷能力,以便尽可能的利用发电机和励磁机的过负荷能力来推迟电压崩溃。
(3)在现阶段缺乏可靠的元件动态模型及电压稳定分析程序的时候,我们对于可能发生电压崩溃的地区如淮北乃至整个江北220kV电网,装设了18套低电压切负荷自动装置,其中安庆变装设在110kV母线上。在洛河电厂装设的220kVⅠ母线跳闸远切负荷装置对于防止江北大受电方式下,可能导致的电压崩溃事故有着重要作用。同时我们还在进一步研究淮北电网的稳定问题,包括功角稳定和可能出现的电压稳定问题。参考文献
1.段献忠、何仰赞、陈德树,电力系统电压稳定性的研究现状。电网技术,1995;NO4 2.Y.H.Song、J.F.Macqueen、D.T.Y.Cheng,onvoltagestabilityinelectricpowersystems。1994 3.余贻鑫、王成山,电力系统稳定性理论与方法。科学出版社,1999 4.Hsiao-DognChiang、lanDobson、RobertJ.Thomas,onvoltagecolltagecollapseinElectricPowerSystems。IEEE,1990;NO2 5.郭剑、王伟胜、吴中习,电力系统动态元件对电压稳定极限的影响。电网技术,1998;NO9
6.贾宏杰、余贻鑫、王成山.利用局部指标进行电压稳定在线监控的研究, 电网技术,1999;NO1
7.韩祯祥、吴国炎.电力系统分析, 浙江大学出版社, 1993 8.华中理工学电力系统分析课题组,静态电压稳定安全分析软件系统总体设计简介, 1998
第四篇:人力资源稳定性与流动性分析
人力资源稳定性与流动性分析 摘要
当今时代,人力资源已经成为社会的第一大资源,人才尤其显得非常重要,是企业赖以生存和发展的不可或缺的因素。因而各大高校相继开设人力资源管理等课程,可知,人力资源管理是全球化、市场化、信息化的知识主宰,是一种优势战略资源。企业要想在激烈的市场竞争中赢得最后的胜利,首先必须获得人才,特别是高端科技人才,具有创新思想,发挥优势作用,保持企业长远发展,从而能够留得住人才,确保人力资源的稳定性。人力资源流动指人才在不同国家、不同地域、不同企业之间的流动,包括人力资源的流入与流出,通过这种相互流动,可以促进企业的高效率。本文通过对人力资源的稳定性与流动性的分析,来探讨企业为何在保证人力资源稳定
性的前提下,又要保持一定的流动性。
The present era, human resources have become the largest resources, personnel, especially it is very important, is the enterprise survival and development of the essential factors.Major colleges and universities which have set up human resource management courses, we can see, human resources management of globalization, marketization, and the knowledge master of information is a strategic resource advantage.Enterprises in the fierce market competition to win the final victory, we must first obtain personnel, especially high-end talents, innovative ideas, to play a dominant role, maintaining long-term development, which can retain personnel, to ensure that human resources stability.Human resource flows that personnel in different countries, different regions, the flow between different enterprises, including the inflow and outflow of human resources, through this mutual flow, can promote business efficiency.In this paper, the stability of human resources and liquidity analysis, to probe why the human resources in ensuring the stability of the premise, but also to maintain a certain mobility.第一章绪论
人类社会的不断发展,世界经济进入高速发展的知识经济时代,世界各地联系日益紧密,全球经济一体化形成,高新技术产业发展迅猛,各企业竞争加剧,其核心在于人才的竞争。人力资源是第一资源,人才资源是企业生存和发展的的重要资源,企业如何在竞争中技压群雄,关键在吸引人才、留得住人才、培养人才、用好人才,发挥最大作用,因此人力资源已经成为企业经济增长的决定性因素和企业提高竞争力的关键战略性资源,企业的人力资源稳定性和流动性就显得特别重要。第二章企业人力资源相关概念 2.1 资源的含义
从财富的创造角度来看,资源是指为了创造物质财富而投入生产过程的一切要素。土地、劳动、资本是构成资源的三要素。可以看出,人力资源是财富创造中一项不可或缺的重要资源。2.2 人力资源的概念
人力资源是指在一定区域内的人口总体所具有的劳动能力的总和,或是具有智力劳动和体力劳动的能力的总和。具体到一个组织,人力资源就是组织所拥有的能达成其组织目标的人的能力的总和。因此一个企业存在人力资源的目的就是实现企业目标。2.3人力资源流动性概述
人力资源流动是人力资源的流出、流入和在组织内流动所发生的人力资源变动,它影响到一个组织人力资源的有效配置。影响人力资源流动的因素有很多,其主要影响因素有环境、职业、个人因素等。第三章企业人力资源稳定性与流动性分析 3.1一个企业保持人力资源稳定的重要性 如果一个企业员工流失,将会给企业带来哪些损失呢?设想如果离开的员工技术操作是其他人难以替代的,会给企业产生极大破坏作用,某些正在进行的业务或项目不得不中止。某些重要岗位如研发、营销的员工可能造成技术外流。由此可见企业人力资源稳定的重要性。3.2 影响企业人力资源流动的宏观因素 企业和员工都是社会人,社会环境的影响渗透在每一个地方。一个国家的总体经济状况对员工流动行为具有相当大的影响,如经济发展水平、就业与失业水平、通货膨胀等因素尤其是值得关注的经济因素。在不同的经济发展时期,不同的地域,甚至于不同层次的人力资源体系内,员工流动率会有所不同,其流动的形态也是不断发生变化的。但是不必担心,因为流动才是正常的,不流动反而是不正常的,关键是要用长远眼光来看事情。3.3 企业人力资源流动必要性的理论分析 所谓人力资源的流动与周转,是指企业内部由于员工的各种离职与新进所发生的人力资源变动。人力资源流动率则为一定时期内某种人力资源变动(离职和新进)与员工总数的比率,是一个综合性的概念。它是考察企业组织与员工队伍是否稳定的重要指标。为了实现企业人员队伍的整体优化,不断改善人员结构和人员素质,实行人员的合理流动是完全必要的,对人才尤其如此。3.4 企业人力资源流动的好处
人力资源流动会给企业绩效带来负面影响,但保持一定的人力资源流动率,还会给企业带来一定的正面影响,如给企业注新鲜血液,给企业带来新观点和新技术,也可使企业原有人员加强竞争意识,从而提高企业的绩效。3.5企业如何应对人力资源流动
企业保持一定的员工流动性是正常的,正所谓“流水不腐,户枢不蠹”。
企业里的员工流动可以分为自然流动和非自然流动两大类。自然流动一般包括因员工生老病死而产生的流动,因职务晋升等内部人员调动而产生的流动等等。而非自然流动,则又可以分为主动流失和被动流失。主动流失主要包括因员工技能不佳、绩效低下等原因主动将其辞退而产生的流动;被动流失则包括因竞争对手挖人,或员工本人职业转型等所导致的流失。
对于企业来说,员工是其企业战略技能的持有者,员工素质的高低往往成为制约企业竞争优势能否得以充分发挥的关键因素。随着内外部环境发生变化,企业对战略技能的要求,对员工素质的要求也随之有所变化,所以,企业就需要不断地对员工结构进行调整,以满足战略发展的需要。这样,保持合理的员工流动,就成为企业不断更新战略技能、提高员工素质的重要手段之一。第四章人才流动 4.1 人才流动的特点
4.1.1企业之间的人才竞争趋向高层化。
具体表现在以下几点:一是对高级管理人才的争夺上。一些企业为了自身的发展,千方百计地搜寻自身所需的高级管理人才,特别是高级经理人;而高级管理人才也在寻找“自己的企业”。所以,越来越多的企业高层管理人才,特别是企业高级经理人大量流失。二是对高级技术人才的争夺上。根据调查显示,每年中关村有近200名人才被挖走,其中大部分是在国内经过长期培养有着丰富经验的高级技术或管理人才;从1999到2001年三年间,从西北地区流出的科技人员就超过了3.5万人,而且多数为高级专业技术人才。三是对著名大学的优秀毕业生的争夺。北京大学、清华大学一些著名大学的学生有的还没毕业就被外企相中,据调查显示,清华和北大涉及高科技专业的毕业生每年70%以上选择去美国工作;陕西2002年的4600多名硕士研究生中80%以上外流。4.1.2人才对企业的要求也更具现实性。
人才对企业的要求不但是要有足以能够发挥才能的成长空间和良好的学习环境、工作氛围,而且还要具有较优厚的物质待遇。据调查分析,企业跳槽的人才中有17.2%的人“选择有发展前途的公司”;16.17%为了“诱人的薪资和福利”;15.95%为“自己有升职和发展的机会”。在对重庆市IT行业从业人员跳槽的原因的调查分析显示:有9%的人是出于对自己的前途考虑,有13%的人是对就职公司的经营、管理制度不满,而有78%的人则是对现在的薪金待遇不满意。人才对企业的要求越来越高,越来越现实。4.1.3人才流动更频繁。
我国人才流动频率明显加快。据一项来自广告业的抽样调查显示,广告业的从业人员平均跳槽时间为1年;广告业管理人员平均跳槽时间为2年;广告设计策划人员平均跳槽时间为1.5年。另据抽样调查显示,成都地区人才平均跳槽时间也只有2年-2.5年。
人才流动的这些新特征对企业人力资源管理体制提出了新的要求和挑战。企业要想在急剧变动的现代市场经济的竞争中不断取胜,就必须在掌握现代市场经济条件下人力资源流动特征的基础上,对该时代企业人力资源管理制度进行深入分析研究,争取有新的突破。4.2正确的人才流动观点
人才流动不能简单地看成就是各个国家或地区之间的人才流动。在经济全球化的时代背景下,企业应提升总的人才竞争力,应提升企业管理水平,变革企业管理机制。在新一轮人才流动的浪潮中,中国的人才市场正在融入国际人才市场之中,过去基于所有制特色的人才流动,在走向一个真正基于市场供需矛盾的人才流动的市场。要相信流动是正常的,不流动才是不正常的,关键是要以新的眼光,从长远的角度来看待问题。第五章总结 5.1 人才分析
在人才竞争十分激烈的今天,在人力已成为资本的今天,人才管理需要新的理念,企业再也无法像水库般将人才储存起来,当人才愈来愈像河流一样自由流动的时候,企业人力资源管理的重点,已经不在于要不要人才流动,而是如何管理人才流动的速度与方向,综合各方面因素,形成企业健康的人才流动文化。5.2 结论
企业在保证人力资源稳定性的情况下,又要保持一定的流动性,这样企业才能实现经济又快又好发展。参考文献
第五篇:电力系统稳定性分析_小论文
电力系统稳定性分析及其控制策略
1.电力系统稳定性定义和分类
电力系统稳定性是指在给定的初始运行方式下,一个电力系统受到物理扰动后仍能够重新获得运行平衡点,且在该平衡点大部分系统状态量都未越限,从而保持系统完整性的能力。
稳定性是对动态系统的基本要求。动态系统是其行为要用微分方程描述的系统。动态系统稳定问题的研究由来已久,有200多年的历史,其中大部分理论问题已很完整,但电力系统稳定问题具有某些特殊性:
(1)电力系统是一个高阶的动力系统,动态过程复杂,进行全状态量的分析很困难,在进行实用分析时,要根据过渡过程的特点和分析的目的,加以简化。
(2)电力系统的运行特性具有强烈的非线性特性。在大扰动情况下,一般会出现巨大能量的转换,与弱电的动态系统有很大不同。
(3)多数电力系统工作人员,可能精通电力系统方面的专业知识,特别是电力系统“一次”方面的知识,即使从事“二次”方面工作的现场工作人员,处理的也大多是“继电状态” 工作方式的设备,所以对以动态控制理论制约的如此复杂的电力系统稳定问题就不一定熟悉,甚至会出现某些概念性的问题。
根据电力系统失稳的物理特性、受扰动的大小以及研究稳定问题必须考虑的设备、过程和时间框架,将电力系统稳定分为功角稳定、电压稳定和频率稳定3大类以及众多子类。
1.1功角稳定
功角稳定是指互联系统中的同步发电机受到扰动后保持同步运行的能力。功角失稳可能由同步转矩或阻尼转矩不足引起,同步转矩不足会导致非周期性失稳,而阻尼转矩不足会导致振荡失稳。为便于分析和深入理解稳定问题,根据扰动的大小将功角稳定分为小干扰功角稳定和大干扰功角稳定。由于小干扰可以足够小,因此,小干扰稳定分析时可在平衡点处将电力系统非线性微分方程线性化,在此基础上对稳定问题进行研究;而大干扰稳定必须通过非线性微分方程进行研究。小干扰功角稳定是电力系统遭受小扰动后保持同步运行的能力,它由系统的初始运行状态决定。小干扰功角稳定可表现为转子同步转矩不足引起的非周期失稳以及阻尼转矩不足造成的转子增幅振荡失稳。振荡失稳分本地模式振荡和互联模式振荡2 种情形。小干扰功角稳定研究的时间框范围通常是扰动之后 10~20s 时间。大干扰功角稳定又称为暂态稳定,是电力系统遭受输电线短路等大干扰时保持同步运行的能力,它由系统的初始运行状态和受扰动的严重程度共同决定。同理,大干扰功角稳定也可表现为非周期失稳(第一摆失稳)和振荡失稳 2 种形式。对于非周期失稳的大干扰功角稳定,研究的时间框架通常是扰动之后的 3~5s 时间;对于振荡失稳的大干扰功角稳定,研究的时间框架需延长到扰动之后 10~20s 的时间。
1.2电压稳定
电压稳定性是指在给定的初始运行状态下,电力系统遭受扰动后系统中所有母线维持稳定电压的能力,它依赖于负荷需求与系统向负荷供电之间保持和恢复平衡的能力。根据扰动的大小,电压稳定分为小干扰电压稳定和大干扰电压稳定2种。大干扰电压稳定是指电力系统遭受大干扰如系统故障、失去发电机或线路之后,系统所有母线保持稳定电压的能力。大扰动电压稳定研究中必须考虑非线性响应,根据需要大干扰电压稳定的研究时段可从几秒到几十分钟。小干扰电压稳定是指电力系统受到诸如负荷增加等小扰动后,系统所有母线维持稳定电压的能力。小干扰电压稳定可能是短期的或长期的。电压稳定可以是一种短期或长期的现象。短期电压稳定与快速响应的感应电动机负荷、电力电子控制负荷以及高压直流输电(HVDC)换流器等的动态有关,研究的时段大约在几秒钟。短期电压稳定研究必须考虑动态负荷模型,临近负荷的短路故障分析对短期电压稳定研究很重要。长期电压稳定与慢动态设备有关,如有载调压变压器、恒温负荷和发电机励磁电流限制等,长期电压稳定研究的时段是几分钟或更长时间。长期电压稳定问题通常是由连锁的设备停运造成的,而与最初的扰动严重程度无关。正确区分电压稳定和功角稳定:功角稳定和电压稳定的区别并不是基于有功功率或功角、无功功率或电压幅值之间的弱耦合关系。实际上,对于重负荷状态下的电力系统,有功功率或功角和无功功率或电压幅值之间具有很强的耦合关系,功角稳定和电压稳定都受到扰动前有功和无功潮流的影响。2种稳定应该基于经受持续不平衡的一组特定相反作用力以及随后发生不稳定时的主导系统变量加以区分。
1.3频率稳定
频率稳定是指电力系统受到严重扰动后,发电和负荷需求出现大的不平衡,系统仍能保持稳定频率的能力。频率稳定可以是一种短期或长期现象。
1.4其他稳定问题
电力系统还存在其他一些在原则上仍属系统稳定的问题,如一些电磁振荡或谐振,又如一些只在某些特定状况下产生的问题。
(1)同步机自激。当同步机接入高压空载线路或系统串补电容后发生短路,因容性电流流经同步机,引起自激。此时,同步机电压不断升高,这也是一种不稳定现象,但负载接入或短路切除后,即行消除。
(2)异步电动机的运行稳定性。异步电动机存在运行稳定性问题。它也是影响系统电压稳定性的主要因素,但只要相对容量不大,异步电动机失稳不会影响系统节点电压稳定性。在此情况下,仍属系统元件运行稳定性问题。
(3)系统个别贮能元件之间的振荡。例如电压互感器与电网部分分布电容之间发生的谐振(铁磁谐振),原则上也是稳定问题,但影响范围很小,故不列入系统稳定问题。
2.功角稳定问题
2.1功角稳定的定义极其分类
功角与电压、频率一样,是并联运行交流系统的运行参数之一。功角稳定与其他稳定模式一样,都是用来表征电力系统稳定行为的。但功角稳定是表征同步机并联同步运行的稳定性,而同步运行是交流系统安全运行的最重要条件,同步运行是最弱的一种运行状态。功角稳定破坏后,系统交流发电机间失去同步,将引起各同步机的励磁电势相对相位紊乱,同步机间的电流、节点电压及系统潮流分布混乱,最终会在自动装置作用下,系统瓦解。所以,自交流系统建立后,功角稳定问题首先被提出后得到重视,并开展了系统性的研究。
在进行电力系统功角稳定性研究时,从工程概念出发,根据稳定破坏的模式、原因、分析方法、预防及处理措施的不同,将功角稳定分成几种类型。经过数十年的发展,目前习惯分为静态稳定、暂态稳定和动态稳定。
静态稳定。实际上,动态系统的稳定性是系统的动态特性。而“静态”一词纯属习惯称呼。电力系统静态稳定是指电力系统运行于初始平衡点,受到微小扰动,扰动消失后,系统能否以一定的精确度回到初始运行状态的性能。由于扰动微小,所以电力系统数学模型可线性化。分析系统静态稳定行为时,可利用已发展完善的线性控制理论,进行解析和定性的分析。由于电力系统正常运行时不可避免地受到各种微小扰动(骚动)的作用,所以电力系统静态稳定性表明电力系统在给定运行点运行时,基本稳定条件是电力系统在该点的固有稳定性。根据静态稳定的定义,静态稳定不涉及到巨大的能量转移,故静态稳定控制手段也不涉及到大能量控制。
暂态稳定。电力系统暂态稳定是电力系统运行于初始平衡点受到大扰动,扰动消失后,最终能否以一定的精确度回到初始状态下的性能。如能,则在该运行点对此大扰动,系统是暂态稳定的。暂态稳定一词也属习惯称呼,这种稳定模式过去也曾称为“动态稳定”。电力系统在大扰动下,会出现功角变化的暂态过程。但暂态稳定并不是研究暂态过程,它是电力系统动态特性的分析内容,暂态稳定是研究暂态过程的结局。线性系统受大扰动后,同样出现暂态过程,但扰动的大小并不影响结局的稳定性。而非线性系统扰动的大小和作用过程就会影响结局的稳定性。由于暂态稳定面对的是非线性系统,分析方法只能采用数值计算法,建立给定系统的仿真模型,在给定的扰动下,计算其动态过程,也可找出一个代表扰动后能量变化的函数,计算其收敛性,目前用得最多的仍是面积法则。
动态稳定。目前的动态稳定与历史上所用的该名词不同,目前的动态稳定是指同步发电机采用负反馈自动励磁调节器后发生的一种自发振荡失稳模式而提出的,过去将其包含在静态稳定范围内。它是一种小扰动下的稳定模式。
2.2功角稳定分析的策略
同步机间的功角—功率特性PMf()是分析电力系统功角稳定的基本特性,是一个非线性方程。此外,如为多机复杂系统,潮流分布方程也是非线性方程。所以,分析功角稳定时,电力系统是一个非线性系统。非线性动态系统的稳定性与扰动大小有关,在某一运行状态(平衡点)下,系统是稳定的,当扰动大到一定程度时,就可能不稳定。所以分析功角稳定行为时,要计及扰动的大小。
小扰动是一个定性概念,是指扰动小到非线性的运行参量可线性化。在此情况下,电力系统功角稳定问题可用线性控制理论来分析。当运行参量线性化时,稳定性与扰动量无关。
相对于小扰动,在大扰动作用下,某些运行参量必须计及其非线性,不能线性化。在目前,非线性系统稳定问题只有通过数值计算或数字仿真来分析。在大扰动作用下,系统是 否稳定就与扰动 量有关。需指出,系统稳定是一个动态问题,稳定行为是指系统受扰动后的 “结局”,在不同大小的扰动作用下,系统出现的动态过程也不同。但这是动态“品质” 问题,稳定性分析只关心其结局。2.2.1 静态稳定
静态稳定表明,电力系统在某一运行点固有的稳定性是衡量电力系统牢固性的基本标准。在某一运行状态下,电力系统静态稳定性能好,则在同样的大扰动条件下,暂态稳定性能亦必良好。由于静态稳定性可用线性控制理论分析,提高静态稳定性有一套成熟、有效的方法,所以提高电力系统静态稳定性是提高电力系统功角稳定性的基本措施。
静态稳定性分析可充分应用线性控制理论中的各种方法,这是最有利的条件。静态稳定的研究,特别是对单机、对无限大系统的静态稳定的研究,不但能定量计算、方便地计算静态稳定极限、运行点静态稳定贮备系数等,且能进行解析研究、分析其规律性,研究其失稳机制。但是,在实际电力系统中,静态稳定计算和分析不一定都能以单机对无限大系统等值,在此情况下就出现困难。两机(多机)系统静态稳定分析方法虽早在40年代初已由日丹诺夫进行了较完整的阐述,但要取得结果,仍需进行数值计算。目前计算机仿真计算方法已普遍采用。实际系统的静态稳定计算可利用动态程序,输入小扰动量进行数值计算,取得定量结果。
提高系统的静态稳定性的控制方法主要有:(1)基本方法是增大整步力矩。
(2)同步机自动励磁调节器是提高系统静态稳定性最经济、最有效的措施
(3)使电源间转移阻抗尽量小。
(4)保持电网枢纽点有较高的电压水平,控制电网上的无功功率分布,保持输电线上流过较大的无功功率(感性),包括同步电机装设低励限制器,保证发电机承担一定的无功功率。2.2.2暂态稳定
由于电力系统功角特性等的非线性,在某一运行点,随扰动增大而稳定性下降,因此,电力系统功角暂态稳定性低于 静态稳定性。电力系统在运行中,如短路、大功率切换是不可避免的,所以对电力系统稳定性实际起主要作用的是暂态稳定。
功角暂态稳定分析面对的是非线性动态系统,所以原则上只有通过数值计算才能取得定量结果。由于计算机技术的发展,目前数值计算已有很多成熟有效的方法,并发展了一些实用的软件。暂态稳定计算可分成2种方式,一是通过对系统动态仿真模型,计算大扰动后的各功角变化,而判断是否稳定;二是判据法,即以面积法则(EAC)作为判断数值的依据。扰动后,p平面上的面积也就是能量函数,从原理上讲这些方法都是成熟的。但用在电力系统暂态稳定计算上有两大困难,一是系统庞大,发电机多,计算量大;二是计算费时,难于达到实时要求。前者是原因,后者是后果。特别为了达到稳定控制的目的,必须采用快速自动装置,这些装置的动作判据必须依靠系统实时动态过程的分析结果,因而要求计算有实时性。目前,为了达到快速计算的目的,除应用快速计算机外,可行的方法是简化系统结构,较为有效的是利用扩大面积法则(EEAC),根据扰动后各发电机的动态行为,将系统转化成为数较少的同摆的等值发电机,再利用面积法则判据进行计算。由于必须计及系统运行参数的非线性,所以对电力系统功角暂态稳定性的解析分析存在困难,暂态稳定计算仍是一个很费时的工作。
与提高小扰动下静态稳定性的措施不同,暂态稳定基本上是减小扰动量,扰动量是扰动大小及扰动作用时间。由于在大扰动下发生的暂态稳定问题涉及到大能量的转移,故提高暂态稳定的措施,都有控制大能量转移的作用。暂态稳定是系统受大扰动作用的暂态过程的结局,而大扰动后发生的暂态是一个较长时间的过程,故提高暂态稳定的自动装置要在过程的各个阶段起作用。根据各阶段的特点,暂态过程可分成3个阶段。
(1)第一摆。第一摆是指大扰动后,功角第一次摆到180°以前的阶段。如在该阶段中,能保持结局是稳定的,则发电机实际上不发生失步现象。在第一摆中就能维持电力系统稳定是最理想的。过去曾以在第一摆中能否达到稳定作为判断系统是否暂态稳定的依据。所以,很多自动装置都希望能在第一摆中发挥作用。提高第一摆暂态稳定性最基本的自动装置是快速继电保护,要求在故障发生后,0.1 s前切除故障,以及性能优良的自动重合闸和同步机顶值倍数高的快速强行励磁等,这些自动装置动作后不会对系统运行产生不良副作用。除此之外,还有一类自动装置如电气制动、自动切机(关汽门)和快速自动减载等。这类自动装置可提高第一摆的暂态稳定性,但动作后会对系统造成副作用。所以必须有相应的动作判据,以免系统发生不必要的扰动,否则宁愿推迟其动作。第一摆暂态过程较易分析计算,根据面积法则,如在扰动发生后,在各种自动装置作用下,摆开的最大角 max小于临界角 cr,则系统暂态是稳定的。第一摆时间一般小于1 s。
(2)中期阶段。如在第一摆中 max>cr,则将持续增大,发电机间进入暂态失步状态。但如在该阶段仍能采取措施,系统仍能恢复到暂态稳定的结局。中期阶段持续时间在 5 ~ 10 s,在此期间内,原动机调速器能发生作用,同时,前述的自动切机(关汽门)和自动减载装置可可靠地投入工作。
(3)后期阶段。经中期阶段仍不能达到稳定,则认为暂态稳定过程进入后期,此时电力系统实际上已进入稳态失步状态。进入后期状态后,虽然前述有些自动装置仍能起作用,但要达到暂态稳定的目的仍需采用另外的措施,包括启动快速备用机组等。最后阶段的结束虽无严格的定义,但从系统运行实际允许的条件出发,如不能达到全系统稳定运行状态,就必须自动解列,以期系统仍能保持分块运行。2.2.3动态稳定
电力系统包含多个贮能元件,所以失去稳定性的模式可以是“爬行”的,也可以是振荡性的。在一般情况下,由于系统固有阻尼作用,失稳模式多为爬行的。但如果发电机采用反馈型自动电压调节器(AVR),当ug0时,A V R 会引发负阻尼,调节器放大倍数 K u愈大,负阻尼作用愈强,当K u 大到一定程度时,就会抵消固有的正阻尼而产生振荡,称为振荡失稳。出现这种状态时,称系统失去功角动态稳定。受到动态稳定条件的限制,AV R 的电压放大倍数不能大,这就影响到 A V R 的调压基本功能,包括调压作用和提高静态稳定极限的作用。由于当不太大(如 4 0°~50°)时,ug就开始变负,所以动态失稳可能发生在小角度下,故对系统安全运行影响很大。实际上,高阶电力系统存在着几种振荡模式,如5阶系统就可能存在2种振荡模式,计及同步机转子及励磁绕组惯性而出现的振荡模式,其振荡频率为低频(零点几到几赫)。如计及励磁机及 A V R 本身具有的惯性时,则可能出现第二种振荡模式,振荡频率在十几到二十几赫,这种振荡的振幅不大,不会引起系统失稳。动态稳定破坏,引发低频振荡,可能招致发电机轴系扭振,发展成大事故,故应十分重视动态稳定问题。
提高系统功角动态稳定性的方法:
(1)用频率法,以系统开环频率特性为模型,用Nyqust判据进行分析。
(2)电力系统稳定点(P.S.S)的设计思想。系统在小值振荡作用下,出现附加反应力矩,其中与 成正比的部分为整步力矩 Ms Ks· ,它影响同步稳定性,即静态稳定性。另一分量为阻尼力矩MD KD·,它与转速成正比。所以,为了消除振荡失稳,只需引入适当的校正作用即可,困难在于校正器M 为输出量,(电路)不可能以 只有将输出量作为附加校正输送到 A V R 的电压输入回路,这 就出现相位校 正问题。60年代Concordia提出电力系统稳定
为输入点(P.S.S)的设 计思想,它作为AV R 的附加校正装置,原则上以 量,输出是接入AV R 电压输入回路,P.S.S装置中主要为移相校正回路,使在P.S.S作用下,发电机出现正值附加阻尼力矩,以抑制自发振荡。P.S.S的物理概念明确,装置结构简单,但整定困难,如移相校正不正确,则不能产生所需的正值附加阻尼,甚致取得相反的效果。这是目前 P.S.S使用上最大的困难。
3.电压稳定问题
3.1 电压稳定的定义和现状
系统工作在初始状态,受到扰动作用,扰动消除后,系统各节点电压能以一定精确度回到初始状态,则系统电压是稳定的;如某一节点或某些节点的电压不能以一定精确度回到初始状态,则系统电压是不稳定的,或称稳定性破坏。电力系统电压稳定性破坏后,系统中某节点或某些节点的电压就会不断上升或下降到不能容许的值。这一后果称为该节点或这些节点发生电压崩溃现象。对某些节点电压崩溃现象的发展如不采取措施,则将影响系统更多的节点。所以,系统电压稳定性破坏类似一个“雪崩”过程。与系统频率稳定性相比,一般而言,电压稳定性是一个区域性问题。电压稳定可以按照扰动大小和时间框架分别进行划分。按扰动大小分,电压稳定可以分为小扰动电月、稳定和大扰动电压稳定,其中,小扰动指的是诸如负荷的缓慢增长之类的扰动。在早期研究中,电压稳定被认为是一个静态问题,从静态观点来研究电压崩溃的机理,提出大量基于潮流方程或扩展潮流方程的分析方法。此后,电压稳定的动态本质逐渐为人们所熟知,认识到负荷动态特性、发电机及其励磁控制系统、无功补偿器的特性、有载调压变压器等动态因素和电压崩溃发展过程的密切相关,开始用动态观点探讨电压崩溃的机理,提出基于微分一代数方程的研究方法,进而逐步意识到电压崩溃机理的复杂性。据此可以将电压稳定分析方法分为两大类:基于潮流方程的静态分析方法和基于微分方程的动态分析方法。20世纪八十年代中后期在电力系统中得以广泛应用的分岔理论则部分沟通了静态分析方法和动态分析方法,为静态分析奠定了理论基础,保证了静态电压稳定安全指标的合理性,确立了静态方法求出的预防校正控制策略的有效性。虽然电压稳定的研究取得了巨大成果,但和成熟的功角稳定相比,对电压稳定的本质仍缺乏全面的认识,研究方法和理论还不够完善和全面,两者的关系还有待于电力工作者的大量深入细致的研究。
3.2 电压稳定分析的策略
3.2.1电压稳定分析的静态分析方法
静态分析方法大都基于电压稳定机理的某种静态认识,通常把网络传输极限功率时的系统运行状态当作静态电压稳定极限状态,以系统稳态潮流方程或假设发电机后电势恒定的扩展潮流方程进行电压稳定分析。在电力运行部门急需系统电压稳定指标和电压崩溃防御策略的情况下,静态分析因其简单易行,得到了极大的发展,是目前电压稳定研究工作中最具成果的方向之一。
静态电压稳定的研究内容主要为评估当前运行状态下的电压稳定指标、控制手段的效果、系统薄弱环节和危及系统安全的故障、拟定提高系统电压稳定裕度的预防校正控制策略、求取在给定系统变化模式下的极限状态以及当前点与最近电压崩溃点的距离等。具体可归为三个主要方面:电压稳定安全指标的计算方法,电压稳定的控制,电压稳定的故障选择和筛选方法。
(1)灵敏度法
灵敏度法是通过计算在某种扰动下系统变量对扰动的灵敏度来判别系统的稳定性。灵敏度分析的物理概念明确,求解方便,计一算量小,因此在电压稳定分析的初期受到了很大的重视,对简单系统的分析也较为理想。目前最常见的灵敏度判据有:dVL/dEG,dVL/dQL,dQG/dQL,dQ/dVL等。其中VL,QL,EG,无功源节点的电压和无功功率注入量,Q为电网输送给负QG分别为负荷节点、荷节点的无功功率与负荷无功需求之差。在简单系统中,各类灵敏度判据是等价的,且能准确反映系统输送功率的极限能力,但推广到复杂系统以后,则彼此不再总是保持一致,也不一定能准确反映系统的极限输送能力。灵敏度方法己不再是静态电压稳定分析的主流方法。目前,灵敏度方法在确定系统薄弱环节、评估控制手段的有效性方面仍具有良好的应用价值。
(2)特征值分析法、模式分析法和奇异值分析法
特征值分析法、模式分析法和奇异值分析法都是通过分析潮流雅可比矩阵来揭示系统的某些特性。特征值分析法将雅可比矩阵的最小特征值作为系统的稳定指标;模式分析法在假设某种功率增长方向的基础上,利用最小特征值对应的特征向量,计算出各节点参与最危险模式的程度;奇异值分析法和特征值分析法类似,最小奇异值对应的奇异向量与特征值分析法对应的特征向量有相同的功能,在数值计算中前者只涉及实数运算,后者可能出现最小特征值为复数的情况,故前者更受研究人员的欢迎。考虑到电压和无功的强相关性,这三种方法在分析时往往采用降阶的雅可比矩阵。电力系统是一个高度非线性系统,其雅可比矩阵的特征值或奇异值同样具有高度的非线性,所以这三种方法都很难对系统电压稳定程度作出全面、准确的评价,但在功率裕度的近似计算、故障选择等方面仍有较好的应用价值。
(3)连续潮流法
连续潮流法是求取非线性方程组随某一参数变化而生成的解曲线的方法,其关键在于引入合适的连续化参数以保证临界点附近解的收敛性,此外,为加快计算速度,它还引入了预测、校正和步长控制等策略。目前,参数连续化方法主要有局部参数连续法、弧长连续法及同伦连续法。在电压稳定研究中,连续潮流法主要用于求取大家熟知的PV曲线和QV曲线。由于能考虑一定的非性控制及不等式约束条件,且计算得到的功率裕度能较好地映系统的电压稳定水平,连续潮流法已经成为静态电压稳定分析的经典方法。
(4)零特征根法
零特征根法是一种直接计算系统临界点的方法。当系统处于临界点时,其平衡点的雅可比矩阵奇异,即存在一个零特征根和对应的非零左、右特征向量,根据这一特性,可构造如下的扩展潮流方法直接求取临界点
f(x,)0f(x,)0fx0
或
fxv0l(v)0
l()0两式中的第一个方程描述了潮流关系,第二、三个方程一起说明潮流雅可比矩阵奇异、具有非零的左或右特征向量,第三个方程根据需要可采用模2范数等多种形式。零特征根法对初值的要求较高,需要采用一定的初始化策略。同时,零特征根法难以考虑不等式约束条件,而现有的几种试图考虑不等式约束的策略在实际系统下的效果都不佳,有待进一步研究。
(5)非线性规划法
非线性规划法是将临界点计算转化为求解最大负荷裕度的优化问题,采用非线性优化的方法来求解。相对于求解一个非线性方程组,求解一个非线性规划问题要复杂得多,但它能较好地考虑各种等式、不等式约束条件的限制,在求解实际问题的时候具有更大的实用价值。目前,非线性规划法己用一于电压稳定裕度计算、电压稳定预防校正控制策略、最优潮流、电力系统经济调度等各种问题。
其他如潮流多解法、最近电压崩溃法,也是静态电压稳定的分析方法,但由于其求解复杂或应用性不强等原因,已经不再广泛使用,故不再赘述。从物理本质上来说,不管哪种静态分析方法,都是把网络传输极限功率时的运行状态当作静态电压稳定的极限状态,不同之处在于抓住极限运行状态的不同特征作为临界点的判据。事实上,电压失稳的发生是网络传输能力的有限和系统各元件的静、动态特性相互作用的结果,静态研究的成果需要接受动态机理的检验。3.2.2电压稳定分析的动态分析方法
电压稳定本质上是一个动态问题,只有在动态分析下,动态因素对电压稳定的影响才一能体现,才能更深入地了解电压崩溃的机理以及检验静态分析的结果。由于电压稳定问题涉及到的时间框架很大,从几秒到几十分钟,几乎牵涉到电力系统全部的机电和机械动态元件,为分析方便起见,一般按时间框架将电压稳定分为短期电压稳定(几秒以内)、长期电压稳定(几秒到几十分钟),或者按照扰动大小分为小扰动电压稳定、大扰动电压稳定。目前,适用于动态分析的方法主要有小扰动分析法、时域仿真法、能量函数法等,下面将予以简单综述。
(1)小扰动分析法
小扰动分析法是基于线性化微分方程的方法,仅适用于系统受到小扰动时的情形。它的主要思路是将描述电力系统的微分一代数方程在当前运行点线性化,消去代数约束后形成系统矩阵,通过该矩阵的特征值和特征向量来分析系统的稳定性和各元件的作用,其主要难点在于建立简单而又包括系统主要元件相关动态的模型。目前,小扰动分析己用于有载调压变压器(OLTC)、发电机及其励磁控制系统和负荷模型等对电压稳定影响的研究。关于OLTC对电压稳定的影响,研究表明OLTC是否应该闭锁或反调取决于其对提高网络传输能力和负荷恢复使得网络负担加重两方面作用的综合效果。关于发电机及其励磁控制系统对电压稳定的影响,研究表明励磁电流的上限将会使电压崩溃域扩大、稳定域缩小。
(2)时域仿真法
时域仿真分析是研究电压稳定的动态机理、过程以及检验其他电压稳定分析力‘法正确性的最有力手段,适合于任何电力系统动态模型。目前,电压稳定的时域仿真研究还存在一些难点,主要包括时间框架的处理、负荷模型的适用性以及结论的一般化问题。文献采用了时间标度技术压缩慢动态元件的时间常数,建立了中长期电几稳定的仿真工具,文献提出了吉尔(Gear)法和改进梯形法,使得慢动态和快动态过程能高效地起进行仿真研究,这两者都较好地解决了时间框架的处理问题。文献在仿真过程中结合了灵敏度法、模式分析法等静态分析方法,使得仿真研究的结论相对更具有了一般性。负荷建模本身就是电压稳定研究的难点之一,在仿真研究中采用不同的负荷模型会得到不同的结论,目前已提出了众多模型,但仍有很大争论,有待于进一步研究。
(3)能量函数法
能量函数法是直接估算动态系统稳定的方法,可避免耗时的时域仿真,基本思想是利用能量函数得到状态空间中的一个能量势阱,通过求取能量势阱的边界来估计扰动后系统的稳定吸引域,并据此判断系统在特定扰动下的稳定性。能量函数法在判断暂态功角稳定方面已取得了相当多的成果,在研究电压稳定方面仍处于起步阶段。研究虽然从非线性动态微分方程导出了动态系统的能量函数,但由于忽略了负荷的动态过程,实际上只是为当前运行点提供了能量性的静态电压稳定裕度指标,而没能用于电压稳定性的直接判断。总的来说,目前用能量函数来研究电压稳定的学者还不多,取得的成果也不多,与实际应用仍有较大的差距,有待于进一步努力。
从本质上讲,只有动态分析方法才是研究电压稳定的根本方法,然而在现阶段,动态分析方法还不成熟,很难用于指导实践。静态分析方法由于发展时间较长,目前己较成熟,且因其简单易行,己得到广泛利用。分岔理论沟通了两种研究方法部分结果,也奠定了静态分析方法的理论基础。分岔理论研究的是非线性系统在参数变化时能否保持原有定性性态的问题,静态电压稳定则可视为系统在何种负荷水平下发生分岔的问题,静态电压稳定的研究才得到了长足的进步。非线性系统在参数变化下有多种分岔形式,在单参数情形下,只有鞍结分岔和霍普夫分岔为通有分岔,即在其他参数的小扰动下可以保持原有的性态。电力系统本身是一个多参数系统,但目前对多参数系统的研究还没有简单的方法,故一般将其转化为单参数系统(如以负荷水平为参数等)。目前的研究中,一般将静态电压临界点和鞍结分岔点等同,霍普夫分岔虽然在研究中提到,但实际中很少出现,所以对它的研究较少。将静态潮流方程扩展为动态方程,将潮流方程视为描述动态方程平衡点的方程,经过简单地推导,发现静态分析下的电压稳定临界点和动态分析下的鞍结分岔点是一致的,从而研究静态方程的鞍结分岔点就是研究动态方程的部分鞍结分岔点,这是静态分析的一个理论基础。
4.频率稳定问题
4.1 频率稳定的定义和现状
电力系统的频率稳定反映着系统的有功平衡情况。当一个扰动(有功缺额)发生以后,要尽可能迅速而准确地判断其对系统带来的影响,从而及时采取相应的措施来防止或尽量减少扰动带来的危害。因此电力系统频率稳定分析是一项十分重要的工作。此前已有一些相关研究,对于扰动后系统频率的预测和切负荷量的估算主要有动态潮流法、频率稳定分析的快速算法、基于广域量测的频率紧急控制预测算法。电力系统稳定性评价一般有两类方法:一类是逐步积分法(SBS),通过对微分方程的积分求解来判断系统稳定性;另一类是直接法,它不需逐步积分,直接通过代数运算判断系统稳定性。应用逐步积分法研究电力系统频率稳定的核心思想是采取了系统的同一频率假设,将潮流方程和频率微分方程迭代求解。逐步积分法研究频率稳定问题的优势在于它能够考虑复杂的数学模型,且计算精度高。但该方法计算速度慢,难以在线应用。
根据最近一次潮流计算的雅可比矩阵,提出频率稳定分析的直接法。该方法不需进行逐步积分,直接计算出最近一次系统操作后的稳态频率,从而判断系统频率稳定性。该方法作为电力系统暂态稳定分析直接法的补充,将电力系统动态安全分析从暂稳分析延伸到频率稳定分析。
4.2电压稳定分析的策略
4.2.1频率稳定分析的逐步积分法
在频率动态分析中最基本的一条假设是“系统同一频率假设”,即忽略了系统中发电机转子间的相对摇摆,认为系统没有同步稳定问题。系统的同一频率定义为其惯量中心的角速度sys,有
nsys(Hii)i1Hi1nni
系统频率动态方程为:
Jsys(dsysdt)PmiPeiPacci1i1n
式中J为系统各发电机的转动惯量之和;
i=1,2,3....n一发电机序号;Pmi Pei一第i台发电机的机械功率和电磁功率;Pacc一系统总加速功率。
第i台发电机的转子运动方程为:
Jii(dsysdt)Pai(JiJ)PaccFPiacc
式中,Ji,Fi—i台发电机的转动惯量及其所占系统总惯量的比例;Pai一第i台发电机的加速功率。负荷采用静态非线性负荷模型:
PiP0jVQiQ0jqiVpikpj
kqj
式中,P0j,Q0j一额定状态下负荷j吸收的有功功率和无功功率;
p,i,qik,pkj一负荷j的频率、电压特性指数;4.2.2频率稳定分析的动态潮流法
动态潮流法是分析频率动态特性的一种时域仿真法。传统的潮流计算方法采取事先设定各节点的节点类型方式,其所设定的节点类型主要包括PQ节点、PV节点和松弛(平衡)节点。在进行潮流计算时,系统所有的不平衡功率都由松驰节点进行平衡。当系统出现功率扰动之后,如采用传统的潮流计算方法对扰动后的系统稳态潮流进行计算时,将存在如下问题:所有的扰动功率完全由进行潮流计算之前事先设定好的松驰节点进行平衡,而实际情况是各台发电机都感应到该不平衡功率,并且参与该不平衡功率的调节;用传统的潮流计算方法计算得到的平衡节点的出力与实际出力极限相比会有误差,可能出现平衡节点的出力完全大于其出力极限。
动态潮流是分析系统出现不平衡功率时,频率变化过程和潮流分布情况的一种方法,其核心是频率分析和潮流计算。当出现发电机退出运行或负荷发生较大变化的情况时,系统功率将会不平衡,功率的不平衡将产生加速功率或减速功率。如果考虑准稳态过程,除了负荷按其频率特性能平衡一部分功率差额外,系统的功率差额将主要由发电机调速系统的动作来达到新的平衡。这个过程一般并不是只由一台所谓平衡机的动作实现的,而是多台发电机协调动作的结果,同样系统负荷也会根据其自身的调节特性去改变其消耗的功率。
系统频率稳定性与系统功角稳定性都是转子运动稳定性的基本要求。只有同时满足频率稳定和功角稳定的要求时,同步机转子运动才能保证稳定。系统频率稳定问题主要是原动机功率频率特性问题,因为它不能任意更改。系统频率稳定性能否保证,由系统原动机总功率输出能否与系统总负荷功率平衡来决定。所以,要保证电力系统频率稳定性,首先要有足够的功率贮备,其次是有性能良好的按频减负荷装置。一般系统频率稳定破坏都是由其他原因导致解列所引起的。
参考文献
[1] 中华人民共和国电力行业标准,电力系统安全稳定导则,中国电力出版社2001 [2] 程浩忠。电力系统静态电压稳定性的研究,上海交通大学博士学位论文1998 [3] 郭瑞鹏。“电力系统电压稳定性研究”,浙江大学博士学位论文1999 [4] 胡东。电力系统电压稳定性研究,硕士学位论文2004 [5] 刘益青,陈超英,梁磊,刘利。电力系统电压稳定性的动态分析方法综述。电力系统及其自动化学报2003 [6] 王晓茹。大规模电力系统频率动态分析。南方电网技术2010 [7] 张恒旭,庄侃沁,祝瑞金等。大受端电网频率稳定性研究。华东电力2009 [8] 赵晋泉,张伯明。连续潮流及其在电力系统静态稳定分析中的应用。电力系统自动化2005