计算机基础教学的核心任务是计算思维能力的培养[J]

时间:2019-05-13 21:36:56下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《计算机基础教学的核心任务是计算思维能力的培养[J]》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《计算机基础教学的核心任务是计算思维能力的培养[J]》。

第一篇:计算机基础教学的核心任务是计算思维能力的培养[J]

计算机基础教学的核心任务是计算思维能力的培养

——《九校联盟(C9)计算机基础教学发展战略联合声明》解读 何钦铭陆汉权冯博琴

摘要:大学计算机基础教学是高校通识教育的重要组成部分,在学生综合素质、创新能力培养等方面发挥着重要作用。如何正确认识和准确定位计算机基础教学,如何改革计算机基础教学内容以适应形势发展的需要,一直是计算机基础教学目前面临的重要挑战。《九校联盟(C9)计算机基础教学发展战略联合声明》旗帜鲜明地把“计算思维能力的培养”作为计算机基础教学的核心任务。本文是从作者所理解的角度,来解读该声明,分析计算思维能力培养作为计算机基础教学核心任务的背景、理由和课程建设的初步思路。关键词:计算思维;计算机基础教学;九校联盟(C9)

2010年7月在西安交通大学举办的首届“九校联盟(C9)计算机基础课程研讨会”(以下简称C9会议)上,讨论的核心问题是如何在新形势下提高计算机基础教学的质量。C9会议讨论并形成了一系列共识,发表了《九校联盟(C9)计算机基础教学发展战略联合声明》。声明的核心要点是:必须正确认识大学计算机基础教学的重要地位,需要把培养学生的“计算思维”能力作为计算机基础教学的核心任务,并由此建设更加完备的计算机基础课程体系和教学内容,进而为全国高校的计算机基础教学改革树立标杆。

当今社会已进入了信息化时代,善于运用计算机技术和手段进行学习、工作、解决专业问题已经是高级人才必备的素质。大学计算机基础教学不仅是大学通识教育的一个重要组成部分,更是培养大学生潜移默化地养成用计算思维方式解决专业问题、成为复合型创新人才的基础性教育。本文从作者所理解的角度解读C9会议所发表的战略声明,分析计算思维能力培养作为计算机基础教学核心任务的背景、理由和初步的思路。

一、计算机基础教学是大学教育的重要环节

计算机基础教学在我国高等教育中已有30多年的发展历史,已经成为我国高等教育的必然组成部分,在学生综合素质、创新能力培养方面发挥着重要作用。1.计算机基础教学是培养大学生综合素质的重要环节

一般来说,大学生的综合素质是指其所具有的学习能力、适应能力、交往能力、表达能力、解决问题能力以及组织管理能力等,既涉及专业素质,也涉及非专业的人文素质等。对于大学的教育目标,联合国教科文组织国际21世纪教育委员会提出了大学要教学生“四会”,即学会认知(learn to know)、学会做事(learn to do)、学会做人(learn to be)、学会共处(learn to live together)。因此,大学教育最主要的目标还是学生综合素质与能力的培养。计算机基础教学在实现大学教育目标方面起着非常重要的作用。表现在:计算机不仅为解决专业领域问题提供有效的方法和手段,而且提供了一种独特的处理问题的思维方式;计算机及互联网有了极其丰富的信息和知识资源,为终生学习提供了广阔的空间以及良好的学习工具;善于使用互联网和办公软件是培养良好的交流表达能力和团队合作能力的重要基础;在信息社会里,计算机使用者的道德规范与社会责任是培养良好道德情操和社会责任感的重要内容。因此,教育部高等学校计算机基础课程教学指导委员会提出了大学计算机基础教学四个方面的能力培养目标[1]:

(1)对计算机的认知能力。掌握计算机、网络及其他相关信息技术的基本知识和原理;理解计算机分析、解决问题的基本方法;具备在实际应用中综合应用这些知识的能力,具有判断和选择计算机工具与方法的能力。

(2)应用计算机解决问题的能力。能有效地掌握并应用计算机工具、技术和方法,解决专业领域中的问题。

(3)基于网络的学习能力。熟练掌握与运用计算机与网络技术,能够有效地对信息进行获取、分析、评价和吸收。

(4)依托信息技术的共处能力。掌握与运用计算机与网络技术,能够有效地表达思想,彼此传播信息、沟通知识和经验;掌握基于信息技术的团队协作方式;充分认识互联网的参与性、广泛性和自律性,自觉遵循并接受信息社会道德规范的约束,并自觉承担相应的社会责任。

从这些目标中可以看出,计算机基础教学不仅是大学通识教育的重要组成部分,更在大学生全面素质教育和能力培养中承担着重要的职责。2.计算机基础教学为学生创新能力的培养奠定基础 在科学研究手段方面,计算科学已经和理论科学、实验科学并列成为推进社会文明进步和科技发展的三大手段。不难发现,现在几乎所有领域的重大成就无不得益于计算科学的支持。事实上,当今任何一项被称为“高科技”的项目或专业、职业,无一不是与计算机紧密结合的。例如,在物理学、经济学等领域里,传统的手段是数学表达,而今天已经大量地使用计算机模拟。在许多情况下,使用计算机不但能够精确地表示且具有更宽泛的表达。因此,计算机模拟的认识论范围要比解析数学模型的认识论范围宽泛得多。不可否认的是,即使数学家的研究也离不开计算机了,且计算机能力是综合“理论”与“实验”之间鸿沟的桥梁[2]。计算科学已经成为和数理方法、实验方法、统计方法一起成为现代科学研究的重要方法。在社会经济发展方面,推进信息化与工业化的融合,走新型工业化道路,已经成为推动产业创新、技术创新以及国家经济社会全面协调可持续发展的重要方式。而大量培养掌握计算机科学与技术基本理论与方法的复合型专业人才是加快工业化和信息化融合的关键。高素质的创新人才是国家建设所不可缺少的。复合型的知识结构、良好的思维方式以及勇于探索的实践能力是创新人才的重要特征。大学计算机基础教学为学生创新能力的培养奠定了基础,不仅承载着优化大学生知识结构的使命,也是培养大学动手实践能力的重要课程载体,更是训练大学生掌握计算机学科领域独特思维方式的教学内容。当然,计算机基础教学培养目标的实现不能仅仅依靠课堂知识的传授,而是需要依托计算机基础教学的课程体系以及与专业领域相结合的专业课程;需要以课程为基础、知识为载体,通过教学方法和手段的改革,鼓励自主学习、探究式学习、团队式合作,强化实践教学,在计算机基础教学的全程、全方位教育中逐步培养和实现上述能力目标。

二、计算机基础教学面临的挑战

进入21世纪后,计算机技术迅猛发展并应用于经济与社会发展的各个领域,信息产业成为全球最大的产业,社会对信息技术人才的需求,不仅在数量上有了更大的增长,而且在质量上也提出了更高的要求。高校各专业对学生的计算机应用能力的要求越来越高,并呈多样化特点[1]。并且随着信息技术在中小学的普及,许多新进校的大学生已经具备一定的计算机操作技能,现有许多大学开设的计算机入门课程“大学计算机基础”的教学内容对许多新生来说已不在陌生,甚至早已掌握。

因此,计算机基础教学培养什么,计算机基础课程如何开设,“大学计算机基础”是否有必要开设等等一系列问题,引起来广泛的讨论与争议。如何正确认识和准确定位计算机基础教学,如何改革计算机基础教学内容以适应形势发展的需要,是计算机基础教学目前面临的重要挑战。1.对计算机基础教学认识的挑战 长期以来存在着把计算机作为工具,“计算机会用即可”,“计算机就是程序设计”,“计算机基础课程就是讲解软件工具使用”等片面观点。这些观点的流行对高校计算机基础教学造成了巨大的冲击:计算机基础教学学时在专业培养计划中被压缩,计算机基础教学资源得不到充分的配置,“大学计算机基础”课程成了可有可无的课程,学生学习计算机基础教学课程满足于掌握计算机的基本操作、基本软件的使用或基本程序设计语言等等。的确,早期的大学计算机基础课程主要是围绕计算机使用而展开的。这是因为当时计算机尚未普及,没有进入家庭,更没有深入社会。计算机在高校也是属于实验室设备,因此早期的计算机课程是具有时代印记的。

自20世纪末开始,计算机以前所未有的速度快速普及,特别是从微机成为世界上最大的消费类电子产品以后,计算机不但深入了社会的方方面面,也进入了家庭,使得普通人和计算机的距离被拉近了。文档处理、上网等也成了社会各界人士最基本、最日常的计算机应用。计算科学已经成为重要的科技手段和方法,它的地位如同大学数学、大学物理一样重要。计算机基础教学不只是教授学生怎么使用计算机或进行程序设计,更承担着培养大学生综合素质与能力的重任。大学生学习计算机基础课程,不仅要了解计算机是什么,计算机能够做什么、如何做,而且还要知道这个学科领域解决问题的基本方法与特点,即学习这个学科领域解决问题的基本思维方法。计算机作为通识教育的重要内容,不只是简单地拓展学生在计算机方面的知识面,更需要展现计算机学科的思维方式。2.对计算机基础教学内容和方法改革的挑战

和数理科学不同的是,计算机源于人类的创造,计算机不具有自然属性。因此,其教学内容从基本的数制到复杂的数据抽象表达,从逻辑结构到系统组成,从芯片到网络,知识构成极为庞杂。

不可否认的是,由于计算机技术发展很快,计算机基础课程教学内容的更新,包括教材的编写往往滞后。许多高校的课程教学在一定程度上还是围绕“旧知识”进行教学组织,这也是计算机基础教学备受质疑的问题之一。因此,要夯实计算机基础教学课程在大学教学中的基础地位,最重要的是要有科学的知识体系、相对稳定的知识结构,这是基础课程的基本要素。计算机基础教学既然作为基础,必然需要有相对稳定、体现计算机学科核心思想和方法的内容,同时也需要反映新技术的发展状况。没有核心、稳定的教学内容,有限的课时无法应对不断更新的技术,教师也将疲于跟踪和更新教学内容。死抱陈旧的知识,使教学内容脱离实际,专业应用的培养目标也很难实现。因此,计算机基础教学的核心内容是什么,是今后基础教学改革需要重点关注的方面。由于计算机基础课程知识构成庞大,像程序设计这类内容包含着学生陌生的思维方式,这种特点就导致教学过程不自觉地步入难教、难学的圈子。不恰当的教学过程不但使得学生对计算机产生距离,也使得其不能够正确认识计算机,更谈不上更好地运用计算机解决专业问题。因此,计算机基础课程教学方法的改革同样面临着重大挑战。

三、计算机基础教学的核心任务是计算思维能力的培养

计算机技术的发展日新月异,计算机基础课程的教学内容涉及面广,知识更新快。虽然广大计算机基础课程的教师近年来从未间断教学内容的更新,但如何在有限的教学时间内完成内容宽广的大学计算机基础教学目标,仍然是近年来困扰广大从事大学计算机基础教学的教师们的核心问题。因而,合理地定位大学计算机基础教学的稳定、核心的教学内容,形成大学计算机基础教学科学的知识体系、稳定的知识结构,让计算机基础教学成为名副其实的大学基础课程,是大学计算机基础教学改革的重要方向。C9会议认为,“计算思维”能力的培养正是大学计算机基础教学的核心任务。1.什么是计算思维

美国卡内基·梅隆大学周以真(Jeannette M.Wing)教授认为[3],计算思维(Computational Thinking)是运用计算机科学的基础概念去求解问题、设计系统和理解人类的行为;计算思维的本质是抽象(Abstraction)和自动化(Automation)。如同所有人都具备是非判断、文字读写和进行算术运算一样,计算思维也是一种本质的、所有人都必须具备的思维能力。有学者认为,计算思维被归纳、提出,可能是近十年来计算科学和计算机学科中最具有基础性的、长期性的重要的学术思想。

事实上,计算思维的核心是基于计算模型(环境)和约束的问题求解。计算机学科是研究计算模型、计算系统的设计以及如何有效地利用计算系统进行信息处理、实现工程应用的学科,涉及基本模型的研究、软件硬件系统的设计以及面向应用的技术研究与工程方法研究。虽然计算机学科研究涉及面广,但其共同特征还是基于特定计算环境的问题求解。比如,计算机科学基础理论研究实际上是基于抽象级环境(如图灵机)的问题求解,计算机硬件体系的设计与研究则是一种指令级的问题求解,程序设计是基于语言级的问题求解活动,系统软件设计与应用软件设计则是种系统级的问题求解。因此,可以认为,计算思维的本质特征是基于不同层次计算环境的问题求解。而不同层次计算环境的问题求解行为,也反映了计算机学科的三种不同形态:科学、技术与工程。

如果说计算思维的本质特征是基于计算模型(环境)和约束的问题求解,那么计算思维就必然要涉及怎么构建计算环境以及如何进行问题求解,更进一步地怎么验证问题求解方法的有效性与正确性。因此,计算思维的核心方法就是“构造”,不仅构造计算环境,而且构造基于计算环境的问题求解过程,以及构造对问题求解过程的验证方法。我们不妨称这三类构造为:对象构造、过程改造、验证构造。

IEEE-CS与ACM计算教程联合工作组推出的《CC2001教程》[4],提出了计算机学科核心的12个重复出现的基本概念。这些基本概念实际上反映了计算机学科最核心的方法与原则。我们认为,这12个概念其实就是针对对象构造、过程构造和验证构造的不同的方法与原则。对象构造:概念和形式化模型、演化、抽象层次;

过程构造:绑定、按空间排序、按时间排序、重用、折中和结论; 验证构造:大问题的复杂性、一致性和完备性、效率、安全性。因此,计算思维也反映了计算机学科最本质的特征和最核心的方法。

计算思维也是一种不同于数学思维、工程思维、逻辑思维的思维方式,具有其独有的特征。数学思维注重对象以及对象之间的关系;逻辑思维注重关系以及推演;工程思维注重工程的过程以及方法;而计算思维则注重计算的状态(环境、约束)及其状态的演化过程。2.计算思维能力培养是计算机基础教学的核心任务 从计算机基础教学能力培养目标看。在教育部高等学校计算机基础课程教学指导委员会提出的计算机基础教学4个方面的能力目标中[1],涉及计算机学科专业能力的是:对计算机的认知能力和应用计算机的问题求解能力。这两方面的能力恰好反映了计算思维的两个核心要素:计算环境和问题求解。

从计算机基础教学的内容看。其知识体系涉及4个知识领域[1]:系统平台与计算环境、算法基础与程序设计、数据管理与信息处理、系统开发与行业应用。“系统平台与计算环境”知识是计算思维所依赖的计算环境基础;“算法基础与程序设计”涉及语言级的问题求解;“数据管理与信息处理”知识涉及与专业应用相关的信息处理技术,是系统级问题求解的基础,也往往成为语言级问题求解的目标;而“系统开发与行业应用”知识则直接涉及面向应用的系统级问题求解技术与方法。

从通识教育应有的特征看。复旦大学校长杨玉良认为[5],通识教育应该有以下特征:第一,通识教育要同时传递科学精神和人文精神;第二,通识教育要展现不同文化、不同学科的思维方式;第三,通识教育要充分展现学术的魅力。因此,计算思维能力不仅是计算机基础教学培养的核心能力,而且还涉及计算机基础教学的核心知识内容。计算机基础教学不仅要培养学生对计算环境的认识,更重要的应该培养学生掌握在计算环境下的问题求解方法,这是今后学生应用计算机技术解决专业问题的重要基础。另外,计算思维能力的培养还展现了计算机学科独特的思维方式,为将来创新性地解决专业问题奠定基础。

以计算思维能力培养作为计算机基础教学的核心任务,不仅紧紧围绕现有计算机基础教学的根本任务和核心知识内容,而且反映了计算机学科的本质,也体现了通识教育应有的特征。显然,这样的教学定位,不仅摆脱了以“操作技能”培养学生计算机能力造成的“危机”,也更好地诠释了课程建设的目标,更好地体现了计算机基础课程的基础特征。

四、围绕计算思维进行课程建设的基本思路

C9会议把计算思维能力的培养作为计算机基础教学的核心任务,并不意味着需要将现有的计算机基础教学课程体系和教学内容“推倒重来”;而需要以现有的计算机基础教学培养目标和内容为基础,从计算思维能力培养的要求角度,重新组织和梳理教学内容乃至课程体系,突出体现思维能力的培养。同时,计算机基础教学应该有别于计算机专业教学,不可能也没必要涉及计算思维的方方面面,应该面向各专业计算机应用需求,培养学生基本的计算思维能力。下面,我们针对现有的计算机基础核心课程,探讨以计算思维能力培养为核心的课程改革初步思路。

1.大学计算机基础

目前,该课程是绝大多数高校计算机基础教学的入门课程,也是备受争议的一门课程。近年来,许多高校对大学计算机基础课程内容进行了大力度的改革,突破了过去那种以操作为主的教学模式,取而代之的是更多地教授计算机系统知识,包括系统组成和结构、软件和网络等基础知识,突出课程的基础性。由于高中阶段信息技术课程的逐步普及,许多大学新生已经具备了一定的计算机操作能力,因此本课程相关的操作性内容可以被简化或者纳入自学内容。

一直为人诟病的大量的计算机名词、设计细节往往使大学计算机基础的教学过程变得琐碎、教学难度加大,因此可以梳理和删减,突出核心的基础内容。例如磁盘数据只需要知道存储原理和工作过程,了解格式化,而不拘泥于磁道、扇区、柱面等。另外,也可以考虑将有关抽象表达与自动执行的计算机思维的概念予以体现,通过一些典型的、易于理解的实例来解释计算机是如何进行算法设计,以及算法与数学方法的异同,有助于学生加深对计算思维的理解。总之,该课程可以以分析基本的计算环境(如硬件系统、软件系统、网络、计算的社会影响)的构成和基本原理为主,同时介绍抽象级问题求解的基本方法,如图灵机、基于抽象指令的简单程序设计、算法概念等,使学生在对计算系统及环境有所了解的同时,初步体会计算机问题求解的基本方式。2.程序设计基础

尽管我们知道计算科学不等于程序设计,但不可否认的是,学习程序设计方法是理解计算机的最好途径。

对大多数非计算机专业的学生而言,学习程序设计的目的是学习计算机分析和解决问题的基本过程和思路,而不是成为程序员。显然,程序设计课程的内容也最能够体现语言级的问题求解方法,是计算思维能力培养的重要内容。程序设计课程教学过程中,很容易陷入语言表达形式的误区,尤其是许多考试内容偏重语言而不是编程,这和课程的教学目的是相悖的。在将计算思维的培养作为教学核心任务的教学过程中,一定要走出这个误区。该课程的教学应该突出体现使用编程解决特定问题的方式,即程序设计方法,而不是语言本身。另外,在这门课程的教学实施中要特别注重实践,要使学生通过实践确实感受和领悟计算机问题求解的基本方法和思维模式。3.数据库技术及应用、多媒体技术及应用

数据库技术及应用、多媒体技术及应用等课程是计算机基础教学“数据管理与信息处理”知识领域的核心课程,也是与各专业应用结合比较紧密的应用技术基础课程。这些课程的教学,一方面要突出相应领域问题求解的核心思路和基本技术与方法(如:数据库的数据组织与查询,多媒体的信息编码、处理与传输),另一方面需要通过小规模的应用系统设计与实现,使学生领悟应用系统级的问题求解方式。

4.微机原理与接口技术、计算机网络技术及应用

这两门课程是计算机基础教学“系统平台与计算环境”知识领域的深入课程。“微机原理与接口技术”针对的计算环境是微型计算机系统,既涉及指令级的问题求解又涉及系统级(硬件系统)的问题求解。“计算机网络技术及应用”针对的计算环境是网络,涉及系统级(网络应用系统)的问题求解。这两门课程的教学,一是要把握相应计算环境(微机系统、网络)的构成和运行机理,二是通过讲授相应环境上的应用开发方法,使学生初步领悟计算机系统级的问题求解方法。总之,从培养学生计算思维能力的角度看,计算机基础教学不仅培养学生对计算环境的认识,更重要的是培养面向典型计算环境的问题求解方法。包括:初步了解抽象级的问题求解方法,掌握语言级的问题求解技术,并根据专业的应用特征了解或掌握应用系统级或计算机系统级的问题求解方法。

将计算思维能力培养作为计算机基础教学的核心任务,是一个较为长期的过程,也是需要我们不断探索、努力实践的过程。我们期待经过几年的努力,九校联盟(C9)能够在以计算思维能力培养为核心任务的计算机基础教学课程体系、教学内容、实践体系、教材等方面有长足的进展,为全国高校计算机基础教学的建设、改革探路,为培养拔尖创新人才作出应有的贡献。参考文献:

[1] 教育部高等学校计算机基础课程教学指导委员会.高等学校计算机基础教学发展战略研究报告暨计算机基础课程教学基本要求[M].北京:高等教育出版社,2009.[2] John Ziman.Real Science-What it is and What it means[M].上海:上海科技教育出版社,2008:178.[3] Jeannette M.Wing.Computational Thinking[J].Communications of ACM, 2006, 49(3): 33-35.[4] 中国计算机科学与技术学科教程2002研究组.中国计算机科学与技术学科教程[M].北京:清华大学出版社,2002.[5] 杨玉良.实施通识教育,培养未来社会中坚[Z].教育部直属高校工作咨询委员第二十次全体会议大会交流发言材料,2010.[责任编辑:余大品]

第二篇:计算教学与思维能力培养

思维能力是智力的核心,培养学生[此文转于斐斐课件园ffkj.net]的思维能力,一直是数学教育最传统、最重要的目的。思维能力包括推理能力(合情推理能力和演绎推理能力)、抽象能力、概括能力等等。《数学课程标准》中明确指出,要发展学生的推理能力,主要表现在:能通过观察、实验、归纳、类比等获得书学猜想(即合情推理能力),并进一步寻求证据、给出证明或举出反例(即演绎推理能力);能清晰有条理地表达自己的思考过程,做到言之有理、落笔有据;在与他人交流的过程中,能运用数学语言合乎逻辑地进行讨论与质疑。

如果说数学是思维的体操,那么计算就是体操的基本动作,因为学数学总是离不开计算。以前的计算教学,总是教师先把计算方法传授给学生,然后学生按照方法进行大量的、机械的计算练习,目的是计算结果正确,最终把学生培养成了计算的工具。所以一提到计算总是联想到枯燥。在课程改革的今天,我们必须转变观念,激发学生主动参与探究计算法则和算理的形成这一活动过程,引导学生主动建构知识,培养学生[此文转于斐斐课件园ffkj.net]的思维能力。那么如何在计算教学中培养学生[此文转于斐斐课件园ffkj.net]的思维能力呢?《标准》中指出数学教学是数学活动的教学,所谓数学活动就是指观察、类比、猜测、实验、分析、综合、归纳、验证、推理、概括、想象、交流、反思等。思维能力就是在数学活动中培养。

一、创设活动情境,激活学生思维。

计算教学为避免枯燥,要创设与学生生活环境、知识背景密切相关的,又是学生感兴趣的数学活动情境,让学生在观察、类比、猜测等活动中体会知识的来源,激发探究的兴趣。学生不是等待填满知识的容器,而是等待点燃的火把。学生也不是一张白纸,即使是低年级儿童也有着自己的数学活动经验,所以创设情境要有利于唤起学生已有的数学活动经验,激发学生的兴趣,为下一步自主探究计算法则和算理的形成搭建思维的平台。如,教学有余数的除法7÷3=?,先不呈现算式,因为学生已经有6÷3=2的数学活动经历,所以创设这样的情境:有6个梨,如果每3个放一盘,能放几盘?如果平均放在两个盘里,每盘放几个?然后改为:有7个梨,如果每3个放一盘,能放几盘?还剩几个?如果平均放在两个盘里,每盘放几个?还剩几个?让学生动手摆一摆,建立表象,为下一步探索有余数除法的求商方法作准备。这样学生在一个现实的、有趣的问题情境中学习计算,比单纯的为计算而计算思维活跃多了。

二、参与活动过程,发展学生思维。

计算法则和算理属于抽象的知识,而学生的思维则已形象思维为主,如何有效地解决数学知识的抽象性与小学生形象思维为主之间的矛盾?就让学生动手操作,参与活动过程。动手操作的过程是一个手脑并用的过程,是培养学生[此文转于斐斐课件园ffkj.net]技能、技巧,促进思维发展的一种有效手段,所以说儿童的智慧在他的手指尖上。教学中教师可以充分利用教具演示、学具操作、电化教学手段,为学生提供更多的参与机会,尽量让学生不仅用眼看,还要动手、动口、动脑,多种感官协同活动。这样既使学生的思维随着动手操作活动而展开,又使一些抽象的数学知识变为学生容易接受的形象直观的生活常识。如,(1)在教学“9加几的加法”时,让学生摆小棒。左边摆9根小棒,右边摆4根小棒,把它们合起来是多少根小棒?怎样摆才能让别人一眼看出是多少?在操作过程中,放手让学生自己摆,说过程,然后再利用现代化教学手段给学生演示一遍,这样不但培养了动手能力,同时发展了学生的思维能力。(2)教学一个数乘分数的计算法则时,教师先出示题目:“一台拖拉机每小时耕地8000平方米,5小时耕地多少公顷?”然后再出示题目:“一台拖拉机每小时耕地8000平方米,3/4小时耕地多少公顷?”引导学生对两道题目进行观察、类比,从而推出算式:8000×3/4。如何来计算呢?学生可能回有不同的算法,比如把3/4变成小数,8000除以4再乘3,或应用书上的方法等,先鼓励学生算发多样化,再引导学生优化方法。最后出示题目:“一台拖拉机每小时耕地4/5公顷,3/4小时耕地多少公顷?”完全放给学生自主探索,然后演示计算过程,最后让学生讨论归纳出分数乘以分数的计算法则。这样,学生得到的不仅仅是法则。(3)教学商不变性质,先出示一组算式:6÷3=260÷30=2600÷300=2让学生观察有什么规律,接着大胆猜想:是不是所有的除法算式都有这样的规律呢?然后举例验证,最后归此文转自斐.斐课件.园ffkj.net纳出商不变的性质。学生的思维刚趋于平衡,教师接着再打破这个平衡,提出有余数的除法有没有这样的性质呢?学生就会按捺不住要去验证了。如:7÷3=2„„1,70÷30=2„„10,700÷300=2„„100,最后得出商不变,但余数变(这是在整数范围内的说法)。如果学生对余数变不太理解的话,可以再通过摆小棒图片帮助理解。

二、反思活动过程,拓展学生思维。

反思,简单的说就是对过去经历的再认识,数学学习中的反思就是对原有学习经历的回顾、重新思考。弗赖登塔尔强调:“反思是数学的重要活动,它是数学活动的核心和动力。”反思是发现的源泉,是训练思维、优化思维品质、促进知识同化和迁移的极好途径。学生参与数学活动之后,教师要引导学生去反思提出问题、解决问题的过程,从而获得解决问题的经验。反思的内容主要有:对自己的思考过程进行反思,对解题思路,分析过程,运算过程,语言的表述进行反思,对所涉及的数学思想方法进行反思等。教师可以提出一些针对性的具体启发性的问题引导学生主动反思探索的过程。如,今天学习的是什么知识?我学会了多少?我是怎么学会的?还有什么模糊的地方?对书中的哪些地方还存在疑问?等等。然后再组织全班交流反思。通过多方交流,可以集思广益、取长补短,同时也能获得更多的学习信息量。在交流反思中,思维能力得到了拓展。

总之,培养思维能力贯穿于计算教学的始终,教师要充分调动学生的各种感官,在数学活动中开展计算教学,在计算教学中培养思维能力,充分发挥计算教学在思维体操中的作用。

第三篇:操作系统教学中的计算思维能力培养

操作系统教学中的计算思维能力培养

计算思维是指运用计算机科学的思想和方法来求解问题、设计系统和理解人类行为。计算思维所关注的是将计算机学科解决问题的方式应用于其他学科和人们的日常生活中。计算思维自从被周以真教授清晰而系统地提出后,如何培养学生的计算思维能力已经成为教育界与众多学者关注的热点问题。计算思维是涵盖了计算机科学之广度的一系列思维活动。它与计算机和计算技术密切相关,系统化计算思维能力的培养可以贯穿在课程教学中,计算机专业教育应该在计算思维能力培养方面做出表率。

新教学目标的确立

作为计算机系统中核心、复杂的系统软件,操作系统管理着计算机中的各种软件和硬件资源,并在用户与计算机之间起到桥梁作用。国内外高校都将操作系统设置为计算机科学与技术、软件工程等专业的核心课程。

在以往的教学模式中,计算思维的诸要素已经或多或少地渗透到操作系统课程的培养方案和教学大纲中,但因计算思维的概念和培养目标不甚明朗,故执行的效果亦不甚理想。因此在计算思维被明确提出后,计算思维能力的培养也应该随之具体化、清晰化,并将其提升为操作系统课程教学中的一个新的教学目标。

计算思维能力的培养

计算思维的本质是抽象和自动化。计算思维对客观世界进行抽象化表述与研究,并将这个过程用自动化方式实现出来。操作系统的设计原理在很多地方体现了这种抽象、启发式推理、并行处理以及折中的思想。因此在课程教学中,教师应该引导学生体会其中的思想,从而培养学生的计算思维能力。

2.1 抽象思维

抽象思维的本质是运用分析、判断、推理、比较等方式抽取事物本质或共性的思维。对计算机系统资源的抽象,使用户不必了解下层实现细节。抽象模型层次越高,系统功能就越强。例如,图1所示为操作系统的抽象层次结构,是实现计算机的普适化方法,在i/o设备上铺设i/o管理软件。为了支持文件共享,保证信息安全,在i/o管理软件之上铺设文件管理软件。这两层软件分别隐藏了对i/o设备和文件管理操作的具体细节。当在文件管理软件层之上再铺设窗口管理软件后,用户可在窗口环境中方便地使用计算机。

操作系统课程教学中的抽象思维培养为引导并启发学生从原因、作用对象、作用范围和结果等角度来分析进程调度、页面置换和磁盘调度三者的共性。经分析发现,它们都是由进程的选择引起的。在进程争夺处理机时,引起进程调度;在进程发生切换时,引起页面置换;在进程需要磁盘上的资源时,引起磁盘调度。

在教学过程中对教学内容进行分析并加以推理,寻找共性的学习方式,不仅有助于培养学生的抽象思维能力,也有助于学生理解知识内容以掌握知识点之间的联系。

2.2 启发式推理思维

在操作系统课程教学中认真组织教学内容、分析管理对象和任务的特点、逐步提出合理解决方法,可以培养学生的启发式推理思维。

在多道系统中,进程数目往往多于处理机数目,因此处理机就成为了进程竞争的主要资源。在进程调度策略教学中,首先引入符合人类思维模式的先来先服务策略。该策略算法简单,容易实现,但短进程的周转时间往往过长,导致系统吞吐量下降。针对先来先服务策略的不足,引入短进程优先策略。该策略使进程平均周转时间减少,系统吞吐量增加,但短进程优先策略没有考虑到进程任务的轻重缓急。按任务的工作特点设置进程的优先级,级别高的进程优先使用处理机,即为高优先权调度算法。如果进程的任务紧急程度、使用时间等接近,引入时间片轮转调度策略,让进程轮流在处理机上执行一个时间片。

培养学生的启发式推理思维还可从相似情景人手。针对与处理机资源数目少于进程数目类似的现实存在情景银行柜台服务,采用启发式推理,接近现实情况。银行柜台有限,在客户很多的情况下,可以采用先来先排队服务模式;有些客户办理的业务费时较多,为了提高客户整体满意度,可为此类客户开设另一类服务窗口;有些客户经常办理金额较大的业务,为照顾这类对银行效益影响大的群体,设置vip客户。

利用现实存在的情景实例进行启发式推理,有助于培养学生合理的启发式推理能力,可以达到快速找到符合实际且合理的解决方法的目的。在进程运行时,若所访问信息不在内存中,需将它们调入内存。如果内存无可用空间时,系统必须按照页面置换算法从内存中调出一页。为了找到多任务共享的磁盘中的信息,需根据磁盘调度算法查找。操作系统中页面置换算法、磁盘调度算法与进程调度算法的启发式推理思维举例见表1。

2.3 并行处理思维

并行处理思维是一种最大化合理利用资源的思维。并发处理是并行处理思维的产物,它的出现是不可避免的。

存储程序式计算机是以顺序计算为基础的计算机。为了充分利用计算机系统资源,要在顺序计算为基础的计算机系统中引入并发处理。例如,在进程a使用处理机进行计算后,需要输入时,处理机处于闲置状态,i/o设备处于工作状态。此时可采用进程调度算法使其他就绪进程b使用处理机计算。i/o设备与处理机的关系见图2。同一时刻,处理机与i/o设备都处于活动状态。当进程b需要输入时,若进程a就绪,调度就让进程a占用处理机继续计算。对同一个资源,在同一时刻,只有一个进程处于工作状态,见图3。

并行思维可应用到人们的学习、生活、工作中。例如,工作中为提高效率,需要在最短的时间内完成所有工作。当一个工作做到中途需要等待时,可先去做其他工作,直至这个工作可继续执行。

2.4 折中思维

折中思维是培养一种综合各种因素影响,最终达到最好效果的思维能力。在遇到二者或多者不可兼得的情况时,应利用联想、发现,使用折中思维创造性的解决问题。操作系统在设计时,参数选择、算法设计和使用的环境等都需要寻求折中点。观察世界上的著名建筑也会发现,它们大都采用取众家之长的方式创造自己独一无二的风格,这是一种高水平折中。学生在利用联想、发现培养得到的折中思维创造性解决问题的同时,会深刻理解折中思维的内涵。

结语

计算思维的概念清晰化后,已在人们的科学研究、生产和学习中起到越来越明显的作用。培养具有计算思维素养的现代化人才势在必行。在操作系统教学中,将培养计算思维能力作为教学目标,既有利于系统地培养学生中的计算思维能力,又有利于学习、理解操作系统的基本原理与方法。

第四篇:基于计算思维能力培养的程序设计课程教学模式

基于计算思维能力培养的程序设计课程教学模式

摘 要 在对计算思维、非计算机专业学生的学习特点以及程序设计课程教学特点研究的基础上,提出了“三位一体两重点”的程序设计课程教学模式,旨在帮助学生建立计算机问题求解意识、提高综合应用能力,培养学生的计算思维。

关键词 计算思维 程序设计 计算机基础教育

中图分类号:G424 文献标识码:A DOI:10.16400/j.cnki.kjdkz.2015.06.050

Teaching Mode of Computer Programming Course Based on

Ability Training of Computational Thinking

LI Ruifang,WANG Lili,LIU Jinyue,WANG Yueping,SHI Guiying

(School of Computer & Information Technology,Northeast Petroleum University,Daqing,Heilongjiang 163318)

Abstract Based on the research of computational thinking,learning characteristics of non-computer professional students,and teaching characteristics of computer programing course,the teaching mode of “three aspects-one center-two key” is put forward,which aims to help students to establish the sense of solving problem by computer,improve the comprehensive application ability,and cultivating computational thinking of students.Key words computational thinking;programming;computer basic education

自2006年3月,卡内基?梅隆大学的周以真教授系统地阐述了计算思维的概念;2010年7月“九校联盟(C9)计算机基础课程研讨会”发表联合声明把“计算思维能力的培养”作为计算机基础教学的核心任务以后,计算思维得到了国内计算机基础教育界的广泛重视。①程序设计课程是我校非计算机专业学生普遍开设的一门必修课和基础课,蒋宗礼教授、龚沛曾教授、何钦铭教授和冯博琴教授一致认为程序设计课程是计算思维能力培养的重要内容,对计算思维能力的培养具有重要作用,是典型的计算思维课程。②③④⑤因此,如何在程序设计课程中培养学生的计算思维能力,帮助学生建立计算机问题求解意识,使程序设计课成为名副其实的传授基本知识、提高应用能力、培养计算思维的大学通识教育课程成为新形势下亟需解决的问题。因此,笔者在对计算思维、非计算机专业学生的学习特点以及程序设计课程教学特点研究的基础上,提出了“三位一体两重点”的程序设计课程教学模式,全面培养学生的计算思维能力。计算思维

计算思维最早是由麻省理工学院的Seymour Papert教授于1996年提出的,而把它提到前台,引起人们广泛关注的是美国卡内基?梅隆大学的周以真教授。⑥2006年3月,周以真教授在ACM会刊《Communications of the ACM》上提出了计算思维的概念。周教授认为,计算思维是运用计算机科学的基础概念进行问题求解、系统设计以及人类行为理解等涵盖计算机科学之广度的一系列思维活动。⑦计算思维能力是指人们运用计算思维方法进行思考的能力,通常是通过引导人们学习、掌握这种思维方法,有效地将其用于问题的求解,以达到培养他们的计算思维能力的目的。⑧“三位一体两重点”的教学模式

在对非计算机专业学生的学习特点和需求特点、程序设计课程的教学特点研究的基础上,笔者提出“三位一体两重点”的计算思维能力培养模式,即以学生为主体,着眼于算法思维和系统思维两个重点,从“理论―实践―考核”三个方面,选择正确的教学内容,运用恰当的教学模式与考核方法,将理论与实践紧密结合培养非计算机专业学生的计算思维能力。

2.1 改进课堂教学,推进计算思维能力的培养

针对以往程序设计课程中重语法、轻算法;重基础、轻应用;重统一要求,轻个性发展;学生机械模仿、独立思考和灵活应用能力差等问题,在教学过程中以计算思维中的算法思维和系统思维的培养为契机,对现有教学目标和教学内容进行了重新组织和梳理。算法思维和系统思维是两种重要的计算思维,是利用计算求解具体问题的两大关键点。算法思维的教学重点是设计算法,设计可实现的算法,设计可在有限时间与空间内执行的算法,设计尽可能快速的算法;系统思维的教学重点是设计和实现系统,即系统的构造。⑨在程序设计课堂教学中,强化这两种计算思维,主要包括:

(1)在大一上学期开设的大学计算机基础课程中,对算法的基本概念以及经典的算法策略、算法的评价与分析进行简单讲解,为程序设计课程中讲算法奠定一定的基础。

(2)在程序设计课程的初级阶段,讲课的重点放在分析问题和对问题进行抽象方面。选择一些趣味性强的贴近实际的案例,引导学生体会利用计算机解决问题的思路和方法,着眼于算法,采用案例法、探究法等多种授课模式,培养学生的计算思维和编程兴趣。

(3)在程序设计课程的后期,讲解一些综合性的应用程序。经过前期的学习,学生已经学到了一些零散的基础知识,但对于程序缺乏综合性的感受,“只见树木,不见森林”,因此,课堂上会讲解一些综合性的程序,例如VB程序设计课程可以讲解记事本程序,将菜单、状态栏、通用对话框、文件的读写等知识融合到一体,编写成为一个实用的小程序;同时还可以编写一个画图程序,将图片框、Toolbar、ImageList、画图方法、命令按钮、菜单等融为一体,实现直线、曲线、圆、矩形的动态绘制。逐步培养学生编写综合性应用程序的能力,提高学生的系统思维能力。

2.2 加强实践环节,强化计算思维能力的培养

充分考虑非计算机专业学生的认知能力和习惯,规划上机实践环节的实验流程、实验形式和实验内容。题目先易后难,教师课堂导学和学生自主探索相结合;注重基础同时培养兴趣,必做和选做相结合,使学生通过科学的上机实践环节,体会和理解计算机求解问题的方法和思维模式。

(1)加强学生对上机实验重要性的认识。程序设计课程是一门理论与实践并重,既注重基础知识又需要反复实践的课程。在第一节理论课上,就要和学生讲清楚,程序设计不是听会的,也不是看会的,而是练会的,从而使他们认识到上机实践的重要性,在实践的同时,提高学生发现问题、解决问题的计算思维能力。

(2)精心组织实验内容,强化计算思维。实验内容不仅仅是理论课堂所授知识的简单复习,还要给学生留出创新的空间。所以每节实验课安排7道实验题目,前4道为基础知识,是每个学生必须掌握的内容,旨在使学生通过实验,加强对课堂讲授内容的巩固与理解;后3道为具有一定难度和综合性的题目,旨在让基础较好、能力较强的学生在掌握基础知识的基础上,学会自己分析问题,能灵活地利用所学知识解决相关问题。而且所有的题目都安排了相应的思考题,使学生在解决既有问题的情况下,能举一反三,解决类似的问题,达到知识的活学活用。同时,鼓励学生探索用多种方法解决实验题目,比较优劣,激发学生大胆创新,变被动接受为主动学习,培养学生的计算思维能力。为了提高学生的学习兴趣,还增加了一些学生感兴趣的实际问题,比如在分支程序结构中,安排电话费用计算问题;在循环部分,安排了信息加密、解密的实验内容等。

2.3 完善考核制度,促进计算思维能力的培养

学习考核是检查和评价学生学习效果的重要手段,考核的方式在很大程度上决定了学生的学习态度和学习方法。为了培养学生的计算思维能力的培养,采取了以下措施:

(1)在期末的无纸化考试中,尽量减少对基本概念、语法细节的考核,增加对使用计算机求解问题的思维模式与方法的考核。

(2)增加对学生学习过程中的考核,例如增加现场编程求解问题、课堂问答等考核方式,在潜移默化中培养和提高学生的计算思维能力。

(3)增加小组作业,学生自愿分组、自主选题完成综合性的程序。充分调动学生的主体能动性,培养学生的团队合作能力和综合应用能力。结语

“三位一体两重点”的教学模式,依托学生这一主体,着眼于算法思维和系统思维能力的培养,从“理论―实践―考核”三个方面进行改革,有利于挖掘学生学习的主体能动性,提高学生的学习兴趣,有助于学生体会、理解和领悟计算机求解问题的方法和思维模式,培养学生的计算思维能力。当然,学生计算思维能力的培养不是一门课就能彻底解决的问题,因此,要不断地总结经验,将有效的方法推广到其他的计算机基础课程中,真正地全面提高学生的计算思维能力。

基金项目:黑龙江省高等教育学会“十二五”高等教育科研课题(14Q066)

注释

①②龚沛曾,杨志强.大学计算机基础教学中的计算思维培养[J].中国大学教学,2012(5):51-54.③⑧蒋宗礼.计算思维之我见[J].中国大学教学,2013(9):5-10.④ 何钦铭,陆汉权,冯博琴.计算机基础教学的核心任务是计算思维能力的培养――《九校联盟(C9)计算机基础教学发展战略联合声明》解读[J].中国大学教学,2010(9):5-9.⑤ 冯博琴.对于计算思维能力培养“落地”问题的探讨[J].中国大学教学,2012(9):6-9.⑥ 李廉.计算思维――概念与挑战[J].中国大学教学,2012(1):7-12.⑦ 陈?h.基于计算思维的中学信息技术教育的研究[D].扬州大学,2012.⑨ 聂兰顺,战德臣,宋巧红.计算思维的教学内容与方法研究――以“算法”和“系统”两种问题求解的计算思维为例[J].工业和信息化教育,2013(6):21-27.

第五篇:培养抽象思维能力 发展数学核心素养

培养抽象思维能力

发展数学核心素养

[摘 要]新课改要求数学教学注意培养学生的数学核心素养.研究培养数学核心素养的方法具有现实意义.[关键词]抽象思维能力;核心素养;培养

[中图分类号] G633.6 [文献标识码] A [文章编号] 1674-6058(2018)17-0021-02

抽象思维作为中学生数学核心素养之一,对学生学习数学有着很大的帮助,它不仅可以深化学生对知识本质的理解,而且可以提高学生解决数学实际问题的能力.在实际教学过程中,教师应该探究有效的教学方式培养学生的抽象思维能力,发展学生的数学核心素养,帮助学生有效地学习数学.一、应用形象,认识本质规律

形象思维是培养学生抽象思维过程中的“垫脚石”.要培养学生的抽象思维,我们可以采用合适的教学方式去发展学生的形象思维.同时,形象思维可以帮助学生丰富心理活动,进而有助于学生探究理论知识的本质及其规律.因此,在教学过程中,教师可以采用适当的教学方法,引导学生运用形象思维认识知识的本质.例如,在教学初中数学人教版九年级下册《三视图》时,教师可以利用提前准备的方块让学生进行立体图案的搭建.学习《三视图》,要求学生有空间想象能力.但是,很多学生的空间能力并不足以应付《三视图》提出的要求.鉴于这种情况,教师提前准备好一些木块,教师利用这些木块搭建出课本上的立体图形,让学生实地的体验立体图形的正视图、侧视图和俯视图.搭建出实体的立体图形,对于学生绘制三视图有很大的帮助.直观的演示可以让知识变得更加形象,从而降低了学生思维的难度,轻松地提升学生的思维能力,培养学生的数学核心素养.二、借助参数,开展形式运算

借助参数,开展形式运算是指在具体运算过程中,利用字母代替未知数进行运算的过程.形式运算有别于具体运算,是一种抽象的运算形式.因此,形式运算也是锻炼学生抽象思维的一种有效方法.因此,在数学教学中,我们可以引导学生去利用参数进行形式运算,进而锻炼学生的抽象思维能力,提高学生的数学核心素养.例如,在教学初中数学人教版七年级上册《一元一次方程》前,教师给学生列出这样一道题:两辆车同时从A地出发,沿同一条公路同向行驶,甲车的行驶速度为70 km/h,乙车的行驶速度为60 km/h,甲车比乙车早1 h经过B地,请问A、B间的路程是多少?只有几位学生给出了问题的答案.这时,教师并没有立即给学生讲解这道题的解决方法,而是开始了课本内容的讲解.在教学任务完成后,教师让学生重新思考这道题,很快学生便利用参数x给出了解决问题的式子:假设甲车从A地到B地行驶的时间为x h,则70x=60(x+1),解这个式子得出x=6,那么A地与B地之间的路程就为70×6=420(km).在实际教学过程中,利用假设进行形式运算的方法,具有普遍适用性.这种方法可以快速帮助学生解决实际问题,有效地锻炼学生的抽象思维能力,提升学生的数学核心素养.三、实验操作,发挥表象作用

表象就是指人们思维意识里对一种客观事物的客观印象,它不仅具有一定的形象性,还具有一定的概括性.同时,它可以反映客观事物的主要特点和关键特性,还可以反映一类事物的共同特征.因此,在实际数学教学过程中,我们可以通过引导学生观察、操作、实验等方法调动学生的感知,充分发挥表象的作用,以提高学生的抽象思维能力,提升学生的数学核心素养.例如,在教学初中数学人教版八年级下册《勾股定理》时,为了能够让学生对其理解和记忆更加深刻,教师让学生亲自动手验证勾股定理的正确性.学生在实验操作过程中,教师进行巡视,发现他们普遍运用了两种方式进行验证.第一种方法是根据勾股定理计算出三角形的三边长,然后利用直尺画出三角形,最后利用量角器测量最长边的对角是否等于90度;第二种方法是先在纸上画出一个三角形,然后用直尺测出三角形的三边长,最后把长度代入勾股定理的式子中验证是否符合.这两种方法均是验证勾股定理的好方法.学生最后得出的结果是在误差允许的范围内,勾股定理是正确的.通过让学生验证勾股定理的准确性,极大地激发了学生的学习兴趣,课堂上学生都听得很认真,教学效率得到极大的提升.表象思维是形象思维向抽象思维过渡的重要阶段.在实际数学教学中,通过引导学生进行实验操作,可以有效丰富学生的感知,进而调动学生的表象思维,提高学生的抽象思维能力,提升学生的数学核心素养.四、逐层深入,尝试解决问题

利用抽象思维可以帮助学生发现真理,解决实际问题.对学生抽象思维的培养需要教师一步一步地引导,逐层深入,使学生能够跨越具体形象思维,学会利用抽象思维解决实际问题.例如,在教学初中数学人教版八年级上册《三角形全等的判定》时,教师首先逐个分析能判定三角形全等的条件,然后让学生在练习中进行巩固.教师先在黑板上写下能判定三角形全等的所有条件:角角角(AAA)、角角边(AAS)、角边角(ASA)、角边边(ASS)、边角角(SAA)、边角边(SAS)、?边角(SSA)、边边边(SSS);接着,把其中重复的条件:ASS、SAA删除,然后利用举反例的方法把其中的非判定条件删除.根据以往的教学经验,学生很容易把判定定理“角角边(AAS)”和非判定定理“边边角(SSA)”混淆,所以教师在举反例的过程中着重对“边边角(SSA)”进行讲解.教师在黑板上画一个三角形,然后依次用彩色粉笔标出S、S、A,紧接着再以两边夹角的顶点为圆点,以已知角对边的长度为半径,过第三条边画弧,这时可以看到圆弧与第三边有两个交点,也就是说当“SSA”为条件时会出现两个不相同的三角形,所以“SSA”不能充当三角形全等的判定定理.实践证明,逐层深入,引导学生一步一步地从实际问题中抽象提升是有效发展学生思维能力的方法之一.在提升学生抽象思维能力的过程中,也可以帮助学生高效地解决实际问题,从而提升学生的数学核心素养.总之,培养学生的抽象思维能力,可以有效地发展学生的数学核心素养.通过应用形象、借助参数、进行实验操作以及引导学生层层深入等途径,不仅可以有效地帮助学生认识知识的本质规律、解决数学实际问题,而且可以有效提高学生的抽象思维能力,提高学生的数学核心素养.[ 参 考 文 献 ]

[1] 田彦武.数学教学中要充分挖掘“思考”“探究”材料的教学功能[J].中学数学研究,2007(7).[2] 陶俊.设计开放型习题,培养学生思维能力[J].中学数学,2002(9).[3] 方厚良.谈数学核心素养之数学抽象与培养[J].中学数学,2016(7).(责任编辑 黄桂坚)

下载计算机基础教学的核心任务是计算思维能力的培养[J]word格式文档
下载计算机基础教学的核心任务是计算思维能力的培养[J].doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    计算机专业基础核心课程

    计算机专业基础核心课程 一、数学 数学是计算机专业的基础,学好数学是学好计算机专业的关键。高等数学课程主要学习微积分、空间解析几何和微分方程,一般高校通用的教材是同济......

    教学逻辑思维能力的培养

    教学逻辑思维能力的培养 周新梅 (贵州大学人民武装学院信息工程系统 贵州 贵阳 550025) 摘要:逻辑思维能力是数学能力中的一个重要内容,它主要有:判断能力、逻辑推理能力、发现和......

    数学思维能力的培养论文:数学思维能力的培养是数学教学的一项重要任务

    数学思维能力的培养论文:数学思维能力的培养是数学教学的一项重要任务 新课标下的教材,其中有一个重要的转变:就是从应试教育向全民素质教育的转变。就是要将教学重点放在培养......

    浅析《计算机应用基础》教学中学生操作能力的培养

    浅析《计算机应用基础》教学中 学生操作能力的培养摘要随着计算机性能的不断提高,各种计算机应用软件不断推陈出新,使得计算机在各种行业及家庭的应用更加普及。随着计算机应......

    开放式任务驱动的计算机基础教学模式探索

    开放式任务驱动的计算机基础教学模式探索 摘要:通过对目前计算机技术高速发展时代下计算机基础课程教学现状的分析,提出开放式任务驱动的计算机基础教学模式改革思路,构建以学......

    中学历史教学中创造性思维能力培养初探

    中学历史教学中创造性思维能力培养初探 学人 摘要: 没有创新,就没有历史的发展和社会的进步。因此在全面推行素质教育的今天,创新教育已经成为素质教育的题中应有之义。立足......

    高中生物教学感想:如何培养学生思维能力

    高中生物教学感想:如何培养学生思维能力吴海峰 滨海县八滩中学(224541)[摘 要] 能力是获得知识的前提,能使学生获得的具体知识发挥更大的使用价值,思维能力的培养是提升学生......

    作文教学中学生思维能力的培养

    作文教学中学生思维能力的培养 摘 要:写作是语文教学的半壁江山,但是现实中学生的写作水平不容乐观,存在着题材狭窄,言之无物、立意陈旧,缺乏深度、用语失当,词汇贫乏、结构紊乱,条......