第一篇:【鼎尖教案】人教版高中数学必修系列:2.2函数的表示法(第一课时)
§2.2 函数的表示法
课时安排 1课时 从容说课
函数是由其定义域、值域、对应法则三要素构成的整体,并可用抽象符号f(x)来表示,由于f所代表的对应法则不一定能用解析式表示,故本节介绍了函数的表示方法,除了解析法还有列表法和图象法,这三种表示函数的方法之间具有内在的联系。比如本节例2的数据可以用列表法给出,教学中可引导学生先列表、再求解析式,最后画图象,例3在本质上则是训练由图象求解析式的过程等,认识函数的三种表示方法之间的联系并能相互转化,是对函数概念深化理解的重要步骤。
本节由实际问题引出了对分段函数的认识,即对于自变量不同的取值范围,用不同的解析式表示同一个函数关系,故分段函数是一个函数而不是几个函数,教学中可举一些例子帮助学生理解。
根据实际问题中的条件列出函数解析式的训练,是建立函数模型研究实际问题的关键步骤,这种应用意识的培养和应用能力的提高应不断贵穿于以后的教学过程中。
●课
题
§2.2 函数的表示法 ●教学目标(一)教学知识点 1.函数的表示方法.2.初等函数的图象.3.分段函数的意义.4.函数的应用.(二)能力训练要求
1.使学生掌握函数的三种常用表示方法.2.使学生了解初等函数图象的几种情形.3.使学生理解分段函数的意义.4.使学生初步学会用函数的知识解决具体问题的方法.(三)德育渗透目标
通过本节课的教学,使学生认识到知识无止境,对客观世界的认识也是永无止境的,树立终身学习的思想.●教学重点
1.函数的表示方法.2.函数的应用.●教学难点 函数的应用.●教学方法 指导学生自学法
让学生通过自学的实践,自己获取知识,对提高学生的自学能力是有帮助的,教师必要的指导为学生自学扫除障碍,同时也让学生在扫除障碍的过程中,学会突破难点的方法.●教具准备 幻灯片两张
第一张:P55图2—6(记作§2.2 A)第二张:本课时教案后面的预习内容及预习提纲(记作§2.2B)●教学过程 Ⅰ.复习回顾 [师]上节课我们学习了判定两个函数是否相同的方法及映射的概念,哪位同学来回答一下如何判定两个函数是否相同呢?
[生]判定两个函数是否相同,一要看其定义域是否相同,二要看其对应关系是否相同,当两者完全一致时,这两个函数就是相同的函数,当两者有一不同或两者完全不同时,这两个函数就不是相同的函数.[师]好!谁再来回答一下函数与映射的区别呢? [生]函数与映射本质的区别是函数的两个集合都是非空数集,而映射的两个集合中的元素是任意的,它可以是数,也可以是点,还可以是图形等等.[师]很好!我们前面已经学习了函数的定义,函数的定义域的求法,函数值的求法,两个函数是否相同的判定方法,那么函数的表示方法常用的有哪些呢?这节课我们就来研究这个问题(板书课题).Ⅱ.指导自学
[师]课下同学们已经进行了自学,函数的表示方法常用的有哪几种,各有什么优点? [生]函数的表示方法常用的有三种,分别是解析法、列表法、图象法.解析法是用解析式表示两个变量的函数关系,它的优点是关系清楚,容易求函数值,便于研究函数的性质.列表法是用表格表示两个变量的函数关系,它的优点是不必计算就可知道自变量取某些值时的函数值.图象法是用图象表示两个变量的函数关系,它的优点是表示函数的变化情况形象直观.[师]好!(再举些例子对各种表示方法进行说明,并强调:中学里研究的函数主要是用解析式表示的函数)
[师]下面请同学们看课本P54例
1、例2.(学生看课本、教师巡视)
[师]例
1、例2的图象有什么特点呢?
[生]例1的图象是一些孤立的点,例2的图象是几条线段.[师]回答完全正确,在初中,我们学过的函数图象通常是一条光滑的(不打折)曲线(或直线).例
1、例2告诉我们函数的图象有时也可以由一些弧立的点或几段线段组成,以后我们还将看到函数的图象还可以由几段光滑的曲线组成,从例2看到,有些函数在它的定义域中,对于自变量x的不同取值范围,对应关系不同,这种函数通常称为分段函数.注意:分段函数是一个函数,而不是几个函数.[师]例3是生活中的实际问题,对实际问题的解决,要求我们认真分析题意,将其抽象,转化成数学问题,通过解答数学问题,使实际问题得以解决,因此,解决应用问题的关键是将实际问题分析,抽象,转化成数学问题,即将实际问题数学化.下面我们一起对例3进行分析,请大家再仔细看一遍题.(学生看题)
[师]圆形喷水池的直径为20 m,“计划在喷水池的周边靠近水面的位置安装一圈喷水头”告诉了我们什么?
[生]告诉了喷水头的位置,即喷水头距水池中心10 m,其高度与水面一致,视为 OM.[师]“喷出的水柱”其轨迹是什么类型?
[生]由物理学知识可知喷出的水柱轨迹为抛物线型.[师]“各方向喷来的水柱在装饰物处汇合”是什么意思? [生]各方向喷出的水柱交汇在水池的中心线上(学生比划,这条中心线实质上是过水池中心水面的垂线),关于水池中心各相对方向喷出的水柱也交汇在水池的中心线上.(学生的回答不可能一下子达到准确的程度,教师要及时予以启示,诱导)
[师]据以上分析,假如我们过水池中心线任意作一个截面,请同学们试画出截面的形状.(几位学生在黑板上试画)
(和同学们一起分析了学生画的图形,打出幻灯片§2.2A)
解:过水池中心任意选取一个竖立的截面如图所示,由物理学知识可知,喷出的水柱轨迹是抛物线型,建立如图所示的平面直角坐标系,据已知,水柱上任意一点距中心的水平距离x(m)与此点的高度y(m)之间的函数关系是
a1(x4)26(10x0)y= 2a2(x4)6(0x10)由x=-10,y=0,得a1=-a2=-
1,由x=10,y=0得 61,于是,所求的函数解析式是 612(x4)6,(10x0)6y= 1(x4)26,(0x10)6当x=0时,y=10 310m.3即装饰物的高度应为Ⅲ.课堂练习
课本P56练习
1,2,3 Ⅳ.课时小结
[师]本节课我们学习了哪些知识呢?请同学们总结一下.[生甲]函数的图象不仅可以是一段光滑的曲线,还可以是一些弧立的点.[生乙]还可以是若干条线段.[生丙]学习了函数知识的应用.[生丁]应用数学知识解决实际问题,关键是将实际问题数学化.[生戊]实际问题数学化就是要认真分析题意,将实际问题抽象,转化成数学问题.[师]好!同学们总结了本节课所学习的知识,重要的在于掌握尤其是函数知识的应用,更要多练,才能运用自如.Ⅴ.课后作业
(一)课本P56习题2.2 1~6.(二)1.预习内容:函数的单调性.2.预习提纲:
(1)增函数、减函数的定义是什么?(2)函数单调区间的定义是什么?
(3)证明函数单调的方法步骤是怎样的?(4)单调性是个整体概念还是个局部概念? ●板书设计 §2.2 函数的表示法
分段函数是一个函
例3 数而不是几个函数
函数的图象可以是
练习一些孤立的点或几
段线段
小结
第二篇:【鼎尖教案】人教版高中数学必修系列:2.2函数的表示法(备课资料)
●备课资料
在近几年的高考题中,我们发现考查函数思想方法的题目较多,选用的题目经常源自生产、生活的实际,也经常用到函数的知识、方法及思想,这就要我们在对函数的学习中,一定要认识函数思想的实质,强化函数的应用意识.1.对函数知识、方法及思想的应用
[例1]经市场调查,某商品在近100天内,其销售量和价格均是时间t的函数,且销
1109t+(t∈N*,0<t≤100),在前40天内价格为f(t)3311=t+22(t∈N*,0≤t≤40),在后60天内价格为f(t)=-t+52(t∈N*,40<t≤100),42售量近似地满足关系g(t)=-求这种商品的日销售额的最大值(近似到1元).分析:弄清“日销量”“价格”“日销额”这三个概念以建立它们之间的函数关系式.解:前40天内日销售额为:
11109t+22)(-t+)4331271=-t+t+779
1243137849∴S=-(t-10.5)2+
1248S=(后60天内日销售额为:
11109t+52)(-t+)
33212135668=t2-t+ 663125∴S=(t-106.5)2-
624S=(-∴得函数关系式
3784912(t10.5)(0t40且t*)1248S=
1(t106.5)225(40t100且t*)246由上式可知:对于0<t≤40且t∈N*,有当t=10或11时,Smax≈809 对于40<t≤100且t∈N*,有当t=41时,Smax=714.综上所述得:当t=10或11时,Smax≈809 答:第10天或11天日售额最大值为809元
[例2]某中学高一年级学生李鹏,对某蔬菜基地的收益作了调查,该蔬菜基地种植西红柿,由历年市场行情得知,从2月1日起的300天内,西红柿市场售价与上市时间的关系用图一的一条折线表示;西红柿的种植成本与上市时间的关系用图二的抛物线段表示,试解答下列问题.(注:市场售价和种植成本的单位:元/10 kg,时间单位:天)(1)写出图一表示的市场售价间接函数关系P=f(t).写出图二表示的种植成本与时间的函数关系式Q=g(t)
(2)认定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大?
2300t,(0t200)解:(1)由图一可得市场售价间接函数关系为,f(t)=
2t300,(200t300)由图二可得种植成本间接函数关系式为 g(t)=1(t-150)2+100,(0≤t≤300)200(2)设t时刻的纯收益为h(t),则由题意得h(t)=f(t)-g(t)
121175tt,(0t200)20022即h(t)=
1t22t1025,(200t300)72200当0≤t≤200时,得h(t)=-
1(t-50)2+100 2001(t-350)2+100 200∴当t=50时,h(t)取得在t∈[0,200]上的最大值100; 当200<t≤300时,得h(t)=-∴当t=300时,h(t)取得在t∈(200,300]上的最大值87.5 综上所述由100>87.5可知,h(t)在t∈[0,300]上可以取得最大值是100,此时t=50,即从2月1日开始的第50天时,上市的西红柿收益最大.评述:(1)以上两例都是考查用数学中函数知识思想、方法去解决实际问题的能力,注意其中关键词的理解,正确找出函数关系式.求最值时配方法是一种常用方法.(2)应用题是高考热点问题,且应用题的具体内容可以多种多样,千变万化,而抽象其数量关系,并建立函数关系式是具有普遍意义的方法.(3)数学应用题因其具有没有固定的背景与题型,难以摸拟分类的特点,也就更接近于我们的生产和实际生活.所以应用题是考查学生创新意识和创新能力的难得的有效题型,同时也不失为提高学生分析问题和解决问题能力的好题型.所以,我们广大师生应加强这一方面的训练,清除心理负面影响,以积极的姿态,迎接数学应用题的挑战,以适应高考的改革要求.二、“应用数学”的能力训练
季节性服装当季节即将来临时,价格呈上升趋势,设某服装开始时定价为10元,并且每周(7天)涨价2元,5周后开始保持20元的价格平稳销售;10周后当季节即将过去时,平均每周削价2元,直到16周末,该服装已不再销售.(1)试建立价格P与周次t之间的函数关系式.(2)若此服装每件进价Q与周次t之间的关系为Q=-0.125(t-8)2+12,t∈[0,16],t∈N*.试问该服装第几周每件销售利润L最大?
且tN*102t , t[0,5)t[5,10]且tN* 解:(1)P= 20, 402t, t[10,16]且tN*(2)因每件销售利润=售价-进价,即L=P-Q。
故有:当t∈[0,5)且t∈N*时,L=10+2t+0.125(t-8)2-12=即当t=5时,Lmax=9.125;
当t∈[5,10),时t∈N*时,L=0.125t2-2t+16,即t=5时,Lmax=9.125;
当t∈[10,16]时,L=0.125t2-4t+36 即t=10时,Lmax=8.5 由以上得,该服装第5周每件销售利润L最大.12
t+6 8
第三篇:人教A版高中数学必修1教案-2.2对数函数教案
课题:§2.2.1对数 教学目的:(1)理解对数的概念;(2)能够说明对数与指数的关系;(3)掌握对数式与指数式的相互转化.
教学重点:对数的概念,对数式与指数式的相互转化 教学难点:对数概念的理解. 教学过程: 引入课题
(对数的起源)价绍对数产生的历史背景与概念的形成过程,体会引入对数的必要性; 设计意图:激发学生学习对数的兴趣,培养对数学习的科学研究精神. 尝试解决本小节开始提出的问题. 新课教学
1.对数的概念
一般地,如果,那么数叫做以为底的对数(Logarithm),记作:
— 底数,— 真数,— 对数式
说明: 注意底数的限制,且;
;
注意对数的书写格式.
思考: 为什么对数的定义中要求底数,且;
是否是所有的实数都有对数呢?
设计意图:正确理解对数定义中底数的限制,为以后对数型函数定义域的确定作准备. 两个重要对数:
常用对数(common logarithm):以10为底的对数;
自然对数(natural logarithm):以无理数为底的对数的对数. 对数式与指数式的互化
对数式
指数式 对数底数 ←
→ 幂底数 对数
←
→
指数 真数
←
→
幂 例1.(教材P73例1)巩固练习:(教材P74练习1、2)
设计意图:熟练对数式与指数式的相互转化,加深理解对数概念. 说明:本例题和练习均让学生独立阅读思考完成,并指出对数式与指数式的互化中应注意哪些问题. 对数的性质(学生活动)
阅读教材P73例2,指出其中求的依据;
独立思考完成教材P74练习3、4,指出其中蕴含的结论 对数的性质
(1)负数和零没有对数;(2)1的对数是零:;(3)底数的对数是1:;(4)对数恒等式:;(5).
归纳小结,强化思想
引入对数的必要性;
指数与对数的关系;
对数的基本性质. 作业布置
教材P86习题2.2(A组)第1、2题,(B组)第1题. 课题:§2.2.1对数的运算性质 教学目的:(1)理解对数的运算性质;
(2)知道用换底公式能将一般对数转化成自然对数或常用对数;(3)通过阅读材料,了解对数的发现历史以及对简化运算的作用.
教学重点:对数的运算性质,用换底公式将一般对数转化成自然对数或常用对数 教学难点:对数的运算性质和换底公式的熟练运用. 教学过程: 引入课题 对数的定义:; 对数恒等式:; 新课教学
1.对数的运算性质
提出问题:
根据对数的定义及对数与指数的关系解答下列问题:
设,求;
设,试利用、表示·.
(学生独立思考完成解答,教师组织学生讨论评析,进行归纳总结概括得出对数的运算性质1,并引导学生仿此推导其余运算性质)
运算性质:
如果,且,,那么:
·+;
-;
.
(引导学生用自然语言叙述上面的三个运算性质)学生活动:
阅读教材P75例3、4,;
设计意图:在应用过程中进一步理解和掌握对数的运算性质.
完成教材P79练习1~3 设计意图:在练习中反馈学生对对数运算性质掌握的情况,巩固所学知识. 利用科学计算器求常用对数和自然对数的值
设计意图:学会利用计算器、计算机求常用对数值和自然对数值的方法.
思考:对于本小节开始的问题中,可否利用计算器求解的值?从而引入换底公式. 换底公式
(,且;,且;). 学生活动
根据对数的定义推导对数的换底公式.
设计意图:了解换底公式的推导过程与思想方法,深刻理解指数与对数的关系.
思考完成教材P76问题(即本小节开始提出的问题);
利用换底公式推导下面的结论
(1);
(2).
设计意图:进一步体会并熟练掌握换底公式的应用.
说明:利用换底公式解题时常常换成常用对数,但有时还要根据具体题目确定底数. 课堂练习
教材P79练习4 已知
试求:的值。(对换5与2,再试一试)
设,,试用、表示 归纳小结,强化思想
本节主要学习了对数的运算性质和换底公式的推导与应用,在教学中应用多给学生创造尝试、思考、交流、讨论、表达的机会,更应注重渗透转化的思想方法. 作业布置
基础题:教材P86习题2.2(A组)第3 ~5、11题; 提高题:
设,,试用、表示;
设,,试用、表示;
设、、为正数,且,求证:. 课外思考题: 设正整数、、(≤≤)和实数、、、满足:,求、、的值.
课题:§2.1.2对数函数
(一)教学任务:(1)通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;
(2)能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点;(3)通过比较、对照的方法,引导学生结合图象类比指数函数,探索研究对数函数的性质,培养学生数形结合的思想方法,学会研究函数性质的方法. 教学重点:掌握对数函数的图象和性质.
教学难点:对数函数的定义,对数函数的图象和性质及应用.
教学过程: 引入课题 1.(知识方法准备)
学习指数函数时,对其性质研究了哪些内容,采取怎样的方法?
设计意图:结合指数函数,让学生熟知对于函数性质的研究内容,熟练研究函数性质的方法——借助图象研究性质.
对数的定义及其对底数的限制. 设计意图:为讲解对数函数时对底数的限制做准备. 2.(引例)教材P81引例
处理建议:在教学时,可以让学生利用计算器填写下表: 碳14的含量P 0.5 0.3 0.1 0.01 0.001
生物死亡年数t
然后引导学生观察上表,体会“对每一个碳14的含量P的取值,通过对应关系,生物死亡年数t都有唯一的值与之对应,从而t是P的函数” .(进而引入对数函数的概念)新课教学
(一)对数函数的概念
1.定义:函数,且叫做对数函数(logarithmic function)其中是自变量,函数的定义域是(0,+∞).
注意: 对数函数的定义与指数函数类似,都是形式定义,注意辨别.如:,都不是对数函数,而只能称其为对数型函数.
对数函数对底数的限制:,且. 巩固练习:(教材P68例2、3)
(二)对数函数的图象和性质
问题:你能类比前面讨论指数函数性质的思路,提出研究对数函数性质的内容和方法吗? 研究方法:画出函数的图象,结合图象研究函数的性质.
研究内容:定义域、值域、特殊点、单调性、最大(小)值、奇偶性. 探索研究:
在同一坐标系中画出下列对数函数的图象;(可用描点法,也可借助科学计算器或计算机)(1)
(2)
(3)
(4)
类比指数函数图象和性质的研究,研究对数函数的性质并填写如下表格:
图象特征 函数性质
函数图象都在y轴右侧
函数的定义域为(0,+∞)
图象关于原点和y轴不对称 非奇非偶函数
向y轴正负方向无限延伸 函数的值域为R
函数图象都过定点(1,1)
自左向右看,图象逐渐上升 自左向右看,图象逐渐下降 增函数 减函数
第一象限的图象纵坐标都大于0 第一象限的图象纵坐标都大于0
第二象限的图象纵坐标都小于0 第二象限的图象纵坐标都小于0
思考底数是如何影响函数的.(学生独立思考,师生共同总结)
规律:在第一象限内,自左向右,图象对应的对数函数的底数逐渐变大.
(三)典型例题 例1.(教材P83例7). 解:(略)
说明:本例主要考察学生对对数函数定义中底数和定义域的限制,加深对对数函数的理解.
巩固练习:(教材P85练习2). 例2.(教材P83例8)解:(略)
说明:本例主要考察学生利用对数函数的单调性“比较两个数的大小”的方法,熟悉对数函数的性质,渗透应用函数的观点解决问题的思想方法. 注意:本例应着重强调利用对数函数的单调性比较两个对数值的大小的方法,规范解题格式. 巩固练习:(教材P85练习3). 例2.(教材P83例9)解:(略)
说明:本例主要考察学生对实际问题题意的理解,把具体的实际问题化归为数学问题. 注意:本例在教学中,还应特别启发学生用所获得的结果去解释实际现象. 巩固练习:(教材P86习题2.2 A组第6题). 归纳小结,强化思想
本小节的目的要求是掌握对数函数的概念、图象和性质.在理解对数函数的定义的基础上,掌握对数函数的图象和性质是本小节的重点. 作业布置
必做题:教材P86习题2.2(A组)第7、8、9、12题. 选做题:教材P86习题2.2(B组)第5题. 课题:§2.2.2对数函数
(二)教学任务:(1)进一步理解对数函数的图象和性质;
(2)熟练应用对数函数的图象和性质,解决一些综合问题;
(3)通过例题和练习的讲解与演练,培养学生分析问题和解决问题的能力. 教学重点:对数函数的图象和性质.
教学难点:对对数函数的性质的综合运用.
教学过程: 回顾与总结
函数的图象如图所示,回答下列问题.
(1)说明哪个函数对应于哪个图象,并解释为什么?
(2)函数与
且有什么关系?图象之间 又有什么特殊的关系?
(3)以的图象为基础,在同一坐标系中画出的图象.
(4)已知函数的图象,则底数之间的关系:
. 教 完成下表(对数函数且的图象和性质)
图 象
定义域
值域
性 质
根据对数函数的图象和性质填空.
已知函数,则当时,;当时,;当时,已知函数,则当时,;当时,;当时,当时,. 应用举例
比较大小:,且;,. 解:(略)
例2.已知恒为正数,求的取值范围. 解:(略)
[总结点评]:(由学生独立思考,师生共同归纳概括).
例3.求函数的定义域及值域.
解:(略)
注意:函数值域的求法.
例4.(1)函数在[2,4]上的最大值比最小值大1,求的值;当时,.当时,;
.
;
;
(2)求函数的最小值.
解:(略)
注意:利用函数单调性求函数最值的方法,复合函数最值的求法.
例5.(2003年上海高考题)已知函数,求函数的定义域,并讨论它的奇偶性和单调性.
解:(略)
注意:判断函数奇偶性和单调性的方法,规范判断函数奇偶性和单调性的步骤.
例6.求函数的单调区间. 解:(略)
注意:复合函数单调性的求法及规律:“同增异减”. 练习:求函数的单调区间. 作业布置 考试卷一套
课题:§2.2.2对数函数
(三)教学目标:
知识与技能
理解指数函数与对数函数的依赖关系,了解反函数的概念,加深对函数的模型化思想的理解.
过程与方法
通过作图,体会两种函数的单调性的异同.
情感、态度、价值观
对体会指数函数与对数函数内在的对称统一.
教学重点:
重点
难两种函数的内在联系,反函数的概念. 难点
反函数的概念.
教学程序与环节设计:
教学过程与操作设计: 环节
呈现教学材料 师生互动设计
创
设
情
境
材料一:
当生物死亡后,它机体内原有的碳14会按确定的规律衰减,大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.根据些规律,人们获得了生物体碳14含量P与生物死亡年数t之间的关系.回答下列问题:
(1)求生物死亡t年后它机体内的碳14的含量P,并用函数的观点来解释P和t之间的关系,指出是我们所学过的何种函数?
(2)已知一生物体内碳14的残留量为P,试求该生物死亡的年数t,并用函数的观点来解释P和t之间的关系,指出是我们所学过的何种函数?(3)这两个函数有什么特殊的关系?
(4)用映射的观点来解释P和t之间的对应关系是何种对应关系?(5)由此你能获得怎样的启示?
生:独立思考完成,讨论展示并分析自己的结果.
师:引导学生分析归纳,总结概括得出结论:(1)P和t之间的对应关系是一一对应;(2)P关于t是指数函数;
t关于P是对数函数,它们的底数相同,所描述的都是碳14的衰变过程中,碳14含量P与死亡年数t之间的对应关系;
(3)本问题中的同底数的指数函数和对数函数,是描述同一种关系(碳14含量P与死亡年数t之间的对应关系)的不同数学模型.
材料二:
由对数函数的定义可知,对数函数是把指数函数中的自变量与因变量对调位置而得出的,在列表画的图象时,也是把指数函数的对应值表里的和的数值对换,而得到对数函数的对应值表,如下:
表一
.
环节
呈现教学材料 师生互动设计
„-3-2-1 0 1 2 3 „
„2 4 8 „
表二
.
„-3-2-1 0 1 2 3 „
„2 4 8 „
在同一坐标系中,用描点法画出图象. 生:仿照材料一分析:与的关系.
师:引导学生分析,讲评得出结论,进而引出反函数的概念.
组织探究
材料一:反函数的概念: 当一个函数是一一映射时,可以把这个函数的因变量作为一个新的函数的自变量,而把这个函数的自变量作为新的函数的因变量,我们称这两个函数互为反函数. 由反函数的概念可知,同底数的指数函数和对数函数互为反函数.
材料二:以与为例研究互为反函数的两个函数的图象和性质有什么特殊的联系? 师:说明:
(1)互为反函数的两个函数是定义域、值域相互交换,对应法则互逆的两个函数;(2)由反函数的概念可知“单调函数一定有反函数”;
(3)互为反函数的两个函数是描述同一变化过程中两个变量关系的不同数学模型.
师:引导学生探索研究材料二.
生:分组讨论材料二,选出代表阐述各自的结论,师生共同评析归纳.
尝试练习
求下列函数的反函数:(1);
(2)生:独立完成.
巩固反思
从宏观性、关联性角度试着给指数函数、对数函数的定义、图象、性质作一小结.
作业反馈
求下列函数的反函数:2 3 4 5 7 9
环节
呈现教学材料 师生互动设计2 3 4 5 7 9 2.(1)试着举几个满足“对定义域内任意实数a、b,都有f(a·b)= f(a)+ f(b).”的函数实例,你能说出这些函数具有哪些共同性质吗?
(2)试着举几个满足“对定义域内任意实数a、b,都有f(a + b)= f(a)·f(b).”的函数实例,你能说出这些函数具有哪些共同性质吗?
答案: 1.互换、的数值. 2.略.
课外活动
我们知道,指数函数,且与对数函数,且互为反函数,那么,它们的图象有什么关系呢?运用所学的数学知识,探索下面几个问题,亲自发现其中的奥秘吧!
问题1 在同一平面直角坐标系中,画出指数函数及其反函数的图象,你能发现这两个函数的图象有什么特殊的对称性吗?
问题2 取图象上的几个点,说出它们关于直线的对称点的坐标,并判断它们是否在的图象上,为什么? 问题3 如果P0(x0,y0)在函数的图象上,那么P0关于直线的对称点在函数的图象上吗,为什么?
问题4 由上述探究过程可以得到什么结论? 问题5 上述结论对于指数函数,且及其反函数,且也成立吗?为什么? 结论:
互为反函数的两个函数的图象关于直线对称.
第四篇:【鼎尖教案】人教版高中数学必修系列:1.7四种命题(备课资料)
●备课资料
一、《教师教学参考书》《中学数学教学》
二、参考例题
[例1]写出命题“若x≥2且y≥3,则x+y≥5”的逆命题、否命题,逆否命题.并判断其真假.分析:应注意分析清楚原命题的条件与结论,并充分利用四种命题的定义,还要注意条件和结论中“或”“且”“非”的否定的语句表述的准确性.解:原命题:“若x≥2且y≥3则x+y≥5”为真命题.逆命题为:“若x+y≥5,则x≥2且y≥3”,为假命题.否命题是:“若x<2或y<3,则x+y<5.”其为假命题.逆否命题是:“若x+y<5,则x<2或y<3”其为真命题.评述:本题应注意理解掌握“p且q”的否定为“p或q”,“p或q”的否定为“p且q”.[例2]写出下列命题的逆命题,并判断原命题和逆命题的真假.2(1)若x=1,则x=1.(2)对顶角相等.(3)等腰三角形的两腰相等.2(4)x+2x+8>0的解集为空集.分析:应先将原命题改写成“如果„„,那么„„的形式”然后再构造它的逆命题.2解:(1)逆命题是“若x=1,则x=1.” 原命题为假命题,逆命题是真命题.(2)逆命题是“如果两个角相等,那么这两个角是对顶角”.原命题为真命题,逆命题为假命题.(3)逆命题是“如果一个三角形有两边相等,那么这个三角形是等腰三角形.” 原命题为真命题,逆命题也为真命题.2(4)逆命题是“空集是x+2x+8>0的解集”.原命题和逆命题都是假命题.[例3]写出下列命题的否命题,并判断原命题及否命题的真假.(1)如果x>-3,那么x+8>0.(2)如果一个三角形的三边都相等,那么这个三角形的三角都相等.(3)矩形的对角线互相平分且相等.(4)相似三角形一定是全等三角形.分析:将原命题的条件和结论同时加以否定,便得到其否命题.解:(1)否命题是:“如果 x≤-3,那么x+8≤0”.原命题为真命题,否命题为假命题.(2)否命题是:“如果一个三角形的三边不都相等,那么这个三角形的三角不都相等.原命题为真命题,否命题也为真命题.(3)否命题是:“如果四边形不是矩形,那么对角线不互相平分或不相等”.原命题是真命题,否命题也是真命题.(4)否命题是“不相似的三角形一定不是全等三角形.” 原命题是假命题,否命题是真命题.评述:一个命题的否定应当包含除了本身以外的所有情况.如:“都相等”的否定应为“不都相等”,即至少有两个元素不相等;“p或q”与“p且q”互为否定;“一定是”的否定是“一定不是”.三、参考练习题
1.命题“能被4整除的数一定是偶数”,等价命题是()A.偶数一定能被4整除
B.不能被4整除的数一定不是偶数 C.不能被4整除的数不一定是偶数 D.不是偶数一定不能被4整除 答案:D 2.命题:“若a∈A,则{a}A”的逆命题是()
A.若a∈A,则{a}A B.若{a}A,则a∈A C.若{a}A,则aA D.若aA,则{a}A 答案:B 3.命题:“若∠A=60°,则△ABC是等边三角形”的否命题()A.是假命题
B.与原命题同真或同假
C.与原命题的逆否命题同真同假 D.与原命题的逆命题同真同假 答案:D 4.若命题p的逆命题是q,命题q的否命题是r,则p是r的_______命题.答案:逆否 5.命题“若a>0,则什么命题:
(1)若a≤0,则(2)若
3a3=”的相关命题如下,在题后括号内注明它是这一命题的4a43a3≠.()4a43a3=,则a>0()4a43a3(3)若≠,则a≤0()4a4答案:(1)否命题(2)逆命题(3)逆否命题 6.写出下列命题的逆命题的逆否命题:(1)若a>4则a+3>6(2)若x与y成正比关系,则y=kx.答案:(1)若a≤4则a+3≤6(2)x与y不成正比关系,则y≠kx.7.把下列命题改写成“若p则q”的形式:(1)15是5的倍数.(2)正方形四边相等.答案:(1)若a=15,则a是5的倍数.(2)若一个四边形是正方形,那么这一四边形的四边相等.8.写出命题:“若ab=0,则a、b中至少有一个为0”的逆否命题.答案:若a、b都不为零,则ab≠0.●备课资料
一、《教师教学用书》
二、参考例题
222[例1]写出命题“在△ABC中,若∠C=90°,则c=a+b”的逆命题,否命题和逆否命题,并指出它们的真假.解:原命题是真命题.222逆命题为“在△ABC中,若c=a+b,则∠C=90°.为真命题.222否命题为:“在△ABC中,若∠C≠90°,则c≠a+b”,是真命题.222逆否命题为:“在△ABC中,若c≠a+b,则∠C≠90°,是真命题.评述:此题的原命题中“在△ABC中”是大前提,在写这类命题的逆命题、否命题和逆否命题时一般保持不变.[例2]写出命题“x≥2且y≥3,则x+y≥5”的逆命题,否命题和逆否命题,并判断它们的真假.分析:本题中原命题的条件是复合条件.因此解好本题的关键是准确地写出“p且q”的否定.解:原命题是真命题.逆命题是:“x+y≥5则x≥2且y≥3”为假命题.否命题是:“x<2或y<3,则x+y<5”为假命题.逆否命题是:“x+y<5则x<2或y<3”为真命题.评述:注意“p或q”的否定是“p且q”,“p且q”的否定是“p或q”.在否命题中的准确运用.[例3]写出下列命题的逆命题,并判断其真假.2(1)当x-3x+2=0时x=2(2)ac>bca>b.2解:(1)逆命题为:“当x=2时,x-3x+2=0”,为真命题.(2)逆命题为:“a>bac>bc”其为假命题.三、参考练习题
1.在下列命题中,真命题是()
①“在同一个三角形中,大边对大角”的否命题.2②“若m≤1,则x-2x+m=0有实根”的逆命题.③“菱形的对角线互相垂直平分”的否命题.④“若A∩B=B,则AB”的等价命题.A.①②④ B.③④ C.①②
D.①②③ 答案:D 2.命题“若a>b,则am>bm”与它的逆命题、否命题,逆否命题中真命题共有____个.答案:0 3.写出命题“对角线不互相垂直的平行四边形不是菱形.”的逆命题、否命题、逆否命题,并指出它们的真假.答案:逆命题为:“不是菱形的平行四边形,对角线不互相垂直”,为真命题.否命题为“对角线互相垂直的平行四边形是菱形”,为真命题.逆否命题为“平行四边形是菱形,其对角线互相垂直”,为真命题.4.判断下列命题的否命题的真假.(1)正方形四条边相等.(2)已知a<0,如果x=-a,那么x<0(3)一个锐角的补角是钝角.答案:(1)否命题为假命题.(2)否命题为假命题.(3)否命题为真命题.●备课资料
一、《教师教学用书》
二、参考例题
[例1]用反证法证明:若|a-b|>a-b,则a<b 分析:反证法证题的关键是对命题的结论进行否定——推理——矛盾——肯定.证明:假设a≥b
则有a-b≥0即|a-b|=a-b.但这与已知中|a-b|>a-b矛盾.故a<b 评述:反证法证明过程中必须对结论的反面的各种情况一一加以否定,才能证明原命题的正确性.2[例2]用反证法证明:|a|<3则a<9.2证明:假设a≥9,两边同时开方取算术根得:|a|≥3.这与已知条件中|a|<3相2矛盾.故a<9.[例3]如果一个整数n的平方是偶数,那么这个整数n本身也是偶数,试证之.分析:由“整数n的平方是偶数”这个条件,很难直接证明“这个整数n本身也是偶数”这个结论成立,因此考虑用反证法证明.证明:假设整数n不是偶数,那么n可写成:n=2k+1(k∈Z), 2222则n=(2k+1)=4k+4k+1=2(2k+2k)+1.22∵k∈Z ∴2k+2k∈Z,则2(2k+2k)为偶数.2那么2(2k+2k)+1为奇数.2∴n为奇数.但这与已知条件矛盾.则假设不成立,故n是偶数.评述:否定结论是反证法的第一步,能否导致矛盾是反证法的关键,一般通过推理导致以下矛盾之一即可:
①与条件矛盾;②与定义、定理、公理矛盾;③与客观事实矛盾;④自相矛盾.三、参考练习题
1.用反证法证明命题的第二步中,得出的矛盾可以是与下列哪些内容产生的()①命题已知 ②数学定义 ③定理,公理 ④推理、演算的规律
A.① B.①③
C.②
D.①②③④ 答案:D 2.用反证法证明“一个三角形内,不能有两个钝角或直角”.证明:假设可以有两个钝角或直角,那么这两个角与任意大小的第三个角的和必大于180°,这与三角形的内角和为180°相矛盾.故一个三角形内,不能有两个钝角或直角.3.否定结论“至多有两个解”的说法中,正确的是()A.有一解
B.有两解 C.有三解
D.至少有两解 答案:C 4.否定下列各结论,并写出由此可能出现的情况:(1)a=b(2)AB∥CD(3)点A在直线a上 答案:(1)a≠b,即a>b或a<b
(2)AB与CD不平行,即AB与CD相交,或AB与CD重合.(3)点A在直线a外,即点A在直线a的一侧或另一侧.5.用反证法证明:若a2=-a,则a≤0 证明:假设a>0,可得a2=|a|=a,这与已知a2=-a相矛盾.故a≤0.6.假设p、q都是奇数,求证:关于x的方程x+px+q=0无整数根.分析:此题中含有否定用“无”,可考虑用反证法,另外关于有无整数根,可从已知方程的判别式与根和系数的关系入手分析证明.222证法一:只有在Δ=p-4q=(p-m)时((p-m)表示完全平方数,其中由-4q=-2pm+m可知m应为偶数)才可能有整数根.化简上式得出p与q的关系:q=p·因p是奇数,不论2
mm2
-(),22m是怎样的整数,都可得q为偶数,这与已知q为奇数相矛盾,则判别2式Δ的值不会是一个完全平方数,故方程无整数根.2证法二:假设方程有整数根α,无论α是奇数还是偶数,都必有α+pα+q为奇数,2这与α+pα+q=0矛盾.故方程无整数根.
第五篇:【鼎尖教案】人教版高中数学选修系列:4.1复数的概念(第一课时)
第四章 数系的扩充-复数
课时安排 1课时 从容说课
本节一开始就简明地介绍了数的概念的发展过程,对已经学过的数集因生产和科学发展的需要而逐步扩充的过程进行概括;然后说明数集的每一次扩充,对数学学科本身来说,也解决了在原有数集中某种运算不是永远可以实施的矛盾,使得某些代数方程在新的数集中能够有解.复数,最初还是由于解方程的需要而产生的,后来由于在科学技术中得到应用而进一步发展.将已经学过的数集进行概括并用表列出.
复数的概念是在引入虚数单位i,并同时规定了它的两条性质之后自然地得出的.扩充到复数集后,方程x2=-1,x2-x+1=0等才有解.
在规定i的第二条性质时,原有的加、乘运算律仍然成立,可以引导学生讨论为什么不规定除法、减法呢?由学生自己探索讨论.
把a+bi(a、b∈R)叫做复数,这是复数的代数形式,既与以后的几何表示、向量表示相对应,也说明任何一个复数均可以由一个有序实数对(a,b)唯一确定,是复数能由复平面内的点来表示的理论基础.
虚数、纯虚数、实部与虚部等概念是复数的最基本的概念.除了教科书中的一些实例外,教学中还要多举一些例子让学生判别,以加深学生理解.这里主要是分类,让学生总结实数集、虚数集、纯虚数集都是复数的真子集.让学生讨论下列两个问题:①复数相等的充要条件是什么?②两个复数只能说相等或不相等,不能比较大小的原因是什么?培养学生的探索精神.第一课时
课题
§4.1 复数的概念
教学目标
一、教学知识点
1.了解引进复数的必要性,理解并掌握虚数的单位i. 2.理解并掌握虚数单位与实数进行四则运算的规律.
3.理解并掌握复数的有关概念(复数集、代数形式、虚数、纯虚数、实部、虚部). 4.理解并掌握复数相等的有关概念.
二、能力训练要求
1.能利用复数的有关概念对复数进行分类(实数、纯虚数、虚数),并求出有关参数的取值范围.
2.会用复数相等的定义求有关参数(未知数)的值. 3.使学生学会用定义和有关数学思想解题.
三、德育渗透目标
1.培养学生分类讨论思想、等价转化思想等数学思想和方法.
2.培养学生的矛盾转化、分与合、实与虚等唯物辩证观点,让学生学会对事物归纳与认识,深刻认识事物的两个方面的重要性.
3.培养学生正确的人生观、价值观,使之深刻认识到人在事物发展变化中所应体现的价值和作用.加强学生的爱国主义教育,使他们领悟、掌握科学文化知识,为国富民强而奋.
教学重点
复数的概念、虚数单位i、复数的分类(实数、虚数、纯虚数)和复数相等等概念是本节课的教学重点.复数在现代科学技术中以及在数学学科中的地位和作用.
教学难点
虚数单位i的引进及复数的概念是本节课的教学难点.复数的概念是在引入虚数单位i并同时规定了它的两条性质之后,自然地得出的.在规定i的第二条性质时,原有的加、乘运算律仍然成立.
教学方法
建构主义观点在高中数学课堂教学中应用的实践的教学方法.复数的概念如果单纯地讲解或介绍定显得较为枯燥无味,学生不易接受.教学时,我们采用讲解或体验已学过的数集的扩充的历史,让学生体会到数集的扩充是生产实践的需要,也是数学学科自身发展的需要;介绍数的概念的发展过程,使学生对数的形成、发展的历史和规律、各种数集之间的关系有着比较清晰、完整的认识,从而让学生积极主动地建构虚数的概念、复数的概念、复数的分类.教具准备
实物投影仪或多媒体课件(含幻灯片、幻灯机).幻灯片两张. 幻灯片:(记作§4.1A)对已经学过的数集进行概括时,要注意以下几点:(1)有理数就是一切形如
m的数,其中m∈Z,n∈N*,所以有理数集实际上就是分数集. n(2){有理数}={分数}={循环小数}{小数}=R.
(3)自然数集N、整数集Z、有理数集Q、实数集R之间有如下的关系:NZQR. 幻灯片:(记作§4.1B)
两个不全为实数的复数只能说相等或不相等,不能比较大小.
(1)根据两个复数相等的定义知,在a=c,b=d两式中,只要有一个不成立,那么a+bi≠c+di.(2)如果两个复数都是实数,则可以比较大小,否则,不能比较大小.(3)“不能比较大小”的确切含义是指:不论怎样定义两个复数之间的一个关系“<”,都不能使这种关系同时满足实数
集中大小关系的四条性质:
①对于任意实数a、b来说,a<b,a=b,b<a这三种情况有且只有一种成立; ②如果a<b,b<c,那么a<c; ③如果a<b,那么a+c<b+c; ④如果a<b,c>0,那么ac<bc.教学过程
Ⅰ.课题导入
[师]从小学开始,我们就天天与各种数打交道,因而对数的概念和运算并不陌生,现在我们来回顾学过了哪些数集呢?
正整数自然数整数零有理数[生]实数 负整数分数无理数[师]由自然数经过若干年的发展,最后扩充到实数,那么还能继续扩充吗?今天我们就来学习新的数即复数(板书课题). Ⅱ.讲授新课
(一)概念形成[放投影或多媒体](由学生阅读)
数的概念是从实践中产生和发展起来的.早在人类社会初期,人们在狩猎、采集果实等劳动中,由于计数的需要,就产生了1,2,3,4等数以及表示“没有”的数0.自然数的全体构成自然数集N.
随着生产和科学的发展,数的概念也得到了发展.
为了解决测量、分配中遇到的将某些量进行等分的问题,人们引进了分数;为了表示各种具有相反意义的量以及满足记数的需要,人们又引进了负数,这样就把数集扩充到了有理数集Q,显然NQ.如果把自然数集(含正整数和0)与负整数集合并在一起,构成整数集Z,则有ZQ、NZ.如果把整数看作分母为1的分数,那么有理数集实际上就是分数集. 有些量与量之间的比值,例如用正方形的边长去度量它的对角线所得的结果,无法用有理数表示,为了解决这个矛盾,人们又引进了无理数.所谓无理数,就是无限不循环小数.有理数集与无理数集合并在一起,构成实数集R.因为有理数都可看作循环小数(包括整数、有限小数),无理数都是无限不循环小数,所以实数集实际上就是小数集.(学生阅读完毕,教师放出幻灯片§4.1A) [师]数集因生产和科学发展的需要而逐步扩充,数集的每一次扩充,对数学学科本身来说,解决了在原有数集中某种运算不是永远可以实施的矛盾,分数解决了在整数集中不能整除的矛盾,负数解决了在正有理数集中不够减的矛盾,无理数解决了开方开不尽的矛盾.但是,数集扩充到实数集R以后,像x2=-1这样的方程还是无解的,因为没有一个实数的平方等于-1.由于解方程的需要,人们引入了一个新数i,叫做虚数单位,并规定:(板书及以下两条)
(1)它的平方等于-1,即i2=-1;
(2)实数可以与它进行四则运算,进行四则运算时,原有加、乘运算律仍然成立. [师]有哪些运算律呢?
[生]乘法交换律和加法交换律.
[师]在这种规定下,i可以与实数b相乘,结果是什么? [生]i·b=b·i,满足交换律.
[师]在这种规定下,i可以与实数a相加,结果是什么? [生]i+a=a+i,满足交换律.
[师]如果i与实数b相乘,再与实数a相加,结果是什么呢? [生]i·b+a=a+bi.
[师]引进了新的虚数单位i后,数的范围又扩充了,出现了形如a+bi(a、b∈R)的数,它在前面所学的数集中没有,这样人们把它们叫做复数.全体复数所成的集合叫做什么? [生]全体复数所成的集合叫做复数集,一般用字母C表示.(板书) [师]在这种规定下,i与-1的关系如何呢?
[生]i就是-1的一个平方根,即方程x2=-1的一个根. [师]方程x2=-1的另一个根呢? [生]-i.
[师]复数通常用字母z表示,即z=a+bi(a、b∈R).把复数表示成a+bi的形式,叫做复数的代数形式.(板书)
对于复数a+bi(a、b∈R),满足什么条件时,它是实数? [生]当且仅当b=0时,复数a+bi(a、b∈R)它是实数a. [师]如果b≠0时,这样复数是什么样的数呢? [生]当b≠0时,复数z=a+bi叫做虚数.
[师]在虚数的情况下,如果a=0时,它又是什么数呢? [生]当a=0且b≠0时,z=bi叫做纯虚数.
[师]a、b满足什么条件时,z=a+bi(a、b∈R)是0? [生]当且仅当a=b=0时,z就是实数0.
[师]这样复数z=a+bi(a、b∈R)就可以分成哪几种情况呢?
a>0正实数b0z是实数aa0实数0a<0负实数[生]复数zabi(a、bR)
a0纯虚数biboz是虚数(b0,bR)a0非纯虚数的虚数[师]这里的实数a、b分别叫做复数z=a+bi(a、b∈R)的实部与虚部(板书).
11i ,i,35i的实部和虚部,有没有纯虚数? 23111[生]它们都是虚数,它们的实部分别是2,-3,0,3;虚部分别是3, , ,-5;i是纯
233请你们说出复数2+3i,3虚数.
[师]-2i+3.14的实部和虚部是什么? [生]实部是-2,虚部是3.14.
[众生](齐声说)错!实部是3.14,虚部是-2.
[师]实数集和复数集之间的关系如何呢? [生]实数集R是复数集C的真子集,即RC. [师]数集扩充后,常用的数集之间有什么关系?
[生]NZQRC.
[师]有没有两个复数相等呢?如何定义?
[生]如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等.这就是说:如果a、b、c、d∈R,那么a+bi=c+dia=c,b=d.[师]复数z=a+bi(a、b∈R)为零的充要条件是什么? [生]复数a+bi=0(a、b∈R)的充要条件是a=0且b=0.
[师]复数相等的定义是在复数集中解方程的重要依据.一般地,两个复数只能说相等或不相等,而不能比较大小.如3+5i与4+3i不能比较大小. 现有一个命题“任何两个复数都不能比较大小”,对吗?
[生]不对.如果两个复数都是实数,就可以比较大小.只有当两个复数不全是实数时才不能比较大小.
[师]“不能比较大小”的确切含义是指:不论怎样定义两个复数之间的一个关系“<”,都不能使这种关系同时满足实数集中大小关系的四条性质.(打出幻灯片§4.1 B)(由学生阅读)(二)课本例题
[例1]实数m取什么数值时,复数z=m+1+(m-1)i是(1)实数?(2)虚数?(3)纯虚数?
分析:因为m∈R,所以m+1,m-1都是实数,由复数z=a+bi是实数、虚数和纯虚数的条件可以确定m的值. 解:(1)当m-1=0,即m=1时,复数z是实数;(2)当m-1≠0,即m≠1时,复数z是虚数;
(3)当m+1=0,且m-1≠0时,即m=-1时,复数z 是纯虚数. [例2]已知(2x-1)+i=y-(3-y)i,其中x、y∈R, 求x与y. 分析:运用复数相等的定义求解.
2x1y5解:根据复数相等的定义,得方程组所以x,y=4.
21(3y)(三)精选例题
[例1]复数z=log2(x2-3x-3)+log2(x-3),当x为何实数时,(1)z∈R;(2)z为虚数;(3)z为纯虚数.
x23x3>0,①解:(1)因为一个复数是实数的充要条件是虚部为零,所以有
log(x3)0.②2由②得x=4,经验证满足①.
所以当x=4时,z∈R.
x23x3>0,(2)因为一个复数是虚数的充要条件是虚部非零,所以有解得
2(x3)0.log321321321321或x<x><x<4或x>4.所以当<x<4或x>4时,22,即
22x>3且x4z为虚数.
(3)因为一个复数是纯虚数,则其实部为零且虚部不为0,所以有
log2(x23x3)0,x或x4,解得无解. x>3且x4,log2(x3)0.所以复数z不可能是纯虚数.
[例2]设复数z=2logax+(loga2x-1)i(a>0,a≠1),问当x为何实数时,z是(1)实数;(2)虚数;(3)纯虚数. 解:(1)当loga2x-1=0,即x=a或
1时,z为实数. aloga2x101(2)当即x≠a,x ,
ax>0∴x>0且x≠a且x1时,z是虚数. ax2loga0,(3)当即x=1时,z为纯虚数. xloga10,[例3]判断下列式子的对错:
(1)当z∈C,则z2≥0;
(2)若z1、z2∈C,且z1-z2>0,则z1>z2;(3)若a>b,则a+i>b+i.
解:(1)z2≥0,当且仅当z∈R时成立,如设z=i,则z2=i2=-1<0,故(1)是错误的.
(2)反例:设z1=2+i,z2=-1+i,满足z1-z2=3>0,因此z1、z2不能比较大小,故(2)也是错误的.(3)∵a>b,故a、b∈R.∴a+i与b+i都是虚数,不能比较大小.故(3)错.
解题回顾:理解复数与实数的一个重要区别:两个复数如果不全是实数,就不能比较大小,因此不等式的性质在复数集中不适用. [例4](1)设复数z=ab+(a2+b2)i(a、b∈R),a、b分别满足什么条件时,z是实数、虚数、纯虚数?
(2)bi是什么数?
解:(1)当a、b同时为0时,z为实数;当a、b不全为0时,z是虚数;当a、b有且仅有一个为0或者说a、b有且仅有一个不为0时,z为纯虚数.
(2)当b=0或b为纯虚数时,bi是实数;当b为不是0的实数时,bi是纯虚数;当b为非纯虚数时,bi是非纯虚数.
解题回顾:在判断所给一个复数类型时,首先一定要弄清题目中的参数有无要求,然后再将复数中的实部与虚部分清. Ⅲ.课堂练习
(一)课本P149练习1、2.(二)补充练习 1.设集合C={复数},A={实数},B={纯虚数},若全集S=C,则下列结论正确的是()A.A∪B=C
B.CSA=B C.A∩(CSB)=
D.B∪(CSB)=C 答案:D
2.若复数z1=sin2θ+icosθ,z2=cosθ+i3sinθ,z1=z2,则θ等于() A.kπ(k∈Z) C.2kπ±
B.2kπ+ (k∈Z) 3(k∈Z) 3D.2kπ+(k∈Z)
6解析:∵z1=z2,∴其充要条件为
1sin,sin2cos,2∴ cos3sin.tan3.3∴θ=2kπ+,k∈Z.故选D. 6答案:D 3.已知集合M={1,2,(m2-3m-1)+(m2-5m-6)i},集合P={-1,3}.M∩P={3},则实数m的值为() A.-1 B.-1或4
C.6
D.6或-1 解析:由题设知3∈M,∴m2-3m-1+(m2-5m-6)i=3.
2m3m13,∴2∴m=-1.故选A. m5m60.答案:A 4.满足方程x2-2x-3+(9y2-6y+1)i=0的实数对(x,y)表示的点的个数是_________.
x3或x1,2x2x30,解析:由题意知2∴ 16y6y10.y3.∴点对有(3,11)、(-1,),共有2个. 33答案:2
5.设复数z=log2(m2-3m-3)+ilog2(3-m)(m∈R),如果z是纯虚数,求m的值.
2m3m31,log2(m23m3)0,解:由题意知∴3m1,log(3m)o23m>0.m23m40,∴ m2且m<3.∴m=-1.
6.若方程x2+(m+2i)x+(2+mi)=0至少有一个实数根,试求实数m的值. 解:方程化为(x2+mx+2)+(2x+m)i=0.
x2mx20,∴ 2xm0mm2m220.∴x,242∴m2=8.∴m=±22.7.已知m∈R,复数z纯虚数;(4)z=m(m2)+(m2+2m-3)i,当m为何值时,(1)z∈R;(2)z是虚数;(3)z是
m11+4i. 2m22m30,解:(1)m需满足
m10.解之得m=-3.
(2)m需满足m2+2m-3≠0且m-1≠0,解之得m≠1且m≠-3.
m(m2)0,(3)m需满足m1
m22m30.解之得m=0或m=-2. m(m2)1,(4)m需满足m12
m22m34.解之得m∈.
8.(2005年湖北省五校联考)已知k∈R,方程x2+(k+3i)x+4+k=0一定有实根的充要条件是() A.|k|≥4
B.k≥2+25或k≤2-25 D.k=-4 C.k=±32
解析:设x=t是方程的实根,
∴t2+kt+Δ+k+3t·i=0.
t2kt4k0,由复数相等的定义知
3t0.∴k=-4.故选D. 答案: D Ⅳ.课时小结
这节课我们学习了虚数单位i及它的两条性质,复数的定义、实部、虚部及有关分类问题,复数相等的充要条件等等.基本思想是:利用复数的概念,联系以前学过的实数的性质,对复数的知识有较完整的认识,以及利用转化的思想将复数问题转化为实数问题. Ⅴ.课后作业
课本P150习题4.1 1、2、3、4. 板书设计
§4.1复数的有关概念
一、虚数单位i:i2=-1. 两条规定:(1)i2=-1;
(2)i与实数满足加、乘运算的有关运算律.
二、复数定义: 1.形如a+bi(a、b∈R)叫做复数. 2.分类
b0实数zazabia0纯虚数
b0z为虚数a0非纯虚数3.复数相等的充要条件(a、b、c、d∈R)
z1=a+bi,z2=c+di,z1=z2
ac,bd.z=a+bi=0a=b=0. 例题分析
课本例题 例1 例2 精选例题 例1 例2 数系扩充
正整数有理数0实数分数复数无理数虚数预习提纲 1 2 ……
负