第一篇:多轴联动及其后处理设置
多轴联动及其后处理设置
在后置文中找出
#Assign axis address str_pri_axis “A” str_sec_axis “B” str_dum_axis “C”
#Toolplane mapped to top angle position strings str_n_a_axis “C” str_n_b_axis “B” str_n_c_axis “A” 以上轴可互换,或加或减.9.1V五轴曲线加工CURVE 5-AXIS对话框之重要翻译:
T OOL AXIS CONTROL(刀具垂直于某某)下第四项FROM P0INT(刀具轴线向后延伸交于选定点)第五项TO POINT((刀具轴线向前延伸交于选定点)第六项CHAIN(刀具轴线与串接方向对齐)tip control(刀尖位置)下第三项按钮comp tosurfases(刀尖偏离曲面一定距离)projection下的maximum distance(最大投影距,默认值50)不大理解,请朋友告知.
【讨论】关于五轴加工的小问题
各位有人用五轴的加工中心的吗?我用的是饶Z旋转的工作台位于饶X轴旋转的旋转轴之上的机床.这样当5轴连动时,4轴(饶X),5轴(饶Z)同时旋转,工件位于工作台上某一高度位置,且并不位于4轴,5轴的旋转中心,那么就存在一个工件关于旋转轴的偏心距,象这种情况各位在编程时是怎么处理的?即便用软件,他的编程原理是什么?请用类似机床的高手指点.5轴较平,4轴中心为机床原点,亦即编程原点.关于五轴的~
在五轴机床上,通常有几个参数,例如X,Y,Z,A,C五轴机床上通常会把C轴中心到A轴中心的偏心距和旋转半径告诉你,每台机床各不一样,但在mastercam中好像没有要求你输入这些参数,那它生成出来的程序可以直接用吗?是不是要处理一下?
我看我们的程编通常是生成了程序后用一个软件,在这个软件中输入c轴旋转方向,c轴中心到a轴的偏心距和旋转半径,然后处理一下才用的,不知各位是不是这样的啊? 如果是可以把这个软件介绍一下吗?
可否介绍下你们用的那个后处理软件?
偏心距和旋转半径是同出一辙吗?
两个旋转轴 中心点(C B轴)之间的是150mm。机床不支持 RTCP。看图片。
两个旋转轴 中心点(C B轴)之间的是150mm。机床不支持 RTCP。看图片。
偏心距是刀具在多轴加工同一点时.垂直坐标与转角度后坐标间的差值;旋转半径俗称摆长,B轴的旋转半径,工件面到B轴的旋转中心距离.请问怎么改post设置偏心和摆长啊?
#Offset in head based on secondary axis relative to machine base.#Normally use the tool length for the offset in the tool direction saxisx : 0 #The axis offset direction? saxisy : 0 #The axis offset direction? saxisz : 0 #The axis offset direction?
五轴后处理关健:
#Assign axis address str_pri_axis “A” str_sec_axis “B” str_dum_axis “C”
#Toolplane mapped to top angle position strings str_n_a_axis “A” str_n_b_axis “B” str_n_c_axis “C”
这里是旋转轴地址设定
五轴后处理关键之处:
#Machine rotary routine settings mtype : 0 #Machine type(Define base and rotation plane below)#0 = Table/Table #1 = Tilt Head/Table #2 = Head/Head #3 = Nutator Table/Table #4 = Nutator Tilt Head/Table #5 = Nutator Head/Head head_is_sec : 1 #Set with mtype 1 and 4 to indicate head is on secondary
这里定义机床型式 #Preferred setup is pri.zero matches sec.zero/direction #Zero machine and determine the planes perp.to axis rotations #These plane combinations are valid: #Primary plane XY XZ YZ #Secondary or XZ XY XY #Secondary YZ YZ XZ
#Primary axis angle description(in machine base terms)#With nutating(mtype 3-5)the nutating axis must be the XY plane rotaxis1 = vecy #Zero rotdir1 = vecx #Direction
#Secondary axis angle description(in machine base terms)#With nutating(mtype 3-5)the nutating axis and this plane normal #are aligned to calculate the secondary angle rotaxis2 = vecz #Zero rotdir2 = vecx #Direction
#NOTE: Use of 'top_map' requires the dealer match the # above settings below.These must match initial settings!!p_nut_restore #Postblock, restores original axis settings result = updgbl(rotaxis1, vecy)#Zero result = updgbl(rotdir1, vecx)#Direction result = updgbl(rotaxis2, vecz)#Zero result = updgbl(rotdir2, vecx)#Direction 以上决定轴向量
#Normally use the tool length for the offset in the tool direction saxisx : 0 #The axis offset direction? saxisy : 0 #The axis offset direction? saxisz : 0 #The axis offset direction? 以上确定轴偏距
旋转轴刀路------答ajie5211(圆柱刻字)
带数控转盘4轴铣床: 复合转头5轴铣床:
一个转盘和一个摆动盘5轴铣床(转盘在摆动盘上面): 一个转盘和一个摆动头5轴铣床:
两个转盘5轴铣床(一个转盘在另一个转盘上面):
一个转盘和一个倾斜摆动盘5轴铣床(摆动盘倾斜45度): 一个转盘和一个倾斜摆动头5轴铣床(摆动头倾斜45度): 倾斜复合转头5轴铣床:
两个直线轴和三个旋转轴5轴铣床
多轴机类型 a
[ 本帖最后由 ssfjyv 于 2006-1-4 09:08 编辑 ]
图片附件: 1.GIF(2006-1-2 16:48, 1.93 K)
多轴机类型 2
图片附件: 2.GIF(2006-1-4 09:10, 1.67 K)
多轴机类型 3
图片附件: 3.GIF(2006-1-4 10:28, 2.37 K)
多轴机类型 4
图片附件: 4.GIF(2006-1-9 18:09, 2.33 K)
多轴机类型 5
图片附件: 5.GIF(2006-1-12 20:35, 2.25 K)
多轴机类型 6
图片附件: 6.GIF(2006-1-20 00:50, 2.28 K)
多轴机类型7
图片附件: 7.GIF(2006-2-7 19:04, 1.98 K)
多轴机类型 8
图片附件: 8.GIF(2006-2-10 13:53, 1.74 K)
多轴机类型9
图片附件: 9.GIF(2006-2-10 13:54, 2.29 K)
多轴机类型 10
图片附件: 10.GIF(2006-2-10 13:57, 2.23 K)
多轴机型 11
图片附件: 11.GIF(2006-2-11 08:51, 2.08 K)
多轴机型 12
图片附件: 12.GIF(2006-2-11 09:07, 2.03 K)
多轴机型 13
图片附件: 13.GIF(2006-2-12 09:17, 1.94 K)
多轴机型 14
图片附件: 14.GIF(2006-2-12 14:55, 1.84 K)
多轴机型 16
图片附件: 16.GIF(2006-2-13 11:11, 2.26 K)
多轴机型 15
图片附件: 15.GIF(2006-2-13 11:12, 2.36 K)
多轴机型 17
图片附件: 17.GIF(2006-2-13 12:13, 2.43 K)
多轴机型18
图片附件: 18.GIF(2006-5-2 02:24, 2.34 K)
多轴机型19
图片附件: 19.GIF(2006-5-2 02:26, 2.42 K)
多轴机型20
图片附件: 20.GIF(2006-5-3 22:46, 2.42 K)
多轴机型21
图片附件: 21.GIF(2006-5-3 23:12, 2.44 K)
多轴机型21
图片附件: 22.GIF(2006-5-3 23:52, 2.5 K)
多轴机型23 以上图片来自NCPOST网站,在此表示感谢!
[ 本帖最后由 ssfjyv 于 2006-5-4 00:12 编辑 ]
图片附件: 23.GIF(2006-5-3 23:55, 219.84 K)
原帖由 ssfjyv 于 2006-1-20 16:14 发表
编程原点要设到料面高度或旋转中心;另外如果两个旋转轴都在主轴上是双摆头机型, 我还没研究.兩個旋轉軸都在主軸頭上的雙擺頭五軸機型: 1.ㄧ般在市售的通用後處理是直接把偏心距設置在後處理文件裡頭的, 也把 初始旋轉軸到主軸端面的距離設置進去
2.如果沒有RCTP功能的機器, 後處理時便把校刀長度加入計算
第二篇:五轴联动
教程目录列表:
第一周 五轴理论讲解 机床结构 工作原理 典型零件的工艺方案
第一节 五轴机床结构特点与工作原理 36min
1.五轴的定义:一台机床上至少有5个坐标,分别为3个直线坐标和两个旋转坐标
2.五轴加工特点:
1.三轴加工机床无法加工到的或需要装夹过长2.提高自由空间曲面的精度、质量和效率
2.五轴与三轴的区别;五轴区别与三轴多两个旋转轴,五轴坐标的确立及其代码的表示
Z轴的确定:机床主轴轴线方向或者装夹工件的工作台垂直方向为Z轴
X轴的确定:与工件安装面平行的水平面或者在水平面内选择垂直与工件的旋转轴线的方向为X轴,远离主轴轴线的方向为正方向
3.直线坐标X轴Y轴Z轴 旋转坐标A轴、B轴、C轴
A轴:绕X轴旋转为A轴
B轴:绕Y轴旋转为B轴
C轴:绕Z轴旋转为C轴
XYZ+A+B、XYZ+A+C、XYZ+B+C 三种形式五轴
4.五轴按主轴位置关系分为两大类:卧式、立式
5.五轴按旋转主轴和直线运动的关系来判定,五轴联动的结构形式:
1.双旋转转工作台(A+B为例)
在B轴旋转台上叠加一个A轴的旋转台,小型涡轮、叶轮、小型紧密模具
2.一转一摆 A+B B+C刚性 精度高
3.双摆头 工作台大,力度大,适合大型工件加工,龙门式
6.五轴联动的结构的旋转范围:
双旋转转工作台 旋转范围:+20A-100 B360 +30A-120 C360 一转一摆
旋转范围:+30B-120 C360 双摆头 旋转范围 :+90A-90 C360 +30A-120 C360 第二节 五轴加工优点 应运典型零件的工艺方案 实际生产加工常发生的问题及其解决方案 32min
1.三轴加工的缺点:1.刀具长度过长,刀具成本过高2.刀具振动引发表粗糙度问题3.工序增加,多次装夹4.刀具易破损5.刀具数量增加6.易过切引起不合格工件7.重复对刀产生累积公差
2.五轴优点:1.刀具得到很大改善2.加工工序缩短装夹时间3.无需夹具4.提高表面质量5.延长刀具寿命6.生产集中化7.有效提高加工效率和生产效率
3.五轴加工主要应运的领域: 航空、造船、医学、汽车工业、模具
4.五轴应运的典型零件:叶轮、涡轮、蜗杆、螺旋桨、鞋模、立体公、人体模型、汽车配件、其他精密零件加工
5.五轴加工工工艺及其实际生产加工常发生的问题及其解决方案:
1.五轴工件坐标系的确立、五轴G代码NC程序表示 2.各种不同机台复杂零件的装夹
3.加工辅助线、辅助面的制作
4.五轴加工刀具与工件点接触,非刀轴中心的补偿
5.加工过程中刀具碰撞问题
6.刀轨的校验及其仿真加工
7.不同五轴机器,不同刀轨和后处理
第二周 结合案例讲解软件的综合使用技巧和UG7.5新增功能的使用
第三节
案例1 五轴加工坐标与刀具补偿装夹及其UG7.5多轴驱动的讲解 116min
1.五轴坐标的设定:
五轴坐标系一般情况下设在工作台回转中心上
2.UG7.5中工件坐标系讲解:刀轴矢量、3轴半开粗、多轴面铣加工
1.局部坐标系设定G52使用举例
格式:G52 X_Y_Z_;
式中:
X、Y、Z: 五轴加工机床局部坐标系原点在当前工件坐标系中的坐标值。
G52 指令能在所有的工件坐标系(G92、G54~G59)内形成子坐标系,即局部坐标系,含有G52 指令的程序段中,绝对值编程方式的指令值就是在该局部坐标系中的坐标值。
设定局部坐标系后,工件坐标系和机床坐标系保持不变。
编程举例:,从A→B→C路线进行,五轴机器加工刀具起点在(20,20,0)处,可编程如下:
N02 G92 X20 Y20 Z0; 设定G92为当前工作坐标系
N04 G90 G00 X10 Y10; 快速定位到G92工作坐标系中的A点
N06 G54; 将G54置为当前坐标系
N08 G90 G00 X10 Y10; 快速定位到G54工作坐标系中的B点
N10 G52 X20 Y20; 在当前工作坐标系G54中建立局部坐标系G52 N12 G90 G00 X10 Y10; 定位到G52中的C点
1.刀具补偿
刀具半径方向补偿 3轴 G41 G42 D 刀具长度方向补偿 3轴 G43 G44 H 3轴平面加工 G16 G17G18 三轴区别五轴加工,刀具半径的补偿、长度补偿都要在三维空间完成!
刀具半径方向补偿:插补程序段中提供的数据信息又仅仅是刀具中心点坐标和刀具轴的方位角,刀具半径补偿实际上不可能进行,因为控制器不知道该往哪个方向进行补偿,而这个方向对于刀具半径补偿非常重要。因此,如果要进行三维空间刀具半径补偿功能,则必须在数控加工程序段中提供补偿方向向量等信息,FANUC控制器采用了IJK码来表示, 将由编程刀具中心位置即指向刀具半径补偿后实际加工刀具中心的矢量称为刀具半径补偿向量IJK 刀具长度方向补偿:坐标和摆角坐标输入插补模块即可使刀具中心按照编程轨迹运行。
程序结构如下:
%
N0100 O0008(程序名)
N0102 M6 T1;(换刀)
N0104 G0 G90 G56 X400 Y200 Z260 B0 C0;(运动到参考点)
N0106 G432 X200 Z150 H1 Bω;(在垂直于斜面的方向加刀长)
N0108 M3 S3000;(主轴正转)
N0110 M8;(打开切削液)
N0112 G68 X188 Y0 Z60 I0J1 K0 Rω;(坐标系转换,ω为主轴从零转到与斜面垂直时所转动过得角度)
… …
N0200 G69;(坐标系旋转取消)
N0202 G492 X200 Z300;(斜面刀具补偿取消,运动到安全位置)
N0204 M9;(切削液关)
N0206 Cα;(C轴旋转,α为所要加工的第n个斜面的垂线与C0位置所夹的最小角度)
N0208 G0 G90 G56 X400 Y200 Z260 B0 C0;(运动到参考点)
N0210 G432 X200 Z150 H1 Bωn;(在垂直于斜面的方向加刀长)
N0212G68 X188 Y0 Z60 I0J1 K0 Rωn;(坐标系转换,ωn为主轴从零转到与斜面垂直时所转动过得角度)
… …
N0200 G69;(坐标系旋转取消)
N0202 G492 X200 Z300;(斜面刀具补偿取消,运动到安全位置)
N0204 M9;(切削液关)
N0204 M30;(程序结束,返回到程序头)
1.五轴加工的装夹及其UG5多轴驱动的讲解
变轴铣 精加工、驱动方式边界、它准许精确控制刀轴和投影矢量
流线加工 按照曲面的趋势产生刀轨
曲面轮廓铣 使用轮廓驱动方式
多层切屑变轴铣 适当条件下可以 采用它来开粗
多层切屑变轴铣(双四轴驱动)边界
多层切屑变轴铣(双四轴驱动)曲面
固定轴曲面轮廓铣 投影矢量(驱动的投影方向)刀轴(刀具方向)
等高变轴铣(新功能)顺序铣削
第四节 案例1五轴几何体9种驱动方法的详细讲解和各参数设置 180min 曲线/点驱动方法加工3D刻字、3D流道
螺旋式、边界加工
曲面加工(重点)曲面必须连续 曲面UV方向一致 辅助面驱动 流线加工(常用)
刀轨、径向切削、外形轮廓加工、用户自定义
第五节 案例2五轴加工13种刀轴方向的控制和复杂零件轴向的判定 80min 远离直线、朝向直线、远离点、朝向点、相对于矢量、(前倾角、后倾角)垂直于部件、相对于部件
插补矢量、插补角度至部件、插补矢量至驱动、(前倾角、后倾角)
优化后驱动、垂直于驱动体、侧刃驱动体、相对于驱动体(前倾角、后倾角)
第六节 案例3五轴加工8种投影矢量使用方法和用途以及与刀轴方向的区别 31min 刀轴
指定矢量
远离点和朝向点
远离直线和朝向直线
垂直与驱动和朝向驱动体
投影矢量和刀轴方向的区别:
投影矢量:使驱动体采用一定的矢量方向投影到部件表面产生的轨迹
刀轴方向:控制刀具在加工中刀具的倾斜或固定方向的
第七节 案例4 UG7.5新增功能在实际生产加工的使用 87min
1.五轴等高:侧倾角
2.五轴外形轮廓铣削:轮廓加工、加工倒扣侧壁、清根、辅助面加工
3.五轴顺序铣加工:驱动、部件、检查体、近侧、远端侧、驱动面移动方向、刀轴矢量方向
第三周 讲解典型零件的程序制作 并结合你公司所要加工的零件
第八节 入门1(烟灰缸五轴加工案例B+C)120min
1.2.3.4.五轴合精加工,开粗尽量采用三轴,或3+1开粗
二次开粗(清角)3+2,注意刀轴矢量方向及其灵活运用
复杂曲面采用边界加工的思路,边界的制作方法
曲面加工驱动,UV方向的判定,投影矢量和刀轴方向
第九节 入门2(奖杯五轴加工案例B+C)350min
1.2.3.4.5.分析倒扣,确定加工方案B+C
抽取最大外形,做片体以便加工使用,减少重复刀轨
补实体避免倒扣位置,复杂图形简单化,减少提刀
曲面驱动五轴加工地面,考虑刀轴方向,刀具过且,刀座碰撞
曲面百分比的灵活运用,1.缩短驱动曲面(负值),避免过且撞刀,减少提刀,2.延伸曲面驱动(正值),避免第一刀接触部件,减轻刀具切入时受力
6.曲面驱动进行光面精加工,曲面驱动UV方向分析,修改、简化以符合曲面加工的UV方向!
7.过切检查,检查刀具夹持碰撞,红色刀轨为过切位置(重要),做出一个列表信息,提示刀轨:刀轨名称、对应的刀轨过切运动、对应的刀具夹持器碰撞
8.干涉不代表刀具路径不能加工,刀轨确认中红色为过切
9.刀轴方向采用远离点,点离到轴越近,刀轴倾斜角度越大,控制刀具倾斜角度避免刀具夹持器的碰撞
10.五轴两种不同刻字,采用三轴半字体加工,字体负余量加工
第十节 提高1(印章五轴加工案例BC)210min
1.分析零件结构特征,确定装夹方向及其加工工艺
2.对称图形可以采用变换刀轨的方法,注意两开粗刀轨之间相接位置的残料
3.给刀具装配夹持器及其夹持器参数的修改,五轴加工刀具夹持器碰撞的验证
4.面对复杂且UV方向不一致曲面加工,做辅助片体,采用其做驱动面产生驱动,然后通过合适的投影方向投影到部件上产生合理的刀路轨迹
5.面对破面产品五轴加工应对的几种方案,参数刀路后的正确判断与验证
6.对于两曲面衔接处的加工方法:1.采用曲面百分比控制,2.采用曲线驱动命令实现两曲面衔接处的加工(重点)
7.面对曲面加工的一些盲区,采用曲面驱动体的加工方向后曲面百分比来弥补这些缺陷
9.面对棱角面,精加工必须逐个分开加工,以保证产品的线条流畅没关
10.对于产品上大小相同,布局有一定规律的曲面,我们可以采用刀轨变换实现多个加工,简单快捷!
第十一节 提高2(模型茄子五轴加工案例B+C)150mion
1.特殊图形加工的定位,考虑外观及其加工中外在因素,比如变形、夹刀,刀长等问题
2.五轴开粗的思路与详细操作步骤
3.控制刀具矢量方向,达到控制刀具夹持器与工作台的避让
4.五轴点线加工驱动的清方式及其思路
第十二节 提高3(玩具枪加五轴加工案例A+C)150min
1.2.3.4.5.6.分析结构特点制作毛胚,设定坐标系位置,考虑补刀点
分析产品的装夹位置,合理、避免刀具夹持器相撞
复杂曲面驱动的设置和选择
特殊机构位置的加工思路
做辅助面产生曲面,实现曲面加工
控制曲面区域:设置检查面、曲面百分比
第十三节 提高4(玩具猪头五轴加工案例B+C)210min
1.2.3.4.5.第十四节 经典1风叶片五轴加工案例B+C 150min
1.2.3.4.5.6.7.叶片加工工艺,分析哪些属于那道工序
考虑到叶片变形,开粗预留量、分两次完成精加工,刀轨变换:镜像、旋转
制作局部毛培,加工倒扣外置,注意刀具的矢量方向
侧刃驱动灵活使用, 侧刃角角度的控制和夹持器的避让
手工制作流线加工操作步骤及其注意事项
五轴产品加工实体仿真操作方法 分析产品结构,确定加工方案
曲面UV方向你不一致如何加工、刀具夹持器与工作台的碰撞
清角位置的处理,采用5轴清角加工(重点)
相对驱动体的使用(侧倾角),避免碰撞
五轴机床的类型详细介绍及其加工特点
第十五节 经典2(人体模型五轴加工案例B+C)120min
1.2.3.4.5.6.7.第十六节 经典3涡轮(多叶片)五轴加工案例(重点)120min
1.涡轮加工环境:
在要创建的 CAM 设置组→选择mill_multi_blade。
复杂曲面的驱动面的选择与设定
对于狭窄位置的清角思路,及其球刀清角的参数设定
流线加工和刀轴的避让问题
采用五轴镜像线驱动清角的方法和刀轴的矢量方向
采用局部投影驱动,达到局部加工
曲面驱动曲面百分比延伸刀轨和缩短刀轨
人体模型五轴仿真加工操作方法
1.UG7.5涡轮加工新操作及其驱动几何体介绍:
叶毂几何体必须能够绕部件轴旋转
包覆几何体必须能够绕部件轴旋转,覆盖整个叶片
主叶片的壁,叶片几何体不包括顶(包覆)面或圆角面
叶跟圆角,定义主叶片与叶毂相连的圆角区域
分流叶片几何体,定义位于主叶片之间的较小叶片。
检查面
前缘和后缘
3.包裹几何体:
a.可由主叶片的顶面组成。
b.可由车削几何体的适当的面组成。
c.由于要驱动切削层的模式,因此它必须光顺。
d.可包含在“部件”几何体内,但不建议采用这种形式。如果使用了车削几何体,指定“部件”几何体时不要选择“包覆”几何体。
4.叶毂具备的特征:
a.必须至少在叶片的前缘和后缘之间延伸。
b.可延伸超出叶片的前缘或后缘。
c.必须能够绕部件的旋转轴回转。
d.可以是单一曲面或一组曲面
e.可环绕叶轮,或仅覆盖叶轮的一部分
5.叶片具备的特征:
a.含顶面或圆角面。
b.跨越至叶毂。
c.入叶毂下方。
d.叶片和叶毂之间留出缝隙。如果部件不包含圆角,叶毂和叶片之间的缝隙不得大于刀具半径。
e.包含延伸至叶片以外的面。.分流叶片几何体有以下特性:
a.壁面和圆角面。
b.于选定主叶片的右侧。
c.含最多五个分流叶片。即使多个分流叶片的几何体相同,每个分流叶片也必须单独进行定义。必须为每个分流叶片创建新集,并按照从左至右的顺序指定多个分流叶片。
7.叶根圆角几何体
8.多叶片检查几何体有以下特性:
a.有被实例化。要包含附加于多叶片或分流叶片的所有面或体,必须单个选择每个面或体。
b.包含定义的叶片、叶根圆角、叶毂或分流叶片。
如果刀具侧倾幅度足以碰撞,定义的几何体以外的叶片,则必须选择该叶片为“检查”几何体。
9.涡轮(多叶片)五轴加工驱动操作
1.多叶片开粗
2.精加工叶毂
3.精加工叶片
4.精加工叶片圆角
10.涡轮五轴加工刀轨变换
第十七节 经典4风叶(多叶片)五轴加工案例)120min
1.五轴开粗(重点),计算刀具半径、叶片余量,制作加工曲面驱动,刀轨过切与夹持器碰撞等问题的分析和避让
2.分析原曲面UV方向,修剪做网格曲面,改变原来的UV曲面的方向,做驱动面加工
3.曲面加工的刀轨轨迹严格按照曲面UV曲线方向产生,控制曲面驱动的UV方向,从而得到合理的刀路轨迹
4.采用UG7.5新驱动涡轮多叶片驱动加工风叶思路和具体操作
第十八节 实战 1维纳斯模型五轴加工案例A+C 300min
1.调整产品基准,以便3+1定轴开粗,分析定轴加工的方向
2.设置加工坐标,确定加工轴向方向,做检查面控制刀轨
3.采用3D,进行残料清角加工
4.采用清跟驱动(参考刀具), 显示残料3D,另存为prt,导入原图档,作为清跟毛坯加工
5.采用曲面驱动加工,曲面百分比的控制,刀轨投影,刀轴的方向
6.UG7.5新功能通过颜色显示残料厚度
7.制作UV曲线方向一致的曲面做驱动面,从而达到我们所需要的刀轨
第十九节实战2涡轮(分流叶片)五轴加工案例A+C 210min
1.涡轮(分流叶片)的加工思路
2.多轴开粗具体操作方法:做曲面驱动、设置刀轴方向、偏置刀轨
做曲面驱动:改变原有曲面的UV曲线方向,控制刀轨路径
设置刀轴方向:避免刀具与部件的碰撞和过切运动
偏置刀轨:实现5轴粗加工操作
1.五轴局部开粗的方法,叶片余量的的计算
1.分流叶片的加工思路,采用插补矢量,相对于驱动、侧倾角、侧刃驱动
2.仿真操作
第五周 机床仿真、五轴后处理的使用及其赠送数富五轴工厂使用后处理
第二十节 五轴程序的机床仿真五轴后处理
1.五轴程序的机床仿真:双转主轴头、双转工作台、一转一摆
2.如何添加自己的后处理,路径:D:UG7.5MACHresourcepostprocessor 3.五轴后处理详细操作及其讲解
4.五轴后处理修改
第一步:进入UG7.5后处理构造器
.def.tcl.pui 文件
第二步:打开我们要修改的程序→描述你的后处理(英文)→此区域 Inches 英制单位 Millimeters 公制设定→轴选项 3-轴 4-轴 或5轴→机床类型设定 Generic 通用的、Library 浏览自带机床、User’s 用户自定义→单击OK 第三步:yesno所输出是否记录选项(圆弧形式、直线形式)→设置行程(左边为机床行程数据 右边为机床原点数据)→精度、G00速度(左边为机床精度小数公差、右边为机床快速进给G00最大速度)→其余默认然后进入下一页面ok 第四步:修改程序头 程序尾 中间换刀程序衔接 道具号
第四步:修后修改钻孔一些参数
5.制作自己的五轴后处理
第一步:新建后置文件确定机床的类型、公/英制、第二步:设定轴的极限、轴向定义。
第三步:设定程序开始部分、刀轨移动部分、程序结束部分。
6.UG7.5常出现的三大问题:
问题一:
“笫一种情况ug7.5安装完 打开ug7.5出现如下壮态
显示如下NX License Error:Invaild(inconsistent)license key or signature.The license key/signature and data for the feature do not match也有时显示:NX 许可证错误:NX 要求正确配置环境变量UGS_LICENSE_SERVER。可将其设置为 NX 许可证服务器的值 port@hostname,或者将其设置为直接指向许可证文件。默认情况下,其格式为 28000@serverName。
解决方法
1、双击launch.exe打开安装界面,选择第二项“install license server”安装,在选择语言时选中文;安装过程中提示你寻找license文件,使用浏览(browse)来找你安装文件中的MAGNiTUDE文件夹下的nx6.lic文件就可以,不用改里面的计算机名,系统安装自动会生成。继续直到结束,目录路径不要改变,默认就行。
2、运行安装页面第三项“install NX”进行主程序安装。直接下一步,选择典型安装,下一步选择语言(选中文,当然英文也行),安装路径可以更改。直到完成推出。
3、打开MAFGNiTUDE文件,把UGS|NX6.0文件夹下的文件复制到安装好的目录NX6.0下,覆盖。就OK了!
问题二:
UG7.5安装后启动ug后出现:
NX Inutualzation Error Initialization error-NX license Error: The license server has not been started yet, or UGII_LICENSE_FILE is set to the wrong port@host.[-15] 解决方法
产生此种错误的原因在ug服务器上面解决方法:在确定。lic文件修改真确的情况下,把服务重新启动就可以了。或者重新安装nxflexlm060(60ugslicensing010)
问题三:
安装后启动UG7.5后出现Initialization error-UGII_TMP_DIR was set to a directory with an invalid(non-ASCII)character 解决方法
这句话意思就是说初始值UGII_TMP_DIR放在了中文目录下,产生此种结果的原因就是系统的变量问题解决方法如下:修改环境变量:右键我的电脑----属性----高级----环境变量
笫四种情况安装后 启动ug后出现Runtime Error!program:UGSNX 4.0UGIIugraf.exe This application has requested the Runtime to terinate it in an unususl way.Please contact the application's support team for more information 解决方法:
许可证服务器是否正确XP与ug不兼容,要求卸载IE7.0,或换成低版本的就可以了。(或者 UGII文件夹下的psapi.dll文件删除 大家试试”
三轴编程薪资高?如今已经不见了。
多轴加工潜力大,指点江山看明朝!
相关教程:UG四轴加工教程
第三篇:五轴联动机床
五轴联动机床
11月5日在上海新国际博览中心结束的2006中国国际工业博览会上,上海交通大学与上海电气集团股份有限公司中央研究院、上海第三机床厂联合开发的五轴联动数控机床获得2006中国国际博览会创新奖。具有五轴联动功能的开放结构高端数控装备是发达国家禁止向中国出口的先进制造技术,也是我国独立自主发展航空、航天、国防、汽车等行业所必不可少的先进装备。
机械与动力工程学院王宇晗副教授与上海电气集团股份有限公司中央研究院合作研究完成具有自主知识产权的开放式数控平台,在此基础上,研制了SE305M五轴联动高档数控系统产品。该系统是上海市首台全国产化的五轴联动高档数控系统,在五轴联动插补算法、微小线段的五轴联动速度平滑技术、五轴联动NURBS曲面高速加工运动控制技术等国家急需的关键技术上取得创新性的突破和应用,使上海的现代装备制造业的技术水平向前迈进了一步。
那么什么是五轴联动呢?五轴联动:除同时控制 X、Y、Z 三个育线坐标轴联动外.还同时控制围绕这这些直线坐标轴旋转的 A、B、C 坐标轴中的两个坐标轴,形成同时控制五个轴联动这时刀具可以被定在空间的任意方向.比如控制刀具同时绕 x 轴和 Y 轴两个方向摆动,使得刀具在其切削点上始终保持与被加工的轮廓曲面成法线方向,以保证被加工曲面的光滑性,提高其加工精度和加工效率,减小被加工表面的粗糙度。
在传统的模具加工中,一般用立式加工中心来完成工件的铣削加工。随着模具制造技术的不断发展,立式加工中心本身的一些弱点表现得越来越明显。现代模具加工普遍使用球头铣刀来加工,球头铣刀在模具加工中带来好处非常明显,但是如果用立式加工中心的话,其底面的线速度为零,这样底面的光洁度就很差,如果使用四、五轴联动机床加工技术加工模具,可以克服上述不足。
五轴机床发展的趋势
首先是采用直线电机驱动技术。经过十几年的发展,直线电机技术已经非常成熟。直线电机刚开发出来易受干扰和产热量大的问题已经得到解决,而直线电机的定位技术,既在高速移动中快速停止,也有部分机床厂家采用阻尼技术给予解决。
直线电机的优点是直线驱动、无传动链、无磨损、无反向间隙,所以能达到最佳的定位精度。直线电机具有较高的动态性,加速度可超过2g。采用直线电机驱动还具有可靠性高、免维护等特点。
其次是采用双驱动技术。对于较宽工作台或龙门架型式,假如采用中间驱动,实际无法保证驱动力在中心,轻易造成倾斜,使得动态性能较差。使用双驱动,双光栅尺,一个驱动模块,就能使动态性能非常完美。一个驱动指令,双驱同时工作,光栅尺来检测两点是否平衡,假如不平衡则通过不同指令使其达到平衡。当然,五轴联动机床技术的发展还远远不止这些,许多技术在德马吉的机床产品中都将会体现出来。
五轴联动数控是数控技术中难度最大、应用范围最广的技术。它集计算机控制、高性能伺服驱动和精密加工技术于一体,应用于复杂曲面的高效、精密、自动化加工。五轴联动数控机床是发电、船舶、航天航空、模具、高精密仪器等民用工业和军工部门迫切需要的关键加工设备。国际上把五轴联动数控技术作为一个国家工业化水平的标志
由于使用五轴联动机床,使得工件的装夹变得容易。加工时无需特殊夹具,降低了夹具的成本,避免了多次装夹,提高模具加工精度。采用五轴技术加工模具可以减少夹具的使用数量。另外,由于五轴联动机床可在加工中省去许多特殊刀具,所以降低了刀具成本。五轴联动机床在加工中能增加刀具的有效切削刃长度,减小切削力,提高刀具使用寿命,降低成本。采用五轴联动机床加工模具可以很快的完成模具加工,交货快,更好的保证模具的加工质量,使模具加工变得更加容易,并且使模具修改变得容易。
当前,国产五轴联动数控机床在品种上,已经拥有立式、卧式、龙门式和落地式的加工中心,适应大小不同尺寸的复杂零件加工,还有五轴联动铣床和大型镗铣床以及车铣中心等,基本涵盖了国内市场的需求。精度上,北京机床研究所的高精度加工中心、宁江机械集团股份有限公司的NJ-5HMC40卧式加工中心和交大昆机科技股份有限公司的TH61160卧式镗铣加工中心都具有较高的精度,可与发达国家的产品相媲美。在产品市场销售上,江苏多棱、济南二机床、北京机电研究院、宁江机床、桂林机床、北京一机床等企业的产品,已获得国内市场的认同。
国外五轴联动数控机床是为适应多面体和曲零件加工而出现的。随着机床复合化技术的新发展,在数控车床的基础上,又很快生产出了能进行铣削加工的车铣中心。五轴联动数控机床的应用,其加工效率相当于两台三轴机床,甚至可以完全省去某些大型自动化生产线的投资,大大节约了占地空间和工作在不同制造单元之间的周转运输时间及费用。市场的需求推动了我国五轴联动数控机床的发展,CIMT99展会上,国产五轴联动数控机床登上机床市场的舞台。自江苏多棱数控机床股份有限公司展出第一台五轴联动龙门加工中心以后,北京机电研究院、北京第一机床厂、桂林机床股份有限公司、济南二机床集团有限公司等企业,相继开发了五轴联动数控机床。
第四篇:五轴联动的优点
五轴联动机床的优点
由于使用五轴联动机床,使得工件的装夹变得容易。加工时无需特殊夹具,降低了夹具的成本,避免了多次装夹,提高模具加工精度。采用五轴技术加工模具可以减少夹具的使用数量。另外,由于五轴联动机床可在加工中省去许多特殊刀具,所以降低了刀具成本。五轴联动机床在加工中能增加刀具的有效切削刃长度,减小切削力,提高刀具使用寿命,降低成本。采用五轴联动机床加工模具可以很快的完成模具加工,交货快,更好的保证模具的加工质量,使模具加工变得更加容易,并且使模具修改变得容易。
在传统的模具加工中,一般用立式加工中心来完成工件的铣削加工。随着模具制造技术的不断发展,立式加工中心本身的一些弱点表现得越来越明显。现代模具加工普遍使用球头铣刀来加工,球头铣刀在模具加工中带来好处非常明显,但是如果用立式加工中心的话,其底面的线速度为零,这样底面的光洁度就很差,如果使用四、五轴联动机床加工技术加工模具,可以克服上述不足。
五轴机床的种类
五轴联动机床有立式、卧式和摇篮式二轴NC工作台,NC工作台NC分度头,NC工作台 90轴,NC工作台45B轴,NC工作台A轴,二轴NC主轴等类型。上述六大类共7种五轴联动方式都有各自的特点,无法说哪一种形式更好,只能说你的产品适合哪种类型的五轴加工。
五轴机床发展的趋势
首先是采用直线电机驱动技术。经过十几年的发展,直线电机技术已经非常成熟。直线电机刚开发出来易受干扰和产热量大的问题已经得到解决,而直线电机的定位技术,既在高速移动中快速停止,也有部分机床厂家采用阻尼技术给予解决
直线电机的优点是直线驱动、无传动链、无磨损、无反向间隙,所以能达到最佳的定位精度。直线电机具有较高的动态性,加速度可超过2g。采用直线电机驱动还具有可靠性高、免维护等特点。
其次是采用双驱动技术。对于较宽工作台或龙门架型式,如果采用中间驱动,实际无法保证驱动力在中心,容易造成倾斜,使得动态性能较差。使用双驱动,双光栅尺,一个驱动模块,就能使动态性能非常完美。一个驱动指令,双驱同时工作,光栅尺来检测两点是否平衡,如果不平衡则通过不同指令使其达到平衡。当然,五轴联动机床技术的发展还远远不止这些,许多技术在德马吉的机床产品中都将会体现出来。
第五篇:五轴联动数控机床发展与应用
五轴联动数控机床的发展
五轴联动数控机床是一种科技含量高、精密度高专门用于加工复杂曲面的机床,这种机床系统对一个国家的航空、航天、军事、科研、精密器械、高精医疗设备等等行业有着举足轻重的影响力。
发展现状国外五轴联动数控机床是为适应多面体和曲面零件加工而出现的。随着机床复合化技术的新发展,在数控车床的基础上,又很快生产出了能进行铣削加工的车铣中心。五轴联动数控机床的加工效率相当于两台三轴机床,有时甚至可以完全省去某些大型自动化生产线的投资,大大节约了占地空间和工作在不同制造单元之间的周转运输时间及费用。市场的需求推动了我国五轴联动数控机床的发展,CIMT99 展览会上国产五轴联动数控机床第一次登上机床市场的舞台。自江苏多棱数控机床股份有限公司展出第一台五轴联动龙门加工中心以来,北京机电研究院、北京第一机床厂、桂林机床股份有限公司、济南二机床集团有限公司等企业也相继开发出五轴联动数控机床。
当前,国产五轴联动数控机床在品种上已经拥有立式、卧式、龙门式和落地式的加工中心,适应不同大小尺寸的杂零件加工,加上五轴联动铣床和大型镗铣床以及车铣中心等的开发,基本涵盖了国内市场的需求。精度上,北京机床研究所的高精度加工中心、宁江机械集团股份有限公司的NJ25HMC40 卧式加工中心和交大昆机科技股份有限公司的TH61160 卧式镗铣加工中心都具有较高的精度,可与发达国家的产品相媲美。在产品市场销售上,江苏多棱、济南二机床、北京机电研究院、宁江机床、桂林机床、北京一机床等企业的产品已获得国内市场的认同。
2013年7月31日上午由大连科德制造的高精度五轴立式机床,启运出口德国。工信部装备司副司长王卫明表示:“这一高档数控机床销往西方发达国家,是中国机床制造行业的重要里程碑。”
研究背景及应用
最近10多年来,数控技术快速发展,特别是数控系统大容量存贮技术的解决,开放体系结构控制器(OAC)的应用,快速处理器和运动控制,日益完善的人机接口软件(Human Machine Interface,HMI)以及工厂自动化设备支持通过网络的互联性,使5轴数控机床潜在生产能力能够被充分发挥;高速加工HSM技术,高速电主轴或复合主轴头技术的发展,有力推动了机床设计/制造技术的发展与创新,使5轴数控机床制造技术难度大大降低,造价也大幅度减少,许多中小型5轴联动立/卧式加工中心(VMC,HMC)一般制造企业已能接受;计算机软硬件技术快速发展和费用持续降低,使5轴联动和3轴联动控制系统价格已相差无几了;5轴联动CAM编程软件价格(包括5轴程序检验软件)也已大幅度下降,使得许多制造企业可接受使用它,尽管其价格还是偏高;软件技术的进步,特别是仿真技术和虚拟NC加工等可视化技术的应用,用户掌握和应用5轴加工编程软件较以前也容易得多了。加上用户对5轴数控机床的需求日益迫切,因此,包括从适应轻载切削、中载切削到重载切削的各种(高速)5轴数控机床在宇航、汽车、装备、运输、模具以及医疗器械等制造行业中得到了越来越广泛
应用。
①加工复杂空间曲面的产品零件
②大型复杂结构件的高效率加工
③复杂多面体带孔系结构件的高生产率加工
④取代EMD加工
⑤取代快速原型制造(RP)
⑥个性化产品零件加工
⑦组成柔性生产系统用于中/小批量产品的加工
展望
代表机床制造业最高境界的是五轴联动数控机床系统,从某种意义上说,反映了一个国家的工业发展水平状况。五轴联动数控车床在工业生产中占有非常重要的作用,而且现在出现了新的特征,五轴联动数控技术正在向高速、高效率、高可靠性、高精度、复合化、智能化、网络化、柔性化、绿色化等方向发展,我国由于工业底子薄,装备制造业水平比较低,生产出来的五轴联动数控车床质量跟欧美和日本产品还存在一定的差距,落后就要挨打,面
对历史因素和现实的紧迫性,我国要想在接下了发展空间中占有一席之地,就需要做到以下几点:
1、加大研发资金投入力度,加大加强基础理论研究,为设备研究做好理论准备。
2、研究外国先进设备技术,深研其中的核心知识。在仿照的基础上进行创新。
3、研究国内外五轴联动技术的发展方向,做到先人一步开展研发。
4、了解国内外各个用户群体的需要,开发出适合不同用户需要的设备。
5、创新是保持领先的内在要求,没有创新就没有进步。国家应该鼓励企业进行五轴联动技术的研发。
6、在保护好自己核心技术的前提下与其他先进企业进行技术交流。
7、大力发展高端五轴联动车床,实施精品工程。
参考文献
德国兹默曼公司开发出FZ25龙门铣床[J].制造技术与机床
杜玉湘,陆启建,刘明灯.五轴联动数控机床的结构和应用[J].机械制造与自动化 梁铖,刘建群.五轴联动数控机床技术现状与发展趋势[J].机械制造