第一篇:泄洪道闸门英文
Spillway Gates Spillway gate installations are a critical part of a reservoir and dam system.Their reliability is important for the safety of dams.Jack Lewin and Jonathan Hinks explain why spillway gate design, maintenance and operation require close attention.In a number of exceptional cases, particularly in the former Soviet Union, bottom outlets are made large enough to discharge flood flows.However, in the vast majority of cases, a spillway is required to deal with flood inflows to a reservoir.Where an uncontrolled weir would be excessively long, or the requirement for freeboard too great, a gated spillway may be the most economic solution.Particularly in the developing word, there is a preference for uncontrolled weirs because the risk of electrical or mechanical malfunction, or human error in operation id eliminated.For large dams the spillway will usually designed to pass a flood no smaller than that with a return period of 10,000 years.For the bigger dams and for all major dams in the US, UK, Australia and other countries, design will be for the probable maximum flood(PMF).There is mo fixed relationship between the PMF and the flood with a return period of 10,000 years but the PMF peak outflow will often be about twice that in the 10,000year flood.The UK guide Floods and Reservoir Safety, published by the Institution of Civil Engineers, suggests that gated spillways should have a minimum of two gates.Many engineers require at least three gates.These should be sized so that any two 1 can pass 70% of the spillway design flood in the event of one gate being serviced behind stop logs or non-operational for other reasons.The assessment of the need for redundancy will usually take into account whether standby facilities for gate operation are provided and whether repairs to potentially vulnerable elements can be carried out between receipt of flood warning, or onset of the flood and the advanced stage when all gates are required to discharge the flood.Radial gates are preferred for spillways.Their advantages are: ·The absence of gate slots.·The gate thrust is transmitted to only two bearings which can be located out of the water.·Less hoisting capacity is needed than for vertical lift gates.·Mechanical simplicity.·Absence of a high superstructure.The disadvantages are: ·The flume walls have to extend downstream at significant height to provide attachment for the trunnion bearings.·The load is taken by the piers as concentrated loads at the gate anchorages.Most radial gates are operated by electric motors driving cable hoists through multi-stage reduction gears.At large gates hoisting chains are often used, although the use of hydraulic cylinders is becoming increasingly common.There are some spillway gate installations – such as the Victoria dam in Sri 2 Lanka – where the gate is counterbalanced, opens under gravity and relies on power closure, and others which are water operated.The latter are either of the radial automatic type or when the gate is connected by the reservoir water to reduce the balancing weight.Both types of gate require wide piers to accommodate the gate operating displacers, floats or counterweights.The counterweighted gates which open under gravity and close under power, mostly by oil hydraulic cylinders, do mot require wide piers but there are few examples of this construction.There are still a number of ole dams, such as the Sennar dam on the Nile, where vertical lift gates control the spillway flood discharge.Because of the advantages of radial fates there are few, if any, installations more recent than 35 years.Limited examples exist of spillways controlled by bottom hinged overflow flap gates;the Legadadi dam in Ethiopia is one.Flap gates require an accurate, smooth flume wall for the side seals to be effective.If this is provided by embedded, machined panels, the contact face must be of stainless steel to prevent corrosion.If the concrete is ground to a smooth, accurate sealing surface, it still causes rapid wear of the seals.This factor, combined with the difficulty of effecting a good sill seal and access to the hinges, accounts for the few installations of this type.DESIGN STANDARDS There are two design standards for spillways.The one by the US Army Corp of Engineers is specific for the design of spillway tainter gates.The term tainter gate is used in the US for radial gates.The German standard DIN 19704: Part 1:1998 3 deals with the design and calculation of all hydraulic gates and Din Handbook 179 Water Control Structures 1 extends the scope to other design and operational factors and includes basic requirements for gate hoisting machinery.The German specifications require that the design be based on limit state.In the case of the Corps of Engineers’ specifications, the design is based on load and resistance factors.Skin plate assemblies are either stiffened b horizontal beams or by curved vertical ribs.Large gates usually combine vertical and horizontal stiffening beams.All forms of construction are arranged to transfer the load on the gate to the fate arms, which form a splayed portal with the beams tying the gate arms in the horizontal plane.The gate arms converge on trunnions.Usually two gate arms per side are used, three per side at larger gates or even four at gates which have a projected area in the order of 300m2.Exceptionally, a single tapered box section arm per side is used.The gate arms are braced in the vertical plane.A practice at gates in the US is to cross-brace the gate arms close to the junction with the skin plate assembly.This resists the torsion when a gate jams either due to failure of suspension on one side or an obstruction.The trunnion bearings are anchored to the piers and at the abutments by trunnion beams.Typically, the foundations for the trunnion beams are prestressed on all but small gates(below 2030m2 of projected area).In some cases, reinforced concrete has, however, been used.4
The design of trunnion bearings has been reviewed worldwide since the collapse of spillway gate No 3 of the Folsom dam in California, US.Corrosion on the loaded side of the steel trunnion pins had increased trunnion friction over time, resulting in a shear failure of a strut brace in one of the radial arms.Current design practice favours the use of stainless steel trunnion pins and bronze alloy bearings with inserts of lubricant.Different designs are discussed in Lewin(2001).Operating machinery is either by electromechanical drive raising the gates by cables or chains or by hydraulic machinery.Cables and chains are frequently anchored at the upstream face of the gate skin plate because it simplifies the layout of electromechanical hoists.This results in cables or chains being immersed in reservoir water for the majority of their lives.Failures due to corrosion have occurred.Also, debris can become wedged between the skin plate and the lifting cables and the gate face has to be locally protected form chafing by the cable.Oil hydraulic operating cylinders permit the direct application of large forces moving slowly, eliminating electric motors, brakes, large multi-stage reduction gear boxes and hoisting drums.While spillway gate installations have a good operational record overall, there have been cases of failure, some actually or potentially catastrophic, as well as areas where persistent problems occur, such as:
·Ice problems in cold climates and failures of heating systems to prevent freezing of gates.5 ·Seal leakage, which can cause gate vibration and, in winter, freezing of gates.·Hoist failures and breakdown of mains supply, as well as failure of standby generators to start and run, can result in a common cause fault.·Gate vibration problems.·Trunnion bearing problems, limit switch function, cable breakages, failure of chains to articulate around chain sprockets due to corrosion.·Damage to gate arms due to late opening of gates and overflowing debris.·Corrosion due to stagnant water on end arms and main horizontal beams(i.e.lack of adequately sized drain holes).·Control system malfunction.Standby generators, in particular, have a rather poor record of instant availability and need to be tested frequently(every two weeks is the usual interval)to ensure that they are available when needed.Less well publicized than the above problems are cases where gates have been operated incorrectly as a result of procedural problems or human error.The opening of spillway gates will often involve flooding , and possibly even loss of life downstream.In some cases, operators have to seek higher authority before opening them.If senior personnel are mot available, for example because the critical time is at night or over a weekend, or because the communications system id down, the operator is placed in an unenviable position where by he may be criticized even if he takes the right decision.6 To prevent such problems, it is important that operators should be issued with complete and unambiguous instructions as to how the gates should be operated under all possible conditions.In the simplest cases, such instructions will relate gate settings to water levels in the reservoir but, where there are sophisticated catchment monitoring systems in place, decision-making will be more complicated.In all cases, the necessary decisions should be taken by fully trained personnel who are adequately informed as to the procedures, and instructed as to how they should act in all circumstances.Pyke and Grant described simplified operating rules for dams with flood control gates at the ICOLD congress in China in 2000.The authors suggested these would be useful as backup in the event of failure of more sophisticated methods reliant on real time upstream data.CENTTAL CONTROL Control of spillway gates is usually form central operations building.Often additional local control panels for one or two gates are mounted on the piers.If the two systems provide independent controls it results in a robust installation.Automatic gate operation by programmable logic controllers(PLCs)is becoming more frequent and is sometimes used in conjunction with a telemetry system for remote supervision.The transmission of telemetry can be the weakest link.Flood routing by a PLC system offers many advantages because manual control of gates when flood routing is carried out is counter intuitive.It is likely to be 7 infrequent and requires training.Many dam operators provide supervision by a responsible engineer.PLC operation of spillway gate operation is not suitable in developing countries because technical back-up is usually not available.At all installations operating instructions, whether for flood release or flood routing, must be simple, consistent and unambiguous.Standby facilities are the general rule.The back-up for the mains supply by a diesel engine generator set.The typical failure on demand for a diesel engine driven generator set to start and run for one hour is 1 in 25 demands.Therefore, two generator sets provide greater reliability.Some dam operators consider that gas engines start and run more consistently than diesel engines.Portable diesel engine driven standby sets which can be connected to a shaft on the gate hoist should be available at all spillway gate installations or mobile oil hydraulic pump sets at cylinder operated gates.Standard practice is to provide manual winding as a final standby stage or manually operated oil hydraulic pumps.Their effectiveness in an emergency can be doubtful because of the length of time required to raise a gate manually.(To raise a large spillway gate about 0.5m by hand winding takes between 1.5-2 hours if winding is carried out in relays).In spite of this, it is considered an essential provision.Reliability assessments of spillway gate installations have become more important as reservoir safety investigations have been extended to include 8 appurtenant structures.EARTHQUAKE CONDITIONS The integrity of spillway gate installations under earthquake conditions is being investigated alongside the performance and safety of dams.Following an earthquake, the release of reservoir water can be a critical control function if the dam has been damaged by the seismic motion.The amplification of ground acceleration which can occur at the crest of a dam magnifies the forces experienced by the gates.The movement of gates in response to the earthquake causes reservoir water upstream of the fates to act with the gates as added mass.The computation of loads and stresses due to a seismic event can be an equivalent static or a dynamic analysis.The former is a two-dimensional model which is used for a preliminary assessment and a dynamic finite element three-dimensional analysis is performed when it is considered necessary to account for the important three-dimensional effects of radial gates.The procedures for assessing the structural consequences of an earthquake on spillway gates have so far not been formalised into guidance rules and investigations have been based on different analytical approaches.It is recognized that seismic assessments must include all the equipment which comprises a spillway gate installation, such as overhead electricity supply lines, usually the first to fail in an earthquake, transformer mountings, switchgear, operating panels and hoisting machinery.9
After an earthquake, access to operate spillway gates and communications can be interrupted and can impede or prevent timely action.Maintenance and inspection of gates can be variable and recent risk assessments of spillway gate installations have drawn attention to this.
第二篇:道闸门合同
购方(甲方):__________________ 供应方(乙方):__________________ 根据《中华人民共和国合同法》及国家有关规定,结合工程的具体情况,经双方充分协商,签订本合同。
一、工程项目
1.工程名称:道闸门供货及安装工程。2.交货及安装工程地点:
承 包方式和承包范围:本工程以包工包料、包质量、包工期、包风险、包设计(设计方案以甲方认可为准)的形式由乙方承包,乙方必须按照甲方确定的设计方案、系 统功能、设备材料,承包整个系统的设备供应及安装和调试,并包通过有关技防办部门的验收。(设计方案以甲方认可为准)。
二、系统总造价及其支付
(一)系统总造价
1.本道闸门系统总造价(含100张感应卡费用,不含税)为人民币 _______
2.整个系统必须满足甲方认可的设计方案的功能要求,以甲方审定的设计、施工方案为标准,在此基础上价格不再作任何调整(甲方要求增加的工程除外)。
(二)工程款支付
甲方根据乙方的工程进度向乙方支付工程款:
1.签订合同之日起_______日内甲方付总工程款的_______%; 2.工程全部完工,测试成功即付总工程款的_______ %
3.通过甲方及有关部门初验验收合格,并且系统无故障运行一个月后,再付总工程款的_______%。
三、工期
1.本合同签订后,乙方于_______年_______月_______日进场,到_______年_______月_______日止,完成安装调试(以通过用户及甲方代表验收合格为准)。
2.在履约过程中,因为变更设计所影响的工期或甲方责任、不可抗力等造成工期延期的,经甲、乙双方签证认可后作出工期调整,以此确定竣工日期。
四、供货及安装
1.本工程必须严格按照国家有关施工安装规范进行施工。2.乙方工程使用的材料、设备必须符合甲方认可的设计方案的规定,否则,甲方有权要求乙方更换,有关费用由乙方承担。
五、维修保养
1.本系统保修期为1年,自工程完工并通过甲方及有关部门验收合格之日起计。保修期内,如系统发现故障,乙方必须在接到甲方通知之日起_______小时内派员维修,若非因甲方人为损坏的,乙方免收一切费用;
年限 材料费 维护服务费 第一年 免
第二、三年 收取费 用。
2.保修期届满后,甲方要求乙方修理的,以本合同附表一中的价格适当向甲方收费。3.保修期届满后,甲乙双方另签订技术维护协议,乙方应对系统提供优惠的有偿技术维护。
4. 甲方要求软硬件功能的改进、扩容不在保修之列,但乙方应继续为客户提供最优惠的服务。免费维修期内人为或自然灾害引起的故障或损坏,仅收取维修成本费。以 下情况不属保修范围:自行拆卸改换机内任何部分(如:线路、零件)后造成损坏;非乙方指定的专业技术人员指导安装而引起的故障。
六、双方责任
(一)甲方责任:
1.审核乙方提供的设计方案、安装施工方案,在收到后的_______日内完成。向乙方提供必要的场地及施工用电。
2.按工程进度向乙方支付工程款。
3.委派_______为现场管理代表,监督、检查工程质量、进度。处理并协调甲乙双方在施工中发生的有关事宜。
4.在乙方供货后,甲方可以组织人员对器材进行验收。5.组织对工程进行竣工验收和办理竣工结算。
(二)乙方责任:
1.按施工安全规范做好施工质量、安全管理,凡施工期间发生的施工质量、安全事故,均由乙方负责并报告甲方及有关部门。
2.施工中因乙方责任造成的停工、返工、材料、器材损失等均由乙方承担。所有设备和器材验收前均由乙方妥善保管,如有损坏和遗失均由乙方负责。3.对竣工验收后保修期内发现的施工质量问题负责免费返修。4.对现场所有已完工的建筑及建筑装修、设备、器具有保护的责任,施工时如损坏甲方或住户财产,由乙方负责赔偿。5.遵守甲方有关场地管理的规定并办理有关的手续。
七、违约责任
1.除不可抗力(战争、天灾等)外,甲乙双方应严格遵守本合同的条款,否则,违约方须向另一方支付合同总造价 _______%的违约金,违约金不足以弥补另一方损失的,违约方还应就不足部分承担赔偿责任。2.甲方如未按本合同的进度付款,每延迟一日,按应付而未付金额的_______%计付违约金。3. 由于乙方原因不能按工期竣工的,每逾期一日,按工程总造价的_______%向甲方计付违约金。逾期超过_______ 日,甲方有权单方解除合同,乙方除支付上述款项及返还甲方全部已付款项外,还须按合同总价款的_______%向甲方支付违约金,违约金不足以弥补甲方损 失的,乙方还应就不足部分承担赔偿责任。
4.本系统若由于系统器材质量问题而影响工程验收,乙方必须无偿更换、返修,直至达到验收标准,八、其他事宜
1.按本合同规定应该偿付的违约金、赔偿金和各种经济损失,应当在明确责任后 天内付清,否则按逾期付款处理。
2.本合同如有未尽事宜,经双方友好协商,另签补充协议。
3.双方在执行本合同中发生纠纷,双方应先行协商,若协商不成时,任何一方可以向_______人民法院提起诉讼。
4.双方签订认可的设计施工方案及其它经双方签字确认的书面材料均为本合同的组成部份,与本合同具同等效力。
5.甲乙双方施工、设计方案以外的所有变更或要求必须致函对方,对方在收到通知后必须及时回函,如果_______日内不答复视为认可。
6.本合同及其附件自双方签字、盖章之日起生效,保修期届满后本合同第八条第2款仍需继续履行。7.本合同一式_______份,甲乙双方各执_______份,具同等法律效力。甲方:______________乙方:______________ 签约代表:__________签约代表:__________ 联系电话:__________联系电话:__________ 地址:______________地址:______________ 签约地点:__________签约时间:__________
第三篇:检修闸门维修报告
XX水库溢洪道
检修闸门槽及其闸门维修的报告
关于XX水库溢洪道 检修闸门槽及其闸门维修的报告
XX局:
经防汛检查XX水库工作闸门已出现锈蚀,如果工作闸门一旦出现问题就需要关闭检修闸门进行维修,由于检修闸门目前无法使用,为安全度汛防患于未然建议立即对检修闸门槽及闸门进行改造维修。
一、工程概况
XX水库为浆砌石重力坝设计兴利库容852万m3,相应水位53m,大坝总长140m,其中溢流段长110m,采用折线型迷宫堰形式,下游设挑流坎消能设施,大坝背水坡上建宽为5m的交通桥,下游河道左侧为天然山体,右侧设置泄洪闸。
本次工程为泄洪闸闸室段检修闸门槽和闸门工程
二、检修闸门维修问题
原泄洪闸工程由于种种原因,工程没有通过竣工验收,特别是检修闸门槽混凝土脱落,轨道不垂直等无法使用,明显为不合格工程,闸门槽需要重新剔除改造施工,闸门需要维修养护。
三、施工方案
目前水库水位高程为48m,闸底板以上水深4m。进行检修闸门槽维修需要排除闸底板以上4m的水体。
排水截流可采用两种方法,一是提升工作闸门将水放至底板工程44m;二是用围堰截水的方法。
由于XX水库是XX区的重要景点,提闸放水方法虽然简单易行但影响景观效果和形象,经研究确定用围堰截水的方法施工(见《检修闸门槽及其闸门维修工程施工方案》)。
四、工程经费
1、钢筋混凝土拆除:30000.00元
2、检修闸槽维修:80000.00元;(预埋件30000.00元,安装4000*5=20000.00元,混凝土20000.00元,其他10000.00元)
3、检修叠梁闸门维修安装:50000.00元;
4、围堰模板工程:120000.00元;
5、运输吊装机械:100000.00元
6、临时工程:20000.00元
7、设计、监理、管理费用:100000.00元
以上共需维修经费(大写)伍拾万元整(小写)500000.00元。当否,请批示。
附:
检修闸门槽及其闸门维修工程施工方案
1、工程概况
根据工程要求,在门槽部位自闸底板面以上高程43.7m~53.0m范围内凿除混凝土,宽1m、深0.3m,拆除原轨道,安装新轨道,浇灌补强混凝土。根据多孔闸运行的特点,结合以往闸门槽修理的经验,我们采用钢围堰修理水下闸门槽,效果很好。
2、钢围堰的挡水原理
钢围堰设计成开口半圆桶状结构,底部桶周及两端桶壁处装置橡胶止水,钢围堰安装时,堰底部在自重作用下紧贴闸底板,堰两端桶壁紧贴闸墩,钢围堰安装就位后,用水泵抽取堰内水,使围堰内外形成水位差。堰体在环向水压力的作用下,堰两端桶壁以闸墩为支撑紧贴闸墩,橡胶止水经压缩起封闭止水作用,围堰内形成无水状态的施工操作空间(见图1)。
3、钢围堰制作 3.1钢围堰平面尺寸确定
泄洪闸孔净宽10m,按每孔两侧门槽同时修理考虑,钢围堰结构既要满足堰内操作要求,又便于围堰安装和拆卸,确定半圆形钢围堰的外径为2.0m。
3.2钢围堰立面尺寸确定
钢围堰立面尺寸除满足挡水条件外,还要考虑适当超高。该闸门槽修理安排在非汛期施工,经查阅水文资料,确定安全超高0.5m.钢围堰总高度5m。
3.3钢围堰的结构要求
钢围堰挡水面板厚度和堰深结构按水工钢结构设计规范计算确定,在该闸门槽修复工况下,经计算钢围堰面有板采用厚度为6mm的钢板。选用L75×75×7型钢拉杆,内纵横加强筋选用75×8扁钢板,为便于钢围堰安装拆卸,将其分成上下两节,下节高度3m,上节高度2m,安装时节间设置橡皮止水,并采用螺栓固定(见图2)。在制作钢围堰时,为了防止因焊接而使钢体变形,应首先将应焊件实施点焊,再对称地进行整个钢围堰连续焊接确保整体不走形。
4、钢围堰安装
4.1清除闸墩表面的杂物
由于闸墩在水中长期浸泡,表面生成许多水垢.青苔和贝壳类生物,特别是贝壳依附闸墩.不把它们清除干净.将严重影响钢围堰的止水效果。
4.2安装钢围堰
将钢围堰船运至需修理的闸孔内,利用汽车起重机将两套钢围堰分别吊装就位,并用卡环将两侧围堰相对撑住,使其紧贴闸墩,相互稳定。
4.3抽取堰内水
选用WOX25-15-3型无阻塞污水潜水电泵抽吸围堰内水,并视围堰漏水情况.适当开机抽水,将堰内水位降低到便于施工的最低状态。4.4堵漏办法
由于闸墩表面不平等原因.围堰止水均有不同程度的漏水现象,对此,在施工中可采用两种办法处现,一种是木屑堵漏法,将木屑与水泥按―定比例加水拌和均匀捏成团,投放于漏水附近水面,木屑水泥团向水中下沉,团体下沉至漏水部位附近时,在渗漏水流的作用下破裂散开,木屑及水泥随水流堵塞于漏水缝隙处起堵漏作用,另一种方法是塑料薄膜覆盖法,在漏水部位的围堰外侧铺设―层塑料薄膜,薄膜在渗漏水流的作用下吸附于漏水缝隙处,起到堵漏作用。
5、闸门槽修理
5.1凿除门槽混凝土及拆除原轨道
根据设计要求,需消除自闸底板以上高9.0m、宽1.0m,深0.3m的混凝土,施工人员在围堰内操作空压机钻头凿除原门槽部位的混凝土,同时拆除原闸门槽轨道(见图3)
5.2安装新轨道
更换的闸门槽轨道为预制成品,由于轨通较长,纵向刚度小且为不对称焊接构件,在运输装卸过程中仍有变形现象,安装前,仍需对其进一步进行检测,直至调整到符合规范要求后方可进行安装。轨道安装时,将预埋钢筋与闸墩钢筋或新植筋焊接,以此增加轨道与混凝土的连接力,并及时检测轨道位置垂直度、局部不平度及与原闸墩表面的平整度等技术要素,使其符合归范要求。
5.3立模,浇灌门槽混凝土
门槽模板一定要与闸墩及轨道表面贴合,以免漏浆,混凝土浇灌前,务必注意新老混凝土结合面的处理,振捣密实,使新老混凝土有效地结合成整体,混凝土中掺加CT102-2微膨胀添加剂.掺量为水泥用量的12%.以补偿混凝土在凝固过程中产生的收缩量,提高门槽混凝土密实度。
6、叠梁闸门刷漆,维修及安装
对原叠梁闸门进行除锈刷漆,并进行安装调试。
第四篇:闸门维护说明书
闸门安装使用维护说明书
崂 山 水 库平面 钢 闸 门
安 装 使 用 说 明 书
山东水总机械工程有限公司
闸门安装使用维护说明书
一、平面闸门的安装
1、平面钢闸门,对整体闸门在安装前应对其各项尺寸按图进行复查,并应符合《水利水电工程钢闸门制造安装及验收规范》有关规定的要求。
2、对分节闸门运输到现场后,由工地现场焊接,焊接应由持证焊工按相应焊接,接焊缝为二类焊缝,在焊接时应采用运评定合格的焊接工艺,按DL/T5018—94的有关焊接规定进行焊接和检验,焊接时应采取必要的措施控制焊接变形。
3、止水橡皮的安装:止水橡皮接头可采用495胶粘合等方法胶合。要求胶合接头处不得有错位,凹不平和疏松现象,止水橡皮安装后按规定要求两侧水中心距离和顶止水中心至底止水底距离的允许偏差3mm,止水表面的平面度为2mm,闸门在工作状态时,止水橡皮的压缩量应符合图样规定,其允许偏差为,下库进出水口和上库进出水口
二、闸门试验
1、闸门安装好后,应在无水情况下作全行程启闭试验,在最低位置时止水应严密,必须定期清除门叶上和门槽内的杂物。启闭时应在止水橡皮处浇水润滑,以免止水橡皮磨损破坏。
2、闸门在启闭时应检查转动部位的运行情况,闸门有无卡阻、止水橡皮有无损伤等。
3、闸门完全落下时应由灯光或其它方法检查止水橡皮的压缩程度,不应有透亮或有间隙,为上游止水的闸门应在支承装置和轨道接触后检查。
4、闸门在承受设计水头的压力时,通过任意止水橡皮范围内水量不应超过0.1L/S。
闸门安装使用维护说明书
三、闸门的使用与维护。
1、闸门在每次启开或落下时,止水橡皮处应浇水润滑,以减少止水橡皮的磨损。
2、当闸门在承受设计水头的压力时,通过任意止水橡皮范围水漏水量超过0.1L/S时,应检查止水橡皮是否安装合适,是否损坏,以便及时更换止水橡皮;更换后的止水橡皮应符合图样要求,在安装时应保证闸门处于工作状态时,止水橡皮的压缩量符合图样规定,止水橡皮制孔时,孔应比螺栓小1mm,并严禁烫孔。
3、闸门的主轮轴承采用自润滑轴套,在使用中不需要注油维护,但在启闭过程中应经常注意滚动部分转动是否灵活,升降过程中有无卡阻,止水橡皮有无损伤。
4、闸门的门槽在长期使用时,门槽底部可能淤积泥沙、石块等杂物,应定期清理干净,以便影响正常使用。
5、为延长闸门的使用寿命,应根据实际使用情况,定期对闸门进行防腐保护,所用涂料应符合设计图样要求,当闸门表面温度低于零点3和相对温度大于85%时,不得进行涂装,为保证涂层间的结合力,涂层估各层间的涂覆间隔时间应按涂料制造厂的规定执行,涂膜在凝固前要避免雨淋、曝晒、践踏等,涂膜表面应均匀一致,无流挂、皱纹、鼓泡、针孔、裂纹等陷,干膜厚度应满足要求。
第五篇:闸门防腐方案
闸门防腐涂装工程施工方案
编制:
审核:
批准:
河南省东方(集团)防腐有限公司上海第一分公司
2011年8月10日
闸门防腐涂装工程施工方案
一、闸门防腐涂装施工方案 1、1、施工工艺流程:
底层局部处理 → 喷砂除锈 → 喷砂质量控制 → 环氧富锌底漆涂装一道(局部)→ 环氧富锌底漆喷涂二道(大部分)→ 环氧云铁中间漆二道 → 环氧面漆二道 →局部修补 → 甲方终检验收 ⑴、底层局部处理
面积较小部位,采用砂轮机对局部锈蚀处打磨露出金属光泽,然后用粗纱布打毛,并做好搭接部位处理工作。⑵、喷砂除锈
喷砂前,依据《涂装前钢材表面锈蚀等级和除锈等级》规定,对金属结构基体表面锈蚀等级进行评定。仔细检查,清除焊渣、飞溅等附着物,并清洗表面油脂及可溶污物,所有待涂装的门体表面均应清洁。表面进行喷砂其等级应达到GB8923规定的除锈等级Sa2.5级,喷砂后用清洁的压缩空气吹干净。
喷砂用的压缩空气必须经冷却装置及油水分离器处理,以保证干燥、无油;油水分离器必须定期清理。
喷嘴到门体除锈表面距离以100~300mm为宜,喷砂前对非喷砂部位应遮蔽保护。喷射方向与门体除锈表面法线夹角以15°~30°为宜。
喷砂除锈后进行下一道工序前,如遇下雨或其他造成除锈表面潮湿的,要待环境达到施工条件后,用干燥的压缩空气吹干表面水分后施工,如须重新喷砂,不可降低磨料要求,以免降低粗糙度。
喷砂时喷嘴不要长时间停留在某处,喷砂作业应避免零星作业,但也不能一次喷射面积过大,要考虑热喷涂工序与表面预处理工序间的时间间隔要求。
对喷枪无法喷射的部位要采取手工或动力工具除锈。⑶、喷砂质量控制
喷砂完成后首先应对喷砂除锈部位进行全面检查,其次要对基体钢材表面进行清洁度和粗糙度检查。重点应检查不易喷射的部位,手工或动力工具除锈部位可适当降低要求。对基体钢材表面进行清洁度和粗糙度检查时,一是严禁用手触摸;二是应在良好的散射日光下或照度相当的人工照明条件下进行,以免漏检。
喷砂除锈后,金属结构表面清洁度应达到Sa21/2,应对照《涂装前钢材表面锈蚀等级和除锈等级》中提供的照片进行比较,比较时至少每2m2有一个比较点。
喷砂除锈后,金属结构表面粗糙度应达到Ry60~80μm,应按照技术要求,取相应粗糙度样板,用至少7倍放大镜放大后比较,比较时至少每2m2有一个比较点。用表面粗糙度仪直接测定时,每2m2表面至少要有一个评定点,取评定长度为40mm,在此长度范围内测5点,取其算术平均值为此评定点的表面粗糙度值。⑷、环氧富锌底漆(局部)
由于施工环境较为潮湿,容易返锈,对于小面积修复部位,毛刷清理干净后即时涂刷环氧富锌底漆。
⑸ 环氧富锌底漆(大部分)
对于面积较大部位,应在全部除锈工作完成后,用细砂再全面快速清扫一遍,用压缩机空气清理吹扫灰尘后,即时用高压无气喷涂机快速喷涂第一道底漆,经监理验收合格后再进行下道工序。
⑹、环氧富锌底漆第一道喷涂
表面清理包括表面打磨、油污的检查及表面附着物及杂物的清除。待基面合格后,即可 喷涂环氧富锌底漆一道,待24小时漆膜干燥后进行打磨处理,清理干净,然后喷涂刷第二道,粘度按12±1秒(4#杯)要求严格控制,干燥后涂料漆膜厚度达80um,达到基面无气泡和漏涂部位。
⑺、环氧云铁中间漆二道
喷涂底漆实干后,应有一定的固化时间,保证每层涂层实干、无漏漆、无流挂、无气泡、无杂质,附着力符合要求。施工温度50C以上,空气相对湿度不大于85%,应严防基体表面结露;基体表面温度高于空气露点30C以上,涂装严禁在雨、雪或结露等天气下进行。底漆间隔时间不低于3—4小时,中涂及面涂间隔时间不低于24—48小时。涂刷时掌握纵向,横向相结合的方法,使涂刷的颜色一致,达到设计厚度。喷涂所用压缩空气应清洁、干燥、压力不得小于0.4Mpa; 喷涂距离为100-200㎜;
喷枪尽可能与基体表面成直角,边缘处也不得小于45度; 喷枪移动速度,以一次喷涂厚度达到60-80m为宜; 各喷涂带之间应有1/3的宽度重叠,厚度尽可能均匀; ⑻、环氧面漆二道
操作要领:同中间工序一样,各刷涂层之间的走向应相互垂直,交叉覆盖;涂层的表面温度降到70度以下时,再进行下一层刷涂。(9)局部修补:
大桥索塔的防腐喷涂装施工完毕后,应仔细检查涂层的缺陷,并加以修补。用于修补的材料应与涂层的材料相吻合,符合质量标准,使业主及监理工程师满意。(10)、涂层检查验收
刷涂前应对表面预处理的质量进行检查,合格后方能进行涂装。
每层涂装时应对前一层进行外观检查,如发现漏涂、流挂、皱纹等缺陷,应及时进行处理,涂装结束后及时对涂膜外观检查,表面应均匀一致,无流挂、皱纹、鼓泡、针孔、裂纹等缺陷。
附着力的检查,当涂膜厚度大于120um时,在涂膜上划2条夹角60度的切割线,应划透涂层至根底,用胶带粘牢划口部分,然后沿垂直方向快速撕起胶带,涂层应无剥落;当涂层厚度小于或等于120um时,可用划格法检查。检查时应选择非重要部位,测试后立即补图。
二、防腐涂装施工安全防护措施
闸门防腐属于野外高空作业,高空作业人员必须准确佩带安全帽,必须系好安全带,并挂在坚固处。在施工现场配备专职安全员监督施工。使用脚手架时,应安放稳固,要有工作平台,脚手架上工作平台必须铺满铺板并安装挡脚板,铺板、挡脚板必须固定,护栏外须加设防护网;操作平台上不能堆放过多,过重的材料(不能超过载荷),且材料堆放必须均匀、分散,要有足够的工作空间;要检查脚手架的扣件是否完好、螺栓是否拧紧;操作人员严禁站在护栏上工作或坐在护栏上休息。⑴、吊板高空作业安全防范措施: 为了贯彻执行国家安全法规,确保职工人身安全及设备正常运转,特指定规格制度如下:
Ⅰ、吊板作业为年满18周岁以上的男性公民。且经过身体检查及安全技术培训,考试合格后方可上岗作业。
Ⅱ、作业者在作业前及午饭休息时严禁喝酒,严禁在高空及吊板上开玩笑或投掷物品。Ⅲ、吊板作业者在使用吊板前,将安全带、完全锁好挂好,否则不得上吊板工作。
Ⅳ、使用吊板前,必须选择安全可靠的铆点,并且由专人验收,符合要求后方可使用。操作时,铆点处必须设专人看管。
Ⅴ、大绳与建筑物棱角接触部位必须加安全垫,以防摩擦,保护绳索。
Ⅵ、使用频繁的大绳、吊板、安全锁,必须进行作业前的检查,发现异常(如断丝超过3根或离股)应立即停止使用。
Ⅶ、吊板及安全带、安全锁上的各产件,不得随意拆卸,以防不必要的事故发生。Ⅷ、吊板作业者不准穿戴棉大衣和手套,风力超过四级不准上吊板作业。
Ⅸ、作业所携带的物品,必须绑扎牢靠,以防掉落。大绳在搬运移动及存放过程中,严禁接触高温、明火、强酸和尖锐物品,应置于干燥通风的地方,并防止日晒雨淋。
⑵、施工单位岗位责任制度及纪律要求:
Ⅰ、乙方施工人员进驻现场后,严格遵守纪律,按甲方有关规章制度,在工作范围内活动,不做与工作无关的事,确保甲方的正常运行。
Ⅱ、工作人员应尽职尽责,为甲方提供优质服务,坚决执行各项工作任务,服从领导,严格按照工作程序和消防标准去做。
Ⅲ、施工期间,文明礼貌,树立公司形象,不得在公共场所大声喧哗,说笑、打闹。严禁在作业期间吸烟、喝酒,确保工作顺利进行。
Ⅳ、爱护公共设施,严禁偷拿,毁坏甲方的公共财物,如在工作中遇到问题,应立即向有关领导汇报,以维护甲方利益。
Ⅴ、管理人员应做到对客户负责,对工作负责,积极听取甲方的意见,迅速传达甲方的有关指示,遵守职业道德,加强职工的安全意识,保障工程圆满完成。⑶、施工人员安全施工措施:
Ⅰ、施工人员必须持证上岗(高空悬挂作业证)。Ⅱ、遇4级以上大风、雷雨天气严禁登高作业。Ⅲ、施工人员进场施工要服从甲方各项目规章制度。Ⅳ、高空作业严格执行高空作业操作规程。Ⅴ、悬吊作业必须附加双保险。Ⅵ、作业前对棕绳、滑轮做荷载测试。
Ⅶ、高空使用工具、材料在吊装使用中应严格按规定固定,绝对保证不发生坠落;筒身周边拉好安全带。
Ⅷ、施工区域设有禁区标志;禁止行人通过;禁止行留并派专人监护。⑷、安全员职责:
Ⅰ、遵照施工安全规范的规定,做好现场安全管理、安全教育工作。
Ⅱ、做好现场安全检查工作,并对安全隐患及时进行整改,协助调查安全事故原因,对事故处理提出建设性的意见,并做好安全记录。
Ⅲ、做好施工现场“四口”、“五临边”的防护工作,参与施工方案中安全技术措施的审定及现场安全防护的验收工作。
Ⅳ、对工程执行安全否决权,对声音指挥、作业的行为有权制止、处罚、停工整改或越级申诉。
Ⅴ、对施工现场不符合安全标准的各种机具和防护设施,有权加以制止,并拒绝办理验收手续。
三、现场应急与急救管理
严格按公司QG/14J003-20《环境、安全应急准备和响应控制程序》执行,同时应重点响应以下程序:
1)施工现场应成立应急急救领导小组,配备一定数量的急救人员(人员要经过培训)、急救车辆和一定数量的医疗用品物品。
2)建立HSE应急急救领导值班制度,并由施工经理具体负责应急急救领导工作。3)与当地消防、医疗、急救、环保等主管部门取得联系,并及时向有关人员发布联系方法及途径。发布方式可采用文件、布告等形式,发布范围应覆盖到所有职工。
4)绘制应急、急救平面路线图,并发布到相关人员。
5)施工现场应设立“紧急报警系统”,保证发生应急事故后的联系与报告工作。
四、夜间施工措施
1、工程施工按工程内容和工序合理安排施工进度计划,施工计划的安排要充分利用正常工作时间,提高劳动生产率,减少加班和夜间施工,夜间施工应严格控制工作时间,保持施工人员有充沛的工作精力。
2、夜间施工配套保证施工安全、施工质量和环境保护的必要措施,措施要合理、可靠,夜间
施工配备足够的安全检查员,视具体情况增加安全员的数量,保证夜间施工安全检查无“盲 点”。
3、夜间施工应做好施工组织,任务分工明确,明确施工内容、地点及主要安全、环境危害因素和主要质量控制点、质量标准。由技术负责人向施工人员进行技术交底和安全技术交底,以充分保证工程施工安全和质量,保护环境不受污染,不扰民。
4、安排夜间施工前应在白天做好施工准备,使白天施工与夜间施工有机地衔接在一起,保持施工的连续性。夜班收工要做好收尾工作,保持施工秩序不混乱,使工程施工有条不紊,有序地进行。
5、安排夜间施工应按规定的时间严格进行清场,清场时对现场进行严格检查,清除现场安全隐患。
6、夜间施工要有充足的照明,要能覆盖整个施工作业区,保持施工现场作业区域有足够的亮度和良好的可见度,重点部位要设专人看护。
7、防止触电事故发生,检查施工用电线路的绝缘情况是否符合要求,所有线头不得有裸露地方,线路应布置合理,不得拖地敷设或用金属支架架设。
8、架设灯具不应正对施工人员面部,施工人员不要面对光源传递重物,以防失手伤人或被重物砸伤。夜间施工不安排交叉作业,白天对夜班作业区内的沟、槽、坑、洞进行安全覆盖,设明显标志和围护,尽量减少危害因素和安全隐患。
9、道路应平整通畅,障碍物应在白天清除掉,以防夜间施工时摔伤施工人员。用机械运输材料时,应检查材料是否安放妥当,必要时应封车后运输,以防材料滑落伤人。
10、夜间进行焊接施工时,焊工应与辅助人员配合好,防止电弧和飞溅物灼伤。
11、夜间施工光线不照向居民区,减少光线对居民造成的污染。
12、夜间施工噪声超强时,必须经业主和总承包商批准同意后方可进行。夜间施工噪声控制应符合《中华人民共和国建筑场界噪声限值》(GB12523-90)的要求。强噪音作业严格控制作业时间(一般不超过22:00时),需昼夜连续作业的施工现场,采取隔离和围档措施以降低噪音对环境的影响,把噪音控制在60~68分贝,同时做好周围居民的思想工作。
河南省东方(集团)防腐有限公司上海第一分公司
2011年8月10日