第一篇:电缆老化原因分析
在监察工作中,发现电气线路普遍存在电缆老化、破损现象,为保证安全生产、人身财产安全,建议对老化、破损电缆以及超期使用的电缆进行更换,为达到从根本控制电缆老化、破损出此报告,目的是从技术标准角度控制电缆老化的速度以及减免电缆破损,提高电缆的使用效率,避免人为的失误造成的资源浪费。
电缆老化、破损的原因分析: 1)外力损伤
电缆搬运过程以及敷设安装不规范,容易造成机械损伤;在直埋电缆上搞土建施工也极易将运行中的电缆损伤等。如果损伤不严重,要几个月甚至几年才会导致损伤部位彻底击穿形成故障,破坏严重的可能发生短路故障,直接影响用电单位的安全生产。
2)绝缘受潮
一般发生在直埋或排管里的电缆接头处。电缆接头制作不合格和在潮湿的气候条件下做接头,会使接头进水或混入水蒸气,时间久在电场作用下形成水树枝,逐渐损害电缆的绝缘强度而造成故障。
3)化学腐蚀
电缆直接埋在有酸碱作用的地区,往往会造成电缆的铠装、铅皮或外护层被腐蚀,保护层因长期遭受化学腐蚀或电解腐蚀,致使保护层失效,绝缘降低,也会导致电缆故障。
4)长期过负荷运行
超负荷运行,由于电流的热效应,负载电流通过电缆时必然导致导体发热,同时电荷的集肤效应以及钢铠的涡流损耗、绝缘介质损耗也会产乍附加热量,从而使电缆温度升高。长期超负荷运行时,过高的温度会加速绝缘的老化,以至绝缘被击穿。尤其在炎热的夏季,电缆的温升常常导致电缆绝缘薄弱处首先被击穿,因此在夏季,电缆的故障也就特别多。
5)电缆接头故障
电缆接头是电缆线路中最薄弱的环节,由人员直接过失(施工不良)引发的电缆接头故障时常发生。施工人员在制作电缆接头过程中,如果有接头压接不紧、加热不充分等原因,都会导致电缆头绝缘降低,从而引发事故。
6)环境和温度
电缆所处的外界环境和热源也会造成电缆温度过高、绝缘击穿,甚至爆炸起火。
7)电缆本体的正常老化或自然灾害等其他原因。
电线电缆在现代化生产生活中高度普及,任何需要电力驱动的机械都离不开电线电缆的支持。电线电缆的主要构成是金属丝、绝缘套和保护套,这就要求电线电缆的运送和保管必须严格和慎重,避免电线电缆在运输保管中出现损坏。
1)电线电缆在运输过程中应避免从高处坠落的现象,更禁止装卸时从高处扔下电线电缆,特别是在温度较低的条件下(一般为5℃以下),电线电缆的绝缘套、保护套较为脆、硬,高空摔落会导致绝缘套和保护套开裂。2)电线电缆的绝缘套和保护套多为橡胶制品,不能承受阳光的过度照射,因此要尽量避免电线电缆被防止在露天场所,电缆盘也不允许平放。
3)电线电缆在进行包装时,不能出现几个电缆盘同时吊装进行,以避免发生危险事故。电缆盘在运输工具如车辆、船舶上的放置必须合理并加以固定,以防止在运输中因为摇晃等原因致使电缆盘翻到或碰撞,对电线电缆造成损伤。
4)电线电缆一般防腐蚀性很差,严禁和酸、碱、矿物油类物质的接触,如果运输过程中不得已与腐蚀性物质近距离放置,则要进行必要的隔离。电线电缆的存放库房内必须禁止出现破坏电线电缆绝缘保护层的物质及具有腐蚀性的气体的存在。
5)电线电缆的保管时间较长则需要适当对电缆盘进行滚动,滚动的周期为三个月左右,具体时间可以根据情况自行设定。电线电缆在滚动过程中要注意将向下存放的盘边滚动到上方,这样可以避免某个部位的盘边长期位于下方而受潮腐烂。
6)电线电缆也是具有保质期的产品,一般来说电线电缆最好在保质期内使用,如果已过保质期则不宜超过一年半,最长也不能超过保质期时间两年。电线电缆在储存过程中要经常检查电线电缆的封头是否完好无损。
电缆敷设的错误是导致电缆老化、破损的主要原因之一,应按照标准规范电缆敷设。敷设前应按下列要求进行检查:
一、电缆通道畅通,排水良好。金属部分的防腐层完整。隧道内照明、通风符合要求。
二、电缆型号、电压、规格应符合设计。
三、电缆外观应无损伤、绝缘良好,当对电缆的密封有怀疑时,应进行潮湿判断;直埋电缆与水底电缆应经试验合格。
四、充油电缆的油压不宜低于0.15MPa;供油阀门应在开启位置,动作应灵活;压力表指示应无异常;所有管接头应无渗漏油;油样应试验合格。
五、电缆放线架应放置稳妥,钢轴的强度和长度应与电缆盘重量和宽度相配合。
六、敷设前应按设计和实际路径计算每根电缆的长度,合理安排每盘电缆,减少电缆接头。
七、在带电区域内敷设电缆,应有可靠的安全措施。
参照标准如下:
1、《中华人民共和国国家标准电气装置安装工程电缆线路施工及验收规范之电缆及附件的运输与贮存保管》
2、《中华人民共和国国家标准电气装置安装工程电缆线路施工及验收规范之电缆敷设》
第二篇:电缆进水原因及对策
电缆进水原因及对策
一、危害
电缆进水后,在电场的作用下,会发生水树老化现象,最后导致电缆击穿。水树是直径在 0.1m到几微米充满水的空隙集合。绝缘中存在的杂质、气孔及绝缘与内外半导电层结合面的不均匀处所形成的局部高电场部位是发生水树的起点。水树发展过程一般在8年以上,湿度、温度、电压越高,水中所含离子越多,则水树发展越快。
二、原因 保管时新买的成筒电缆,其两头均使用塑料密封套封住,但用去一段之后,余下的就用塑料纸一裹,外面用绳子一扎,密封性不好,日子一久,水汽就会渗入电缆。电缆敷设时 电缆敷设时,其用塑料纸裹住的电缆头有时会浸在水中,使水进入电缆;在牵引和穿管时,有时会发生外护套破裂现象。敷设后 敷设后,未及时进行电缆头制作,使未经密封处理的电缆端口长期暴露在空气中,甚至浸在水中,使水汽大量进入电缆。
电缆头制作时 在电缆头制作时(包括终端头和中间接头),由于制作人员的 意,电缆端头有时会滑入有积水的电缆井中。电缆运行时 电缆运行中,发生中间接头击穿等故障时,电缆井中的积水便会沿着缺口进入电缆;在建筑工地,外力引起电缆破损或击穿,也会发生电缆进水。
三、对策
电缆进水后干燥处理非常困难(如用热氮气加压吹燥),一般也没有配置相应的 设备。实际操作中,如果电缆R6进水,我们只是锯掉前端几米,如整条电缆 已进水,我们就无法可取。因此,电缆进水的防止,应以预防为主,采用以下措施:
1、电缆头应密封 锯掉的电缆端头,无论是堆放还是敷设,均要用塑料密封起来(采用电缆专用的密封套),防止潮气渗入。
2、电线敷设后要及时进行电缆头的制作。
3、购买电缆时,必须选择质量过硬的厂家。由于绝缘中的杂质、气孔等是水树发生的起点,因而电缆质量的好坏对防止水树老化至关重要。
4、加强电缆头制作工艺的管理一旦电缆进水,则最早出现击穿现象的往往是电缆头,因而电线头制作得好,可以延长电缆的整体寿命。如电缆在剥离半导体层时,我们在半导体层上竖着划几道,然后像甘蔗剥皮一样剥去半导体。但在用刀划时,若划得太深,便会伤及绝缘层,给水树的产生带来机会。另外,在焊锡时,因找不到电源,就会直接用喷灯来熔化焊锡,此时,火焰会损坏铜屏蔽层及绝缘层,因而要杜绝这种现象,正确的办法可配置UPS,因为焊锡所需时间一般仅为10min,功率不过500W。
5、采用冷缩电缆头 3M公司的冷缩硅橡胶电缆附件,制作简单方便,不用喷灯,不用焊锡。且硅橡胶电缆附件有弹性,紧紧地贴在电缆上,克服了热缩材料的缺点(热缩材料没有弹性,在电缆热胀冷缩的过程中,会与电缆本体间出现间隙,这就为水树的发展提供了便利)。目前,我局的所有主要电缆的中间接头均使用3M公司的冷缩电缆附件。
6、长电缆采用电缆分支箱 我局的几条长电缆,每条长度在3km左右,对于这样的电缆,除了做中间接头外,我们还采用一至二个电缆分支箱,一旦其中的一段电缆进水后,不会扩散到其它段的电缆,而且在电缆故障时也便于分段查找 7、10kV系统中采用8.7/10kV等级的电缆 该等级电缆绝缘厚度达4.5mm,而6/10kV等级电缆的绝缘厚度为3.4mm。由于电缆绝缘厚度的增加,降低了场强,能防止水树的老化,同时,由于l0kV中性点小电流接地系统在单相接地时,电缆要承受1.73倍的相电压,且按要求要运行2h,因而,有必要加厚电缆绝缘层。
8、采用PVC塑料双壁波纹管该管耐腐蚀、内壁光滑、强度与韧性良好,因而在电缆直埋敷设时,可大大减少电缆外护套破损。
9、电缆沟(管)与电缆井的设计由于条件的限制,我们的电缆敷设均采用直埋或电缆沟形式,而且以直埋为多,我区属于沿海多雨地区,电缆沟或电缆井中长年有积水。由于电缆沟或电缆井的深度会超过下水道的深度,排水很困难,因此在规划时,就应进行协调,便于电缆沟(井)的排水。如无法做到电缆井不积水,则应把电缆井中的中间接头用支架撑起。另外,我区是重化工区,区内化工企业较多,在巡视检查中发现,化工厂附近的电缆沟中的电线,有些外护套已严重变形,因而,化工厂附近的电缆沟必须有完善的排水设施。另外,在电缆排管设计时,要尽量直,减少弯头,使电缆便于敷设;同时,在电缆井制作时,我们分成大电缆井和小电缆井,大电缆井可用来牵引电缆、盘圈、做中间接头,而在马路当中等不便于做电线井、却必须有转角的地方,我们改做小电缆井,该电缆井只是在敷设电缆时用来放置转向滑轮。
10、电缆的试验电缆头制作完成后.在投运之前做一次高压直流泄漏试验,以后,我们只对变电所出线电缆做预试,其它电缆不做试验。因为,变电所出线电缆一旦故障,短路电流会对变电所设备造成很大冲击,因而发现电线有问题,就要加强运行管理及时调换。我们认为,电缆故障的后处理,与电缆试验后发现故障的电缆,两者处理起来一样的麻烦:查找故障点,甚至调换电缆。前者的缺点是:非计划性停电、短路电流的冲击优点是:不做试验可延长电缆的寿命(有些电缆试验做出来不理想,却依然可以运行很长时间,况且直流试验后会增加电缆击穿的可能),故障点比较明显,易于查找。后者的优缺点正好与前者相反。因此,对于不做试验的电缆用户,我们着重做好其供电可靠性,如对用户供电的10kV开关站,均采用双电源,实现调度自动化,一旦一条进线电缆故障、就马上切换到另外一条电缆供电。事实上,新的《电力设备预防性试验规程》中,对交联电缆不再规定隔一定时间做直流耐压试验,只测绝缘电阻,因而更可简化电缆的预防性试验。
一起PVC 绝缘护套电力电缆线路故障的调查和分析
摘要:介绍一起电缆沟内粉末无焰自燃引起的聚氯乙烯(PVC)绝缘护套电力电缆线路故障,分析产生故障的原因,提出防范措施与建议。
关键词:粉末;电力电缆;线路故障;无焰自燃;原因;防范措施
1故障现场的调查
一个生产油脂性食品粉末,而且才投入运行不久的车间的电缆沟内,电缆线路发生无焰燃烧事故,沟内电缆多处不同程度损坏,整个车间被迫停产,所幸发现及时,未酿成大祸。经现场勘察调查,发现以下几点:
(1)从该车间生产现场调查,发现磨粉机、振动筛、收集器中到处都散发出粉末,而且该粉末含有一定的油脂;
(2)作为连接电源和设备的输电线路,采用了7根型号为VLV 22-0.6/13×185+1×95 聚氯乙烯绝缘钢带铠装聚氯乙烯护套电力电缆,全部平行重叠无间隔地叠放在约40cm×40cm 的电缆沟内,没有采用电缆支架;
(3)沟面上用铁板盖住,铁板与铁板之间有缝隙,每过两米,铁板上就有一个约8cm×8cm 的方孔,电缆从这方孔中穿出来,并与地面上的电气设备相连接;
(4)打开铁板可见电缆几乎安放在粉末上,方孔及缝隙下的电缆约有60cm 长一段被埋在厚厚的粉末中;
(5)事发当时仅闻到浓烈的异味,未见明火,也未见电器保护电路跳闸,并且燃烧点离缝隙和方孔很近;(6)从受损的电缆实物来看:位于上层的电缆护套表面严重炭化,钢带也已变色变形;剥开钢带,绝缘线芯不同程度炭化,但相邻的绝缘线芯之间的导体尚未连在一起,亦未见短路痕迹,其中两根炭化严重的只要稍微用力,绝缘就会脱落,而压在该电缆下方的一根电缆,仅表面局部化,内部钢带、绝缘尚未有燃烧的痕迹及任何损伤。
2原因的分析
(1)从事发当时设备正常运转,控制开关并未见跳闸保护,结合受损电缆解剖情况,及事后对各开关检查来看,事发当时运行电流没有超过额定值,换句话说,起因不在过电流或过电流发生后保护电路失灵。
(2)从解剖受损电缆来看,炭化的严重程度从外护套到内部绝缘逐步递减,基本可以排除自燃是从电缆内部开始的。这种现象完全符合GBPT12666.1 第2.3 条“无焰燃烧”的定义,即“发光但无火焰的燃烧”,这时通常会释放出较多的烟。
(3)事故现场具备无焰燃烧条件:
①电缆长期通电,且设备处于运行状态,势必会产生热量。由于多根电缆靠在一起,而且未采用电缆支架,散热相对差些,蓄热使温度升高;再加上由于粉末积压,把电缆埋在粉末之中,使电缆的散热更是不畅,温度会随设备运行时间增加而逐步上升;
②电缆沟内积聚的粉末含有油脂,在光线、空气、温度和水分的作用下,很容易发生氧化,生成氧化物或过氧化物,并产生活性游离基,进一步加速氧化过程。如氧化过程中的热量不能及时散发,聚热后的粉末就会炭化,直至自燃。
③粉体物料在运动过程中会产生静电———不免有物料颗粒之间或物料与器壁之间的相互碰撞和摩擦,进行反复的接触和分离,这样它们之间就会产生电子转移现象,粉体及器壁上会分别带上不同符号的静电,如果设备上没有良好的接地装置,电荷的积累速率大于电荷的泄放速率,则物料的电位就会逐渐升高,以致达到产生放电火花的程度。但从设备结构和安装情况来看,都已考虑到通过接地来释放静电。
④在粉末自燃至一定时间,电缆护套被高温炭化,但由于所处环境中无充分的氧气,因此发生了无焰燃烧,油脂性粉末与聚氯乙烯燃烧时产生的浓烈异味印证了以上分析是成立的。通过钢带传热,导致绝缘层处于高温下,再经过一定时间,绝缘层也被炭化。若不及时发现,绝缘层全部破坏后极易发生短路,甚至火灾。
(4)根据分析,又对现场采集的粉末做了试验,验证粉末发热到一定程度确实会自燃。所以可以断定本次事故的主要原因是:聚热后的粉末自燃引发电缆无焰燃烧。
3防范措施和建议
通过以上分析和总结,可提出以下几点措施和建议,杜绝这类事故的产生:
(1)根据不同的使用场合,必须严格按安全规范规定的要求敷设电缆。例如有粉末(粉体、粉尘)的环境条件下,如果有可能的话,应尽可能采用垂直安装电缆,并用电缆桥架固定,有可靠的接地系统,保证每根电缆可靠接地。如果必须使用电缆沟,也应竭力避免粉末(粉体、粉尘)进入电缆沟内,保证电缆沟内干燥、清洁和良好的通风,即沟内的散热性能能满足使用的要求,一旦由于通道的封隔,蓄热使电缆温度升高时,电缆的负载能力就应酌情降低。另外,也说明了这种类型的生产车间的环境条件应保证清洁,尽可能减少粉末飞扬,并要有良好的除尘排风的装置。因为正如上述,粉沫飞扬会产生静电荷,静电荷积聚到一定数值时会发生放电,从而有可能造成爆炸和起火的重大事故;而且粉末飞扬也会危害工作人员的健康。当然这是特殊车间的厂房设计的要求,也是本文题外之事,但既是减少本事故的关键,也是彻底的安全措施。
(2)无论什么情况下,都要正确选用电缆。除了考虑载流量、截面积外,如果遇到粉末、油脂等特殊场合,可以有目的地选择阻燃、低烟无卤、本安型电缆,这样可以降低事故发生,一旦事故发生也可以减少由于有毒气体造成的人员伤亡。另外要确保电缆质量,选择质量信誉高的企业作为供方;对所用的电缆要有明确的、对应的,全面的质量检验结论,做好电缆线路敷设工程存档及质量跟踪。
(3)选择合格的、有相应能力的设计和施工单位,确保设计方案的正确,施工质量的优良。
第三篇:变压器绝缘老化分析
分析电力变压器绝缘老化及其诊断技术的应用
1、变压器绝缘老化的危害及重要性
目前,我国电网中,有较多的大型变压器运行年限已接近或超期,出于成本等因素的考虑,这些变压器仍在继续超期运行,因而所面临的一个共同问题是,随着绝缘老化程度的加深,绝缘机械强度下降,将导致变压器抵抗短路大电流冲击的能力大大降低,从而降低变压器的运行可靠性。绝缘老化,使变压器逐渐丧失原有的机械性能和绝缘性能,运行中产生的电磁振动和电动力,也容易使变压器损坏;绝缘强度降低易产生局部放电、绝缘的工频及冲击击穿强度降低,造成变压器的击穿损坏。据有关维修部门对各种变压器绝缘故障的剖析和统计研究得知,影响变压器运行状态和寿命的失效故障现象90%以上属于绝缘老化问题,在这种形势下,科学的运行监督能提高变压器安全运行水平,提前发现缺陷,对延长变压器运行寿命周期,提高经济运行效益有十分重要的意义。因此,必须重视变压器绝缘老化问题。
2、绝缘老化机理
2.1、绝缘老化:
电力变压器大多使用A级绝缘。绝缘材料有一定的机械强度和电气强度,机械强度是指绝缘承受机械荷载(张力、压力、弯曲等)的本领;电气强度(或称绝缘强度)是指绝缘抵抗电击穿的本领。变压器在长期运行中,由于受到大气条件和其他物理化学作用的影响,其绝缘材料的机械和电气强度逐渐衰退的现象,称为绝缘老化。当绝缘完全失去弹性,即机械强度完全丧失时,只要没有机械损伤,仍有相当高的电气强度。但失去弹性的绝缘,已变得干燥、易脆裂,容易因振动和电动力的作用而损坏。因此,绝缘老化程度不能只按电气强度来判断,必须考虑机械强度的降低程度,而且主要由机 械强度的降低程度来确定。2.
2、等值老化原则:
变压器运行时,如果维持绕组热点温度为98。C,可以获得正常预期寿命。但是,实际上绕组热点温度受到气温θ0和负荷K波动的影响,变动范围大,即绕组热点温度是一个随时间变化的量θht,为此,在一定时间间隔T内,如果部分时间内绕组热点温度低于98℃,而另一部分时间内允许绕组热点温度高于98℃,只要变压器在高于98℃时多损耗的寿命得到低于98℃时少损耗的寿命的完全补偿,则变压器的预期寿命可以和维持绕组热点温度为98℃时等值,此即等值老化原则。换言之,等值老化原则就是:使变压器在一定时间间隔T内,绝缘老化或损耗的寿命与维持绕组热点温度为98℃时等值。根据老化率概念,当θht随时间变化时: VT0ephtdtTe98p1TToep(ht98)dt
显然,如果V>1,变压器的老化大于正常老化,预期寿命缩短;如果V<1,变压器的老化小于正常老化,变压器的负荷能力未得到充分利用。因此,在一定时间间隔内,维持变压器的老化率V接近于1,是制订变压器负荷能力的主要依据。
3、影响变压器绝缘老化的因素
影响电力变压器绝缘老化的因素很多,主要有磁场、电场以及自然力等三个方面。3.
1、磁场的影响:
变压器的磁场分为主磁通的磁场和漏磁通的磁场,主磁通的磁场主要用来传递电能,漏磁通的磁场比较复杂,主要产生如下三个效应: 1)、损耗效应:
变压器各绕组的导体处于漏磁场中,将在导体中产生涡流,并由此引起涡流损耗。涡流损耗的大小主要取决于导体的几何尺寸和漏磁场的大小与分布,垂直于漏磁场方向的各层导体中的涡流损耗是不同的。漏磁通在绕组及铁芯中感应涡流,不能传递能量,只能产生压降和热量,使变压器温度升高。平均意义上说,漏磁场不大,但是由于变压器介质分布不均匀,而且在实际运行中的变压器经常受到外界因素的影响,使其漏磁场分布不均匀,这是导致变压器局部过热的原因之一。此外,漏磁场在变压器的金属结构附件中产生杂散损耗。在绕组轴向的漏磁通可以在绕组压板、压钉和铁轭以及夹件中感应出涡流,引起损耗。变压器内部引线的电磁场会在其附近的金属件中引起涡流损耗。所有这些损耗即铁损都可能引起变压器绝缘的老化或损坏,成为运行故障的根源。变压器的漏磁场强度都随变压器容量的变化而变化,容量越大,漏磁场强度就越大。单台额定容量为150 MVA以下的变压器的漏磁强度与额定容量的关系可用公式(1)计算:
HIN常数4p l容量在150 MVA以上时,可用公式(2)计算:
HIN常数4p l其中P是变压器的容量,N为绕组匝数,J为绕组电流,Z为漏磁场的有效长度。可见,变压器的容量不同,漏磁场强度就不同,造成的损耗也不同。2)、机械力效应:
大型变压器在线圈漏磁场作用下,将在绕组导线上产生电磁力及动态机械力,这两个力的作用将会使变压器的绕组及其紧固件发生形变或位移,容易造成变压器的绝缘破坏,产生局部放电。3)、热效应:
变压器运行时,绕组、铁芯以及其它构件中产生的损耗几乎全部转化为热能。这些热能使变压器的温度升高达到一定温度时就会造成变压器的绝缘破坏。变压器的极限温度主要取决于绕组绝缘材料的耐热性能。油浸式变压器绕组间的绝缘材料,一般采用电缆纸或其他纸质材料,属A级绝缘,耐热温度为105℃。干式变压器常采用玻璃纤维绝缘材料,属B级绝缘,耐热温度为130℃。如果绝缘材料的温度超过其极限温度(亦即变压器的极限温度),则变压器的寿命便会急剧缩短,甚至会烧毁。在变压器的运行中,其绕组的中部偏上部位有一个最热区,所以变压器的上层油温高于中下层。试验表明,油浸式绕组最热点年平均温度若不大于98℃,变压器的运行年限可为20~25 年,绕组最热点的温度一般比平均温度高13℃,所以绕组在额定负载下的年平均温度定为85℃,变压器油的平均温度大于98℃以后,绝缘性能就会显著恶化。
3.2、电场的影响
电场作用对变压器的绝缘有着较大的影响。电场分布不均匀容易造成变压器的绝缘击穿,发生局部放电,这是变压器损坏的主要原因之一。例如变压器出口突然发生三相短路,大电流产生的电动力将引发变压器绝缘移位,线圈变形,电场分布不均匀,最终导致变压器的绝缘损坏,使变压器的寿命缩短。
引起变压器电场不均匀的原因主要有:
1)、工频过电压引起变压器主绝缘电场分布不均匀造成局部放电。
2)、雷电冲击过电压引起的纵绝缘电场强度过大造成纵绝缘的破坏。
3)、操作波过电压和特快速瞬时过电压引起的纵绝缘击穿。3.
3、外界自然力的影响
热力、化学力、风、雨、雪、冰雹以及地震等自然力和自然灾害对变压器的寿命都有着较大的影响。这些因素往往是不可预测的,对变压器的影响也是偶然的,没有规律的,如地震发生的时间、强度以及对变压器等设备的作用都是不确定的,地震可以使浮放的变压器发生移位、扭转、掉台等,造成变压器顶端高低压绝缘瓷套管被破坏。对于固定良好的变压器,可造成变压器顶部绝缘瓷套管根部裂损或断裂,这就需要从变压器自身及其安装的角度进行研究,加强其防震能力。对其它外力的影响也需要在不断认识规律、积累经验的基础上进行研究并加以防范。
4、变压器绝缘老化的预防:
变压器绝缘老化的预防主要是从两个方面入手。4.1、一方面主要是防止或减少不良的外界因素的影响,作好变压器的日常维护,保证变压器正常运行,同时,在使用上,每一个环节都按规范进行,减少人为故障,据统计,变压器运行维护不良造成的事故约占变压器故障总数的一半。要解决维护不良问题:
1)、要保证变压器不要过负荷运行,运行温度不能超过绝缘材料允许的最高温度。
2)、要防止变压器出口发生突发性短路,尤其要防止外界偶然因素和环境因素造成的突发性短路。
3)、加强变压器的在线诊断,对其故障进行提前预测,如经常进行局部放电测量、油温及线圈温度测量,绝缘油的色谱分析,油中微水分析,对特征气体、游离气体以及总烃的检测。检测可按国家标准分别在投运前、投运时、运行中和特殊情况下进行。
4)、改进避雷措施和散热方式等。
4.2、另一方面主要是从变压器的开发、研究以及设计人手,在结构上保证变压器设计的精确和完善。主要方法有: 1)、在绕组端部施加端圈、角环等改善变压器内部电场的分布。
2)、采用饼式纠结式绕组。3)、采用内屏蔽插入电容。4)、采用优质的绝缘材料。
5)、对变压器的设计采用三维模型进行精确的数值计算,优化变压器的绝缘裕度。
这些方法都可以减少绝缘老化故障发生的可能性。这需要从物理的、化学的过程进行分析,深入研究其内在规律,掌握老化故障的原因及故障与产品的使用条件之间的内在联系,从根本上预防老化故障的发生或降低故障的发生率。老化故障的预防还可以通过在实验室进行试验的方法进行电气分析和检测,并通过搜集分析各项电气试验的数据,如对绕组的直流电阻、变比、空载电流、空载损耗、局部放电、铁芯的绝缘电阻以及接地电流等项目的分析综合,找出参数的变化,及时作出故障的事先判断。总之,变压器的绝缘老化故障是变压器的主要故障之一,直接影响变压器的寿命,必须从多方面人手,及早的给予预防,才能延长变压器的实际寿命,减少电力系统的经济损失。
5、电力变压器绝缘老化的现场诊断技术
现场诊断是确定变压器绝缘强度的手段。现场诊断和趋势分析的结合是最重要的检测手段,能及时检测变压器的过热、局部放电、电介质劣化、线圈位移等。有下列检测项目: a、局部放电测量。
当变压器有异常或油色谱中出现C2H2时,应对变压器进行现场局部放电测量。超声波局放仪能对发生局部放电部位进行 定位。
b、油温及线圈温度的定期测量。
能发现变压器是否过载或局部过热,从而进行更细致的诊断。c、油的色谱分析。
变压器绝缘老化主要有变压器油和纤维素绝缘材料两方面的老化。变压器油老化主要是氧化反应,铜为催化剂。油中的氧在水分、温度作用下使老化加速,生成醇、醛、酮等氧化物及酸性化合物,最终析出油泥。油氧化反应形成少量的CO和C02,随着运行中气体的积累,CO和CO2将成为油中气体的主要成分。随着运行年数的增加,绝缘材料老化,使CO和C02的含量逐渐增加。由于CO2较容易溶解于油中,而CO在油中的溶解度小、易逸散,因此CO2/CO一般是随着运行年限的增加而逐渐变大。当CO2/CO大于7时,认为绝缘可能老化,也可能是大面积低温过热故障引起的非正常老化,据此初步判断有绝缘老化的可能性。d、油中糠醛含量测量。
变压器油中的糠醛含量随运行时间的增加而增加,但不同变压器除了制造上的固有差异外,还因运行中环境温度、负载率等不同,造成在相同运行时间内糠醛含量的分散性;另外变压器油纸比例不同,测试结果用单位体积油中糠醛的毫克量表示,使相同老化状况的不同设备的测试结果出现不同;变压器油处理也是影响糠醛含量的重要因素。变压器油中按 糠醛含量数据进行比较,可判断变压器存在绝缘老化。e、测量绝缘纸的聚合度。
测量变压器绝缘纸的聚合度(指绝缘纸分子包含纤维素分子的数目)是确定变压器老化程度的一种比较可靠的手段。纸聚合度的大小直接反映了纸的老化程度,新的油侵纸(板)的聚合度值约为1000,当受到温度、水分、氧化等作用后,纤维素降解(是指绝缘材料裂解产生杂质,使绝缘老化),大分子发生断裂,使纤维素长度缩短,也即D-葡萄糖的单体个数减少至数百,而纸的聚合度正是代表了纤维素分子中D-葡萄糖的单体个数。根据资料介绍和国内老旧变压器的测试情 况,认为聚合度下降到250左右时,绝缘纸的机械强度就已经下降到50%以上。运行中的变压器绝缘纸的机械强度,由于对试样尺寸要求较高,不如测聚合度取样容易。实际上,变压器绝缘纸老化的后果除致使其电气强度有所下降外,更主要的是机械强度的丧失,在机械力的冲击下,就可能造成损坏而导致电气击穿等严重后果。因此,当聚合度值下降至250后,并不意味着会立即发生绝缘事故,所以《规程》提出,当聚合度小于250时,应引起注意。但从提高设备 运行可靠性角度考虑,应避免短路冲击、严重的震荡等因素,同时应着手安排备品,便于将绝缘已严重老化的变压器能较早地退出运行。应当指出,虽然聚合度是最能表征绝缘老化的指标,是非常准确、可靠、有效的判据。但是,这项试验要求变压器停运、吊罩以取得纸样,这对正在运行的变压器无法进行这项测试,这种应用受到较大的限制。综上所述,变压器运行后,经过长期的热效应积累,绕组绝缘受热膨胀,致使原本统包绝缘窄油道变得更窄,冷却油流速慢,不能充分带走绕组的热量。绕组绝缘纸受热后逐渐老化,析出各种有机气体和糠醛,经论证,变压器存在非正常绝缘老化现象。变压器油中溶解气体分析对监测变压器各种故障有着重要的作用;同时,油中糠醛含量及绝缘纸聚合度测试是对变压器老化诊断的重要手段。1996年到2007年,每年对变压器进行油中气体含量的测试和糠醛试验,有效地监视了变压器运行状态和主绝缘老化程度。在色谱试验和糠醛试验跟踪十年后,为保证电力设备的顺利进行,该变压器退出运行,更换了一台新变压器,从而彻底消除了设备隐患,确保了电网发供电的安全生产。
6、总结:
变压器的绝缘故障是变压器的主要故障之一,直接影响变压器的寿命,必须从多方面人手,及早的给予预防,才能延长变压器的实际寿命,减少电力系统的经济损失。
第四篇:电缆终端头的故障原因分析及其防止措施
津成电线电缆内部专用
电缆终端头的故障原因分析及其防止措施
随着城网改造工程深入开展,为施工方便、减少线走廊的占地面积,提高供电的可靠行,在变电站10kV线路出线段,工业园区客户10kV供电线路进线段,城镇10kV配电线路、箱式变10kV电源进线等,都设计选用了YJLV22~8.7/15kV橡塑绝缘电力电缆供电。电缆终端头早期配用热缩终端头,后期配用冷缩终端头,但电缆线路投入运行3~5年后,电缆终端头每年都多次发生过故障,造成变电站或线路分段开关跳闸。直接影响了10kV城网供电的可靠性。
一、电缆终端头发生故障的情况
1.电缆终端头故障情况的比较
在水泥电杆上安装运行的户外10kV电缆终端头发生故障的数量较多。其中电缆终端头距电杆和线路导线梯接点距离较小,使三相冷缩管弯曲受力,这样设计安装的电缆终端头在冬季和初春温度较低的情况下运行最容易发生故障,从电缆终端头型号比较,热缩电缆终端头较冷缩电缆终端头发生故障的数量较多。
在变电站10kV配电室内、电缆线路电缆分支箱、箱式变内,10kV户内电缆终端头运行中却很少发生故障。另外,在城网安装运行的电缆终端头较农村10kV电网故障率也较高。
2.电缆终端头故障损坏情况。电缆终端头在运行中发生故障时,一般是先引起10kV系统单相接地,短时间后扩大为两相或三相短路故障,造成线路断路器跳闸。冷缩电缆头厂家故障后经检查,发现电缆终端头已烧坏。烧坏部位是从终端头的指套起至户外终端(防雨裙)之间,将两相或三相的冷塑管,绝缘体烧坏,暴露出芯线也被烧伤,其中接地故障相烧伤最严重。
二、电缆终端头故障原因分析
运行环境的影响:杆上安装运行的户外电缆终端头,常年受风、雨、雪、雷电的侵袭及温度诸因素的影响,经多年运行后,使绝缘老化而损坏。室内,箱内安装运行的户内电缆终端头不受上述环境的影响,绝缘不易老化,所以很少发生故障。杆上户外电缆终端头在电缆线路的首段。首先受到雷电过电压的侵袭,当避雷器放电时,雷电流通过地线接地装置流入大地,会在接地装置的电阻上产生压降,如果电缆接地装置的电阻大于10Ω。产生的压降较大,加上避雷器的残压,会加在电缆芯线至终端头的绝缘体上,会使相线绝缘放电击穿。而室内户内电缆终端头在电缆线路的末端,它和变压器安装的避雷器公用一个接地装置,变压器接地装置的接地电阻一般小于4Ω。避雷器放电时,放电电流在接地装置上产生的压降小。所以户内电缆终端头不易因过电压发生故障。另外,因电缆线路有防止雷电压的作用,所以电缆分支箱内的户内电缆终端头,虽然没有设计安装10kV避雷器,也很少发生故障。
津成线缆 津成电线电缆内部专用
津成线缆
第五篇:近期电缆故障分析
**车间近期电缆故障分析
近一个月以来,连续发生了五起电缆故障,对运输生产产生了很大的影响,为了避免类似故障的发生,减少对运输生产的影响,车间组织了相关人员对几起故障进行了分析总结,制定了应急措施。
一、故障概况
1、**西车站外灯照明回路电缆故障
7月25日,**西配电所低压室至**西站外灯照明回路断路器跳闸,试送一次不成功,经测量发现去外灯照明的铜芯电缆(3X95+1X50)C相对铠装电阻为17欧母,判断为此电缆接地故障。8月10日经电缆测试仪检测,故障点在配电所起184米处,正好在站台上。8月15对电缆进行了处理,恢复正常。2、12号箱变至铁通直放站61一级贯通电缆故障
9月25日,**北铁通工区通知,发现直放站61号单电源供电。电话汇报电调查看,两路供电正常。经现场查看,发现一级贯通供直放站61号空开,电缆都正常,但是直放站内无电,经确认为电缆中间开路。现场还发现此回路电度表到目前为止还是零,由此证明此回路从开通到现在就一直没有供电。
3、**北动力一回路电缆故障
9月24日,**北配电所低压室至**北站动力一断路器跳闸,试送一次失败,经测量发现动力一的铜芯电缆(3*240+1*120)B、C相相间电阻为15KΩ,判断为此电缆相间故障。9月25日经电缆测试仪检测,电缆全长258米,故障点在配电所引出160米处,候车厅进站地道口大理石面下方(4月份电化局曾对此电缆进行过一次维修,做电缆接头一个)。9月25对电缆进行了处理,恢复正常。
4、**分区所上网备用电缆烧毁故障
9朋29日12时13分,接护路人员通知,**分区所上网电缆正在着火,经现场查看发现是**一侧上行线一条备用电缆拉弧放电,已烧坏,当晚用临时点进行了处理。
5、**西通信二路电源电缆故障
9月30日,铁通电话通知**西通信机房少一路电源,经检查发现**西配电所低压室D26号柜至**西站通信二路断路器跳闸,试送不成功,柜内检查发现此回路电缆铠装接地线已烧断,经测量发现**西站通信备用回路的铜芯电缆(3X50+1X35)接地故障(三相对铠装分别为:A 0.1kΩ、B 24KΩ、C 26KΩ;相间:AB 114KΩ、BC 93KΩ AC 2。7KΩ)。10月9号经电缆测试仪检测,故障点在配电所起163米处,正好在站台上。为了确保一级负荷的供电,目前从信号楼一楼动力回路接一根电缆至通信机械室配电箱,进行临时供电。
二、原因分析
1、**西外灯照明、**北动力一故障初步分析,主要是电缆敷设完成后,防护不到位,被站台土建等一些基础施工过程中的锐器打击造成外皮及铠装破损进水,绝缘下降击穿造成; 2、12号箱变至61号直放站的电缆故障原因是施工遗留问题(这一点从电度表计数为零就能看出来),从开通到现在就没有正常供过电,只是铁通没有及时发现,验收过程中我们无法发现铁通室内的供电情况。
3、**分区所上网电缆烧坏的原因初步分析为:所有备用电缆铠装及缆芯未进行有效接地,又因与带电电缆并排敷设,正常运行过程造成电缆铠装及缆芯感应高压电,再加上烧损电缆头在制做过程中的工艺缺陷造成绝缘达不到这么高电压的要求,使此处与抱箍放电拉弧烧坏。
4、**西通信二路电缆故障因未开挖,原因不明。
三、预防措施
针对近期电缆故障情况,为了减类似故障的发生,减少对生产生活的影响,经车间集体研究制定以下预防措施
1、利用四季度电力设备集中修,对管内所有电力电缆的绝缘电阻进行一次测量,对不合格的电缆制定针对性的整治方案。
2、向段申请备用一根(3X25 1X16)抢修应急电缆,确保出现电缆故障时能及时恢复临时供电。
3、对可直接观察到地电缆进行一次巡视,清除电缆沟内杂物,改善运行环境。
4、对管内上网电缆、备用电缆的接地情况进行检查,对接地不良的或未接地的备用(经查绝大部分上网点的备用电缆都没进行有效接地)电缆进行整改,确保接地良好。
**供电车间 2009年10月10日