11淀粉在高分子材料中的应用研究进展(共5篇)

时间:2019-05-14 06:21:41下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《11淀粉在高分子材料中的应用研究进展》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《11淀粉在高分子材料中的应用研究进展》。

第一篇:11淀粉在高分子材料中的应用研究进展

淀粉在高分子材料中的 应用研究进展*

淀粉是一种天然多糖高分子物质,它以颗粒的 形式广泛存在于植物的果实、根、茎、叶中,是自然界 产量最大的产品之一,每年全世界都有上亿吨的产 量。淀粉作为可再生的自然资源,供应稳定、价格低 廉、是食品、造纸、纺织、医药、石油钻井、塑料、精细 化工、包装材料制造等工业的重要原材料。由于其 良好的生物降解性,被广泛应用于高分子材料中,制

成环境友好材料和制品。

1淀粉在塑料中的应用

1.1填充型淀粉塑料

为了改善合成聚合物的降解性和降低成本,将 淀粉以填料的形式分散在合成聚合物基体中可得到 淀粉填充型生物降解塑料,又称破坏性(崩坏性)塑

料。此类塑料源于二十世纪70年代英国L.c珊rm 的专利技术⋯,是目前国内外研究最充分的一类生 物降解翅料,在我国尤其受到重视。作为填充剂的

淀粉可以是原淀粉、物理改性淀粉或化学改性淀粉。

由于淀粉是多羟基极性高分子,而与淀粉共混的塑 料一般为疏水性高分子,极性很小,二者结构和极性

收稿日期:2006一12—25 资金项目:海南省自然科学基盎资助课题(50101)作者筒介:汗志芬(1976),女,实骑师,在职硕士,从事高分子材料的 研究。

相差甚远【2J。因此,必须对加入的淀粉进行表面处 理,使其表面亲水性变为疏水性。根据淀粉改性工 艺的不同可分物理改性淀粉和化学改性淀粉两类。物理改性淀粉是由物理方法处理淀粉再与通用 塑料共混制得。淀粉的物理改性是指淀粉微细化、通过挤压机破坏淀粉结构或添加偶联剂、增塑剂、结

构破坏剂(如水、尿素、碱金属氢氧化物或碱土金属

氢氧化物)等添加剂以增强淀粉和高聚物的相容性。加拿大st.Lawence淀粉公司采用硅烷处理淀粉,再 加入玉米油氧化剂,以母料方式工业化生产Ecostar。嘶佑n引等用硅氧烷与淀粉和水的悬浮液混合,溶液 在80。c下喷雾十燥,得到的粉末与自氧化剂乙酸乙 酯、油酸混合,再与聚乙烯共混,制成母料,并与聚乙 烯共混挤出,吹塑得到的薄膜即被认为是降解塑料。戴李宗等L4J对用硅烷、钛酸酯和铝酸酯三种偶联剂 表面改性处理后的淀粉进行研究,发现淀粉疏水性 得到极大提高,得到力学性能良好的产品。吴俊

等【5J将不同粒度梯度的微细化淀粉疏水化改性后与

LDPE共混,分析不同粒度微细化淀粉与LDPE共混 体系的相态结构。结果表明:随着淀粉粒度的降低,微细化淀粉在LDPE中的分散性提高;淀粉粒度降 低有利于改善共混体系的加工性能和力学性能。化学改性淀粉在二十世纪80年代末非常活跃,淀粉经化学改性后添加到塑料中而制得可降解塑 料。对淀粉化学改性的目的就是提高其与塑料的相 万方数据

汪志芬等:淀粉在高分子材料中的应用研究进展’ 2D06年第3期

容性,通常是向淀粉分子引入疏水基团,这些基团在 淀粉与PE等高聚物之问起到改善相容性的作用,常用疏水基团丙烯酸酯类、乙酸乙烯酯、丙烯酸胺 等。由于淀粉可以接枝亲水性或疏水性单体而使改 性后的淀粉具有单体聚合物的亲水或疏水特性,因 此,在淀粉塑料中以淀粉接枝共聚物研究的较多,目 前生产PE生物降解膜常用的化学改性淀粉是淀粉 一乙烯一丙烯酸共聚物。美国的费斯克公司以此改 性淀粉与原淀粉、PE共混制造的产品可用于食品包 装、垃圾袋等。德国ca嘶塑料公司的PE932l、意大 利蒙特爱迪生公司的淀粉/聚烯烃塑料、美国 colomn公司的酯化淀粉/PE、醚化淀粉/PE和接枝 共聚物/淀粉/树脂等均采用化学方法改性淀粉。吴 俊_6I等通过对淀粉的偏磷酸钠交联改性和硅烷偶联 剂表面处理,使改性淀粉具有一定的亲酯性能,然后 与一种可生物降解的聚酯类物质PX在甘油、乙二 醇复合增塑剂、增溶剂EAA存在情况下,双螺杆挤 出造粒,所得膜的机械性能、耐水性、熔融性均达到 '『国家行业标准,而改性淀粉的质量百分数可达

50%~70%。

虽然填充型淀粉塑料风靡一时,仅美国就曾发

展到年产逾10万t,我国在这方面也做了不少的研 究工作。研究单位主要有江西科学院应用化学研究 所、天津大学、长春应用化学研究所、华南理工大学 等。生产厂家已达80多家。但国内外近十来年的 降解性能试验表明,由于填充型淀粉塑料含淀粉量 只有7%~30%,虽然其中的淀粉能酶解,但合成聚 合物的c—c单键短时间内难于酶解或水解,淀粉 降解后的塑料组分成为碎片留在土壤或水域中,造 成对环境的二次污染。7J。因此,人们认为填充型淀 粉塑料解决污染意义不大。1.2光一生物双降解型淀粉塑料

双降解型淀粉塑料一般是以聚烯烃为基料,同 时添加适量的光敏剂、生物降解剂、促氧化剂、降解 控制剂(包括稳定和促进型控制以及生物降解增敏 剂)等成分,组成复合的配方体系。这类塑料是将光 敏剂体系促进塑料体系的降解机理与淀粉的生物降 解机理结合起来,一方面可以加速降解,另一方面可 以利用光敏剂可调的特性达到人为控制降解的目 的【8-。光降解和生物降解的结合不仅使材料的可控 性提高,同时还克服了单纯光降解在阳光不足或非 光照条件下难降解的问题,也克服了单纯淀粉塑料 在非微生物环境下难降解的问题。常用的光敏剂有 芳香酮、芳香胺、芳香烃和过渡金属盐类,生物降解 剂用淀粉或接枝淀粉,同时选用不饱和脂肪酸或酯 和多元醇作促氧化剂;用过渡金属螯合物作为生物

降解增敏剂。

国外主要开发公司有:美国Ecostar公司的

Ecostar Plus、Ampact公司的PloygradeⅢ、ADM公司经

过改进的P(d”lean、瑞士P】Ⅶg公司、英国c01us叫e 公司和加拿大的st Iawrance公司。主要的产品形式 有购物袋、垃圾袋、地膜、餐具、吸塑片材、食品瓶和

注塑成型产品等。这些产品主要存在的问题,一是 安全降解性尚有待于进一步的论证,二是光与生物 降解的协调性还不够理想。

国内长春应用化学研究所、天津大学等单位所 承担的国家“八五”、“九五”攻关课题的主攻方向也

是双降解,取得的研究成果水平与国外相当。上海

解放塑料制品厂采用上海有机所研制的PDP 9496 型母料生产了92一l和92—2型光/生物降解PE购 物袋。1996年我国建成光/生物双降解塑料母料生

产线35条,生产能力过万吨。

虽然这类降解材料有较好的降解性能,但当其 被埋入土中时,因缺乏光照射,光敏剂不能发挥作

用,非生物降锯部分不能降解或降解速度太慢,与填

充型淀粉塑料有相似的污染后果。况且由于光敏剂 在制品加工中均产生不同程度的毒性,有的甚至是

致癌物【9J,所以也将逐步停止使用。

2淀粉在橡胶中的应用

2.1国外状况

二十世纪70年代,美国北部地区研究中心曾研 究r淀粉代替炭黑的问题。在橡胶中加入交联的淀 粉黄原酸酯,所产生的补强作用与中级炭黑相 似_l⋯。由于橡胶中加入淀粉衍生物而改变了橡胶 的加工过程,从而为制备粉末橡胶这一橡胶工业长 期寻觅的目标开发出一种简单且经济可行的方法。含有3%~5%淀粉和95%~97%橡胶的交联黄原 酸酯淀粉一橡胶共沉淀物,能够容易地和各种橡胶 配合剂掺合,并可加工成性能优异的橡胶产品【1“。随着彩色轮胎的兴起以及社会对环保提出的更 高要求,作为浅色填料的淀粉也开始在轮胎中应用。2002年,美国同特异轮胎橡胶公司(G00(IvearTire& Rubb”C0.)宣布开发成功一项配方技术,可用玉米 淀粉改善轮胎性能。该项新技术被称为BioTred,是 利用改性淀粉代替部分像炭黑、白炭黑这样的传统 填料。将普通玉米淀粉进行特殊处理,使之变成微 小的淀粉珠,通过特殊、简便的方法将其精细地混人 万方数据

2006年第3期汪志芬等:淀将在高分子材料申的应用研究进展

丁腈橡胶中,部分淀粉甚至达到了纳米级的分散水

平,因而对T‘腈橡胶产生了良好的补强效果。这种

玉米淀粉具有与炭黑、白炭黑不同的性能,将其用于 轮胎制造有“=低一节省”的优点,却滚动阻力低、噪

音低、c0,排放量低,产品生产及使_I=Ij过程节省能

量[12“]。

法国的A.J.F.cantalI】o等¨5。将天然胶乳与淀

粉共混制备淀粉天然橡胶复合材料。澳大利亚的 AntoineR0uillv等人⋯用甲基丙烯酸二甲氨基乙酯(DMAEMA)接枝改性胶乳再与淀粉共混制备复合材 料。结果表明:未改性橡胶仅作为填料填充在淀粉 膜中,淀粉与橡胶的相容性以及材料的力学性能较

差,而改性橡胶与淀粉间形成r氨键,两者有较强的

界面结合力,复合材料的弹性模量下降,拉伸强度明 显提高,玻璃化转变温度升高(从一48℃提高到一

32℃),相容较好。泰国科研人员-17o利用天然橡胶

与甲基丙烯酸甲酯合成接枝共聚物(NR—g— PMMA),再与天然橡胶风干胶片及木薯淀粉共混。结果表明,天然橡胶一甲基丙烯酸甲酯~木薯淀粉 共聚物、天然橡胶一甲基丙烯酸甲酯一千胶片一木

薯淀粉共聚物的焦烧时间和硫化时间随着水薯淀粉 含量增加而缩短,而前者的焦烧和硫化时间均长于 后者;硫化率指数、最大和最小扭矩、硬度则随着木

薯淀粉含量的增加而增加,随着木薯淀粉含量的增

加,共聚物的拉伸强度、拉断伸长率、撕裂强度F降。2.2国内状况

将淀粉作为橡胶的填充剂,国内在这方面也有 探索。马勇等-l“将淀粉加到用乳液法制备的NBR/ 粘土纳米复合材料中制得具有剥离结构的复合材 料。结果表明:粘土在5~20份内,随淀粉用量提

高,材料硬度、定伸强度、拉伸强度等各项指标均呈 上升趋势。吴友平等}l“”将淀粉糊、sBR胶乳采用

共沉法制备了淀粉/sBR复合材料,并用偶联剂si一

69、KH一550和酚醛树脂对复合材料进行改性。结

果表明:共沉法可使淀粉粒子精细地分散在橡胶中,分散粒径显著减小,界面作用增强。两种偶联剂和 酚醛树脂对淀粉的分散性影响不大,酚醛树脂明显 增强了填料和橡胶之间的界面作用,酚醛树脂和

KH一550极大地提高了复合材料的力学性能。赵学 红等_2“用增塑剂改性淀粉后代替部分炭黑或白炭

黑作为补强剂用于轮胎配方中,研究结果表明改性 淀粉的加入可提高轮胎的整体性能。

由于淀粉具有良好的生物降解性,将其作为橡

胶的填充剂,可以应用于环境友好材料和制品,具有 广泛的应用前景。

3淀粉与其它高聚物共混物

填充型和双降解型淀粉塑料的一个明显缺点是

淀粉含量太低,也就是能生物降解的组分太少,制成

产品后淀粉含量一般是7%~20%。提高淀粉塑料

中的淀粉含量,~方面町以增加降解组分,另一方面 可以降低成本。利用改性淀粉与塑料树脂共混,可 以提高制品中的淀粉含量,而制品性能也有所改善。热塑性树脂与其他生物可降解聚合物共混,能满足 广泛的市场需求。与淀粉共混的可降解聚合物主要 有聚乙烯醇(PvA)、聚乳酸(PLA)、聚羟基丁酸酯(P}IB)、聚已内二酯(PcL)、纤维素、壳聚糖及其衍生 物等,共混物中淀粉的含量可达40%~60%。最早提出共混型淀粉塑料专利的是美国农业部

北部中心的F.H 0tev等。意大利Novmonl化学品

公司研制的Mater—Bi和美国wanler一1ar盯ben公司 的N0vom系列产品是这·类产品的典型。Mater—

Bi是由热塑性树脂EvOH与淀粉通过互穿网络技 术所构成的功能性高分子合金。『}f f两种成分都含 有大量的羟基,产品具有亲水性,吸水后力学性能会 降低,但不溶于水。荷兰瓦赫宁根农业大学用小麦、玉米、马铃薯淀粉、大麻纤维研制出完全不含石化产 品的可降解生物塑料。欧洲、同本等国也将其开发 用于热成型用品、发泡片、包装材料,园艺莆钵、薄 膜、办公用具、玩具等,近年来受到极大的重视。

国内在这方面也作了探索,国内第一个投入生

产淀粉犁料的江西科学院的87一sP淀粉塑料是淀 粉/聚乙烯醇共混型淀粉塑料。付秀娟等忸。以改性 淀粉和少量PvA共混制得叫完全降解塑料,材料透 明性高,机械性能较好,在含水卒30%的土壤中,1 个月失重25%。那海宁_2“等将淀粉糊化后加入聚 乙烯醇共混、使其产生交联后再加入改性助剂尿素,制备的完全生物降解薄膜具有优良的力学性能,尿

素的加入可以极大的降低材料的吸水性。张龙彬 等协。用淀粉与聚己内酯(PcL)制备的其混型nJ完全 生物降解材料具有较好的相容性和生物降解性能。冀玲芳{25等研究了以甘油作为塑化剂,用糊化淀粉 和溶胀纤维熔融共混制备的完伞可生物降解塑料的 性能。结果表明,随着纤维质量分数的增加,共混体 系的弹性模量和拉伸强度逐渐增加,断裂伸长率下 降,共混材料的耐水性提高。壬立元等哳用淀粉和

纤维作为主要原料,加入适量交联剂与增强剂后模 压成型,制备的共混物具有良好的机械强度和生物

万方数据

汪志莽等:淀精在高分干材料中的应用研究进展”

降解性能。研究这一类型淀粉塑料的还有巾科院兰 州化学物理研究所、重庆市化工研究院、山西省农科 院和江西科学院、华南埋工大学、天津大学、青岛科

技大学等。

这类降解材料由于淀粉填充量大,而且有些是

与可牛物降解的高分子材料如PvA共混制备的可 完全生物降解塑料。冈此,具有较广泛的应用前景,阻碍其发展的主要问题是成本高。

4结语

淀粉在高分子材料中的应用研究在最近几十年

内有了较大的进展,主要集巾在材料的制备和材料 的应用研究方向,这些研究对扩大淀粉的应用起到

了积极的作用。同时,要加大对纳米淀粉/聚合物复

合材料的研究;微生物对淀粉/聚合物降解材料降解 作用研究;淀粉对橡胶的补强机理等方向的研究。

第二篇:变性淀粉在工业废水处理技术中的应用及研究进展

专业:化学工程与工艺年级:2010级

选题类别:变性淀粉在工业废水处理技术中的应用及研究进展

学号:2010507345姓名:郭晓萍

成绩:

变性淀粉在工业废水处理技术中的应用及研究进展

摘要:描述了变性淀粉在工业水处理行业中的应用现状,主要研究变性淀粉作为絮凝剂的现状及进展。因为淀粉来源广,价格低廉,并且产物完全可被生物降解,因此,进入20世纪80年代以来,变性淀粉絮凝剂的研制开发呈现出明显的增长势头,美、日、英等国家在废水处理中已开始使用淀粉衍生物絮凝剂,近几年,我国研究淀粉衍生物作为水处理絮凝剂也已取得了较大的进展。

关键字:变性淀粉;工业废水处理;絮凝剂;接枝共聚;交联;

随着水资源的紧缺和水环境污染的加剧。近年来工业水处理技术有了很大的发展.目前的技术主要有化学法、物理法、物理化学法等和各种方法的集成组合.大都少不了用到化学方法即投加药剂,因为它是一种处理工艺简单,占地面积少,处理速度快。处理成本相对较低的成熟方法。而改性淀粉水处理剂作为天然高分子碳水化合物改性而得的水处理剂,它对环境无毒无害,且其处理残渣易被微生物降解。因此,不会对环境造成二次污染.有着广阔的应用前景。变性后的天然高分子絮凝剂与合成有机高分子絮凝剂相比,具有选择性大、无毒、价廉等显著特点。

在众多天然改性高分子絮凝剂中,淀粉改性絮凝剂的研究、开发尤为引人注目。因为淀粉来源广,价格低廉,并且产物完全可被生物降解,因此,进入20世纪80年代以来,改性淀粉絮凝剂的研制开发呈现出明显的增长势头,美、日、英等国家在废水处理中已开始使用淀粉衍生物絮凝剂,近几年,我国研究淀粉衍生物作为水处理絮凝剂也已取得了较大的进展。

一、淀粉衍生物絮凝剂研究现状

淀粉分子带有很多羟基,通过这些羟基的醚化、氧化、酯化、交联、接枝共聚等化学改性,其活性基团大大增加,聚合物呈枝化结构,分散了絮凝基团,因而对悬浮体系中颗粒物有更强的捕捉与促沉作用。改性淀粉絮凝剂性质比较稳定,能够进行生物降解,不会对环境造成二次污染,从而减轻污水后续处理的压力。

淀粉衍生物絮凝剂主要有以下4种。

(一)阳离子型淀粉衍生物絮凝剂

阳离子型淀粉衍生物絮凝剂可以与水中微粒起电荷中和及吸附架桥作用,从而使体系中的微粒脱稳、絮凝而有助于沉降和过滤脱水。它对无机物质悬浮液或有机物质悬浮液都有很好的净化作用,使用的pH范围宽,用量少,成本低。

阳离子淀粉是在碱性介质中,由胺类化合物与淀粉的羟基直接发生亲核取代反应而得到的。

D.Sableviciene等以N-(2,3-环氧丙基)三甲基氯化铵(CHPTAC)为醚化剂,合成高取代度马铃薯阳离子淀粉,用其处理以高岭土配制成的50g/L的高浊度水,实验结果表明,在相同投加量条件下,取代度为0.27~0.32的阳离子淀粉絮凝剂的絮凝效果最佳。

S.Pal等将CHPTAC引入到淀粉骨架中,合成的一系列阳离子淀粉对硅土悬浮物具有良好的絮凝效果,且絮凝效果随CHPTAC链增长而增加。

王琛等以CHPTAC为醚化剂,制得取代度为0.32的玉米阳离子淀粉,对高浊度的高岭土悬浮液的絮凝试验结果表明,在相同投加量条件下,阳离子淀粉絮凝剂的絮凝效果与聚丙烯酰胺相当。通过乙烯基单体与淀粉的接枝共聚物阳离子化可制得阳离子改性絮凝剂。

赵彦生等利用硝酸铈铵为引发剂,将玉米淀粉与丙烯酰胺接枝共聚,再加入甲醛和二甲

胺进行阳离子化,制得阳离子淀粉絮凝剂,用这种絮凝剂处理印染废水取得了良好效果。

裘兆蓉等以淀粉、丙烯酰胺、环氧丙基三甲基氯化铵为原料合成了高密度阳离子高分子絮凝剂F2。发现相对分子质量为66万的F2对石油污水的澄清效果比常用的相对分子质量为800万的聚丙烯酰胺絮凝剂效果好。潘松汉等用木薯淀粉为原料,采用两步法合成了阳离子淀粉絮凝剂,该阳离子淀粉絮凝剂处理洗煤废水的沉降速度和上层清液的透光率较聚丙烯酰胺的好。

(二)阴离子型淀粉衍生物絮凝剂

阴离子淀粉可以从水中除去重金属离子,并可与许多高价金属离子生成难溶性盐。

1.含羧基淀粉

羧甲基淀粉和氧化淀粉具有含羧基高分子化合物所固有的螯合、离子交换、絮凝作用和酸功能等性质,能与重金属离子、钙离子等生成沉淀。

B.S.Kim等以玉米淀粉、三氯氧磷、氯乙酸钠为原料合成的交联羧甲基淀粉,用于处理含铜、铅、镉、汞废水,铜的脱除率达到80%以上,铅、镉、汞脱除率大于99%。全易用高交联的淀粉跟氯乙酸反应,得到在淀粉骨架上含有羧甲基的羧甲基交联淀粉(CCMS),CCMS具有优良的吸附重金属离子的能力,且可再生重复使用。

D.K.Kweon等对比研究了氧化淀粉对铜、锌、铅、镉的吸附效果,结果表明,在相同条件下,氧化淀粉对铜离子的吸附效果最佳。笔者以玉米淀粉为主要原料合成了交联氧化淀粉、交联羧甲基淀粉、氧化羧甲基淀粉阻垢剂,其钙去除率大于93%。

2.淀粉黄原酸酯

淀粉黄原酸酯是20世纪70年代发展起来的淀粉衍生物,主要用于处理含重金属废水。将淀粉在碱性介质中与二硫化碳发生磺化后可得到淀粉黄原酸酯。

张淑媛将淀粉黄原酸酯用来处理含镍电镀废水,镍脱除率达到95%以上,镍残余质量浓度小于0.2mg/L,低于国家规定的排放标准。

王爱明将淀粉用环氧氯丙烷交联,交联淀粉用氢氧化钠、二硫化碳、硫酸处理,得到不溶性黄原酸酯,再以双氧水作氧化剂制得不溶性淀粉黄原酸化二硫,它是一种高效重金属脱除剂。邓再辉用不溶性淀粉黄原酸酯(ISX)处理含铜废水,实验表明,当ISX加入量为理论

2+2+加入量的1.4倍时,在室温搅拌反应40min,Cu的去除率可达97%以上,处理后的废水中Cu

小于0.2mg/L。

宋辉等以玉米淀粉为基材,与丙烯腈进行接枝共聚,经水解制得弱阴离子型絮凝剂,并进一步羧甲基化和磺化,从而合成强阴离子型天然高分子改性絮凝剂SAH。将SAH应用于印染废水及造纸厂污水的处理,COD去除率和浊度去除率都达到90%以上,取得了良好的絮凝效果。

另外,磷酸酯淀粉也可用作絮凝剂,林红梅等研究了磷酸酯淀粉/聚胺复合物絮凝剂对脱墨废水的作用效果,磷酸酯淀粉/聚胺复合物对脱墨废水的絮凝性能优于聚丙烯酰胺、硫酸铝和聚胺等。

(三)非离子淀粉衍生物絮凝剂

1.接枝淀粉

淀粉链与乙烯基单体在引发剂作用下接枝共聚是淀粉改性制备生物可降解高分子材料的重要途径之一。近20年来,国内外研究人员在该领域取得了突破性的进展。要使淀粉链接上适宜的活性基团,成为理想的改性淀粉絮凝剂,引发剂的筛选是接枝共聚反应的关键所在。国内外许多学者对于将乙烯基单体接枝到淀粉上的试验做了很多。

N.C.Karmakar等合成了淀粉接枝丙烯酰胺共聚物和支链淀粉接枝丙烯酰胺共聚物,将

它们用于处理不结焦煤悬浮液效果良好,且淀粉接枝丙烯酰胺共聚物比支链淀粉接枝丙烯酰胺共聚物的絮凝效果好。

常文越利用Ce(Ⅳ)作为引发剂,进行了淀粉接枝丙烯酰胺共聚反应,淀粉的接枝率高达94.9%,支链相对分子质量超过300万,对多种工业污水的絮凝效果不亚于聚丙烯酰胺。

郭玲等采用60Co-γ射线预辐照的方法制备淀粉-丙烯酰胺接枝共聚物,将其用作絮凝剂处理生活污水,最佳投加质量浓度为10mg/L,可作为工艺控制的参数;接枝物具有良好的絮凝沉降性能,加入3min就有明显的絮凝,且絮粒粗大沉降性能好,处理效果优于国产聚丙烯酰胺。

罗逸等用工业淀粉与丙烯酰胺反应得到改性淀粉HD-6,用于处理吉林油田碳酸盐型污水、胜利油田低矿化度污水、江汉油田高矿化度污水、中原油田炼油“三泥”废水,废水处理效果、药剂的毒性及经济可行性等综合评估效果优于聚丙烯酰胺类水处理剂。

2.糊精

糊精可用作絮凝剂或抑制剂。在浮选金矿时,加入糊精可改善矿物的可浮性,提高浮选的选择性。煤和焦抽砂等矿藏开采时,常伴随很多淤泥,用糊精做絮凝剂,可使淤泥沉积下来。

(四)两性淀粉衍生物絮凝剂

两性淀粉絮凝剂分子上兼具阴离子、阳离子两种基团,与仅含有一种电荷的阴离子或阳离子淀粉相比,它的性能较为独特。例如,用作絮凝剂的两性高分子淀粉因具有适用于阴、阳离子共存的污染体系、pH适用范围宽及抗盐性好等应用特点而成为国内外的研究热点。特别是近十年,水溶性两性高分子在水处理行业的应用取得了较大的发展,主要用作染料废水的脱色、污泥脱水剂及金属离子螯合剂等。目前,国外对两性高分子水处理剂研究较多的国家有美国、德国、法国和日本。我国对两性高分子水处理剂的研究起步较晚,仅有少数几个单位进行了实验研究,还没有工业化产品。

两性淀粉的制备是利用淀粉葡萄糖单元中羟基的反应活性,将其分别与阴、阳离子基团反应得到的。阴离子基团一般是由羧基、膦酰基或磺酸基构成,阳离子基团主要由季铵基团构成。邹新僖先将淀粉用环氧乙烷交联,再与氯乙酸和3-氯-2-羟丙基三甲基氯化铵分别进行阴、阳离子化反应制备了两性淀粉螯合剂,它对阴离子和重金属离子均有很强的吸附能力和较高的吸附容量,因此可望用于电镀废水、矿物及冶金工业提取重金属离子和污水处理。同时可以查看中国污水处理工程网更多技术文档。

王杰等以天然高分子植物粉F691为原料,通过羧甲基化、接枝共聚和Alemannic三步反应合成出两性天然高分子改性絮凝剂CGWLC。其对造纸混合污泥的脱水实验表明:在用量为10~20mg/L的范围内,对造纸混合污泥有较佳的絮凝脱水效果,能明显改善污泥的沉降性能和过滤性能,其脱水性能优于阳离子聚丙烯酰胺。马希晨等以淀粉-丙烯酰胺接枝共聚物为原料,通过Alemannic反应和水解反应,合成了同时具有阴、阳离子基团的两性高分子絮凝剂。产物对印染和造纸污水的浊度和COD去除率优于部分水解聚丙烯酰胺。

二、存在的问题

近年来,我国在淀粉衍生物絮凝剂方面的研究和开发工作已取得了很大进展,合成出一系列环保型絮凝剂。但与国外发达国家相比还存在较大差距,尚存在以下几方面的问题。

(一)开展机理研究

我国淀粉衍生物絮凝剂品种少、质量不稳定、生产工艺落后、成本高。因而,应充分利用我国丰富的淀粉资源,继续加强对改性淀粉絮凝剂的研究。在对淀粉进行物化改性的同时,应更加系统、全面地开展机理研究,掌握其微观结构,使其成为不仅具有絮凝功能,而且具

有缓蚀、阻垢等多种功能的水处理药剂,以满足复杂多变的水质情况的需要。

(二)使用性能

我国对淀粉改性絮凝剂的实际应用还存在一些不足,尤其是对水处理工艺研究较少。因为影响絮凝剂絮凝效果的因素是多方面的,除与絮凝剂本身的性质及结构特点有关外,还跟水处理工艺有密切关系,如絮凝剂用量、溶液pH、温度、离子强度、絮凝时间、搅拌时间和强度等都会影响絮凝效果。因此,今后应加强对絮凝处理工艺的研究,优化絮凝剂产品,开发出更加有效的絮凝剂。

(三)价格

目前,改性淀粉絮凝剂的价格比普通絮凝剂产品高3~8倍,尽管在现有的天然高分子絮凝剂种类中,改性淀粉絮凝剂是最有希望与普通絮凝剂价格持平的,但目前国内外的改性淀粉絮凝剂的价格都较普通絮凝剂高许多,推广使用受到限制。因此淀粉类絮凝剂目前还难以涉足水处理行业。由于淀粉价格便宜,改性淀粉絮凝剂是天然高分子絮凝剂中成本最低的,随着研究的深入,改性淀粉絮凝剂与一般絮凝剂的价格相当是完全可能的。

以上几个方面是目前国内外改性淀粉絮凝剂研究中亟待解决的问题,进一步完善改性淀粉絮凝剂的生产技术,改进工艺,提高改性淀粉絮凝剂的性价比是改性淀粉絮凝剂研究发展的趋势。

三、前景

改性淀粉絮凝剂的潜在市场是巨大的,目前在水处理行业中改性淀粉絮凝剂约占絮凝剂总产量的0.1%。作为新一代的环境友好材料,开发改性淀粉絮凝剂对环境的保护和再生资源的利用有重要意义。改性淀粉絮凝剂的生产以淀粉为原料,可减少对石油的依赖,同时可促进农业经济的发展。改性淀粉絮凝剂可以在自然环境中生物降解,最终分解为二氧化碳和水,不会对环境产生任何污染。随着对絮凝剂制品需求量的增加和人们环保意识的提高,研究开发淀粉衍生物絮凝剂的前景是非常广阔的。

参考文献

[1] 相波,李义久,倪亚明.螯合淀粉衍生物对铜离子吸附性能的研究[J].环境化学.2004(02)

[2] 周国平,罗士平,孙英.ISC聚合物去除电镀废水中铬和镉离子[J].水处理技术.2003(03)

[3] 钱欣,郑荣华,钱伟江,陈丽君.淀粉黄原酸酯吸附性能研究[J].离子交换与吸附.2001(05)

[4] 刘明华,张新申,邓云.羧甲基淀粉吸附剂对水溶液中铬和铝离子的吸附研究[J].水处理技术.2000(04)

[5] B.S.Kim,Lim S T.Removal of heavy metal ions from water by cross-linked

carboxymethyl corn starch.Carbohydrate Polymers.1999

[6] 李乔一.浅谈絮凝剂在污水处理中的应用及展望[J].城镇供水.2010(04)

[7] 张永超,冯喆.有机絮凝剂的机理及进展[J].塑料制造.2010(09)

[8] 王艳,苗康康,胡登卫,姜红波,赵卫星.絮凝剂的研究进展[J].化工时刊.2010(08)

[9] 陈捷.天然高分子改性阳离子絮凝剂的研究[D].大连海事大学.2005

[10] 王亚辉,李彤彤.絮凝剂在废水处理中的应用[J].广东化工.2009(10)

[11] 邱会东.天然高分子阳离子改性絮凝剂的制备及其性能研究[D].重庆大学.2007

第三篇:淀粉在食品工业中的应用

淀粉在食品工业中的应用

淀粉在食品工业中的应用

高分子092 陈冰 200911024206 前言

淀粉是一种来源丰富的可再生资源。近年石油价格一路上扬,使得以石油为原料的高分子类产品价格也随之上涨。淀粉作为一种来源丰富的可再生资源,其改性产品在某些方而可以替代普通塑料,而有着优良的生物降解性,可以有效地解决白色污染问题。改性淀粉以人然淀粉为原料,在其原有性质基础上,经过特定的化学物理处理改良其原有性能被广泛应用于皮革、造纸、石汕、纺织、食品、医药等行业,并且有望以改性淀粉制备纤维,从而大大地扩大了改性淀粉的应用范围。

【摘要】:本文通过介绍淀粉的改性方法及应用,进一步讲述了当今淀粉改性在食品工业及食品包装上的应用。

【Abstract】:This paper introduces the method for modification of starch and its application, further describes the modified starch in food industry and food packaging applications.【关键词】:淀粉

改性

食品

环保

【Key words】: starch modified food environmental protection 天然淀粉资源十分丰富,如土豆、玉米、木薯、菱角、小麦等均有高含量的淀粉,据统计,自然界中含淀粉的天然碳水化合物年产量达5000亿,是人类可以取用的最丰富的有机资源。淀粉及其衍生物是一种多功能的天然高分子化合物,具有无毒、可生活降解等优点。它是一种六元环状天然高分子,含有许多羟基,通过这些羟基的化学反应生产改性淀粉,另外,淀

第1页,共11页

淀粉在食品工业中的应用

粉还能与乙烯类单体如丙烯腈、丙烯酸、丙烯酰胺等通过接枝共聚反应生成共聚物。这些共聚物可用作絮凝剂、增稠剂、黏合剂、造纸助留剂等。

80年代初期,我国学者已开始对淀粉改性研制新型絮凝剂,近年来,又有人将木薯粉与烯类单体在催化剂作用下发生反应,制得了一种CS-1型离子絮凝剂。将这种网状长链高分子絮凝剂用于污水处理厂二级污水的处理,可缩短泥水分离的絮凝沉降过程,提高出水水质。专利产品——CRS高级阳离子淀粉,是用工业盐酸、三甲、环氧氯丙烷合成R型阳离子,再以CN作复合催化剂、氯化铵作保护剂与玉米淀粉反应而制得的。这种产品用于污水处理时凝絮性能好,且生产成本低。[1]近年来淀粉的接枝共聚制新型絮凝剂在国内也取得长足进展,有人用淀粉与二甲基二烯丙基氯化铵接枝共聚值得阳离子淀粉,实验对炼油废水、生活废水有较好的处理效果,COD去除率可达70%以上,色度残留率低于20%,是一种较好的絮凝剂。淀粉-聚丙烯酰胺接枝共聚物作为有机高分子絮凝剂的研究早已受到人们的重视,并有不少成果问世。我国易华等以淀粉 为基本原料,假如丙烯酰胺、三乙胺、甲醛和适量的盐酸进行接枝共聚反应,合成出一种阳离子型高分子絮凝剂FNQE,改药剂具有独特的分子结构和较高的相对分子质量分布。FNQE对高岭土悬浊液有良好的絮凝除浊效果,对城市污水在投药量为10mg/L时即能达到理想的净化效果,浊度、色度的去除率均在90%以上。[2] 1.淀粉改性

淀粉的物理改性是指通过热、机械力、物理场等物理手段对淀粉进行改性。淀粉的物理改性主要有热液处理、微波处理、电离放射线处理、超声波处理、球磨处理、挤压处理等。通过物理改性,大然淀粉的很多物化性质都得到明显的改善,产品应用范围得到扩大。山于物理改性没有添加任何有害物质,所以通过物理改性的淀粉作为食品添加剂越来越受到消费者的关注。近年来,各种现代高新技术的应用,为淀粉的物理法改性开拓了新的发展方向。[3] 化学改性:淀粉分子上带有大量的轻基和糖苷键是化学反应的活性中心。淀粉的化学改性主要有酸改性、氧化改性、糊精化、交联改性和引入稳定取代基法。[4] 酸改性淀粉是在低于糊化温度时,用无机酸处理淀粉浆液而得到。使用这种

第2页,共11页

淀粉在食品工业中的应用

改性方法时,A-葡聚糖的水解可以被很好地调控,可以得到比原淀粉:,.度史低的淀粉。因此也称之为/酸变稀淀粉,有着很好的流动性,随着处理程度的加深流动性加大。常见的酸处理方法有湿法、半干法和非水溶剂法。山于酸处理淀粉有相对低的孰度和分子质量等性质,因此可用于软糖、淀粉果冻等食品工业,造纸工业中的表而施胶、改善适应性等。[5] 氧化改性是淀粉分子在氧化剂作用下,葡萄糖单位上的C。位上的伯轻基,C2, C。上的仲轻基被氧化成醛基或羚基。常用氧化剂有次氯酸钠、过氧化物、高锰酸钾等。羚基的引入,使得分子之间的距离加大,阻止了分子中的氢键形成,从而使之有易糊化、黏度低、凝沉性弱、成膜性好、膜的透明度及强度高等特点。[6] 氧化淀粉用途广泛,可用作食品工业中的低孰度增稠剂、代替植物胶用于果胶、软糖、酱类制品生产加工中,在造纸工业中,可用作施胶剂和胶粘剂,改善印刷适应性、提高纸张强度和纸张生产效率。

2.淀粉改性传统包装用高分子材料

淀粉是从玉米、粮食谷物、稻米和土豆获得的多糖类,来源丰富。淀粉实质上是直链淀粉,其几乎是线性无水葡萄糖聚合物,以及支链淀粉,其几乎是支链无水葡萄糖聚合物混和物。采用的淀粉种类不同,两者的比例也不同,其结构如下图。填充型淀粉塑料是在一定条件下将淀粉与塑料中的羟基进行活化,或采用合适的增容技术形成高聚物共混体系。全淀粉热塑性塑料属于天然聚合物,其淀粉含量在90%以上,添加其他组分也是可降解的。其制备原理是使淀粉分子无序化,形成具有热塑性能的热塑性淀粉(TPS)。

降解淀粉基塑料有三种方式:光、生物、光-生物降解。光降解是使大分子链断裂成小分子,然后微生物吞噬;生物降解是淀粉首先被微生物吞噬,塑料比表面积大大增加,同时微生物分泌出酶,酶进入聚合物的活性位置并发生作用,导致聚合物强度下降,另一方面添加的自氧化剂与土壤中的金属盐反应成过氧化物,其切断聚合物的分子链,增大的比表面积增加了链段断裂速度,低分子被微生物进一步降解为二氧化碳和水;光-生物降解塑料是指淀粉等生物降解剂首先被生物降解,这一过程削弱了高聚物基质,使高聚物母体变得疏松,增大了表面/体积比。同时,日光、热、氧、引发光敏剂、促氧剂等物质的光氧化和自氧化

第3页,共11页

淀粉在食品工业中的应用

作用,导致高聚物的链被氧化断裂,分子量下降并被微生物消化。能与淀粉共混的合成树脂有:高密度聚乙烯(HDPE)、低密度聚乙烯(LDPE)、线性低密度聚乙(LLDPE)、聚丙烯(PP)、聚乙烯醇(PVA)、聚氯乙烯(PVC)、聚苯乙烯(PS)、聚(Polyester)等。其中低密度聚乙烯、线性低密度聚乙烯、聚乙烯醇添加淀粉的降解塑料为主要的研究对象,常用的食品包装材料有聚乙烯和聚丙烯。[7] 2.1淀粉改性聚乙烯(PE)

聚乙烯为非极性聚合物,而淀粉是一种富含羟基的强极性天然高分子化合物。且两者链结构差异也较大,混溶性极差机械共混物降会形成完全相分离的体系,过去十几年寻找合适的增容技术提高聚乙烯和淀粉的相容性。一般采用接枝增容剂的添加增加增容性,当聚乙烯-接枝-1-烯-1-醇和聚乙烯-接枝-1-十一烯-1-醇作为增容剂,1当其含量到达3-5%时候,低密度聚乙烯(LDPE)和淀粉共混物拉伸强度和弹性模量得到了很大的提高,同时LDPE熔点也得到了提高。聚乙烯接枝马来酸酐增容低密度聚乙烯/西米淀粉热塑性增强红麻纤维复合材料,2结果表明提高了共混物的相容性,拉伸强度和杨氏模量得到了提高,水分吸收表明聚乙烯接枝马来酸酐的添加降低了体系的吸水性。也有对淀粉进行处理增加增容性,玉米淀粉采用环氧氯乙烷和增塑剂甘油作为交联剂改性,淀粉的酯化和醚化,偶联剂处理淀粉都能很好的解决相容性的问题。

早期,直接在LDPE中加入淀粉,通过熔融挤出制得部分可降解包装材料,但需要淀粉的含量超过10%,最好达到30%以上,但是极大影响了力学性能、气体阻隔性。4,5同时淀粉改性聚乙烯作为包装材料一般储存条件较苛刻,同时价格较贵,降解也不完全,因此目前不适合大规模降解高分子包装材料。2.2淀粉改性聚丙烯(PP)[8] 改性过的淀粉聚丙烯官能团具有很好的化学结合,6增强了共混物的物理力学性能,第4页,共11页

淀粉在食品工业中的应用

改善了体系结构和吸水性。取向和非取向混和物的强度是PP的1.5-2.0倍,改型淀粉的引入提供了生产高强度新的安全生态材料。在引发剂过氧化二异丙苯(DCP)作用下,以甲基丙烯酸缩水甘油酯(GMA)为相容剂,通过双螺杆挤出“一步法”实现了淀粉(ST)的热塑及其与聚丙烯(PP)共混增容,制备了PP/ ST 共混材料,7其含量为1 %(质量分数)时力学性能最佳,对于相容剂,GMA/St 体系GMA 含量2 %(质量分数)时达到最佳,相比于未加相容剂体系拉伸强度分别提高了约40 %和50 %,缺口冲击强度分别提高了51.4 %和79 %。

利用土壤包埋测试聚丙烯和淀粉生物降解材料的降解性,8利用热重分析包埋前后PP基材和其混和物的热稳定性,不同环境中(含氮气或者含氧气不同条件)降解性也不一样,利用UV光辐射生物可降解塑料发现,9淀粉改性PP塑料在生物降解前先光氧化,热分析PP结晶度降低,材料热稳定性也发生了改变,生物降解趋势是增加淀粉单元的热稳定性但不影响PP,光氧化虽然可能是淀粉更加稳定但趋势是降低混和物的热稳定性。这些分析得出了相关的降解速度理论公式,为实际生产可控生物降解包装材料提供了很好的依据。[9] 3.淀粉三大物理改性技术研究[10]

随着人们对健康、环保和食品安全的日益重视,开发绿色食品和绿色食品加工工艺已成为目前国内外的研究热点。淀粉是可再生和生物降解的绿色资源,对淀粉进一步加工可以得到许多性质优良的改性淀粉产品,在食品中有着广泛的应用。淀粉的物理改性是指借助热机、物理械力、场等物理手段对淀粉进行改性,通过这些方法处理的淀粉,且加工工艺及其产品的理化性不含化学试剂的残留,产品应用范围和附加值也大大提质得到明显改善,因此淀粉的物理改性备受人们的关注,研究也异常活跃。3.1湿热处理技术

将一定水分(14%}27%)的淀粉在100%相对湿度的条件下,于100℃或史高温度下加热较长时间(<5 h}18 h),可以使淀粉的物理性质发生很大改变而不发生化学变化。湿热处理淀粉的晶形发生变化而泞致凝胶性质、糊化行为、膨胀行为、糊液透明度等性质变化。

湿热处理能保持淀粉颗粒的大小和形状。在湿热处理玉米、小麦、燕麦、小扁显和马铃薯淀粉后,外部形态、颗粒大小没有改变Hoover等人研究了马铃薯、第5页,共11页

淀粉在食品工业中的应用

山药和扁显淀粉湿热处理后糊化温度的变化情况,结果发现糊化温度分别提高了约16℃和24℃。Perera等人考察湿热处理的淀粉发现95℃糊化的粘度一般比原淀粉低,但95℃保温30 min后糊的粘度变化较原淀粉小,说明其热糊稳定性高于原淀粉。

剧烈条件处理使淀粉凝胶的刚性变小,溶解性增大,可能是因为膨胀性减小及部分淀粉发生了降解,且处理的剧烈程度越大,冷藏时淀粉的老化越严重;而温和的湿热处理条件使马铃薯淀粉的刚性增强。

淀粉物理性质的这些变化与淀粉颗粒内分子旋转使分子间的联接增加有关。X-射线衍射分析表明:湿热处理使马铃薯淀粉的结晶度增加,且晶形由原来的B形转变成A+C形,与玉米原淀粉相似,Banks等认为湿热处理产生两个效应:(1)脱水,使晶形山B形变成A形;(2)无定形的直链淀粉转化成2挤压技术 3.2挤压技术的原理

挤压技术是指物料经预处理(粉碎、调湿、混合)后,经机械作用强使其通过一个专门设计的孔口(模具),以形成一定形状和组织状态的产品。该技术的优点有:可以把几个化学过程操作放在中一的设备中进行,时空产量高;化学反应在一个相对干的环境卜,短时间内与淀粉的糊化同时发生;设备配套简单、占地小、操作方便、适应性强;可大量连续生产;无污水产生。

挤压技术的主要设备是螺杆挤压机,一般分中-螺杆和双螺杆2种类型。双螺杆挤压机具有史高的混合效率、过程控制好、产品均一等优点,因此在工业生产中应用史为广泛。以双螺杆挤压机为例,干物料和水从加料斗均匀地进入机筒后,沿转动螺杆上螺槽轴向运动的方向向前输送,此后山于受到机头阻力和螺杆压缩比结构的作用,物料被逐渐压实二因吸收了来自机筒加热器的热量和螺杆与机筒间强烈的摩擦、搅拌和剪切等机械能所转化的热量

而升温,直到全部熔融。随着轴向运动的螺槽逐渐变浅,熔融的物料被继续加压加热形成了蒸煮过程,其间将发生脂肪和蛋白质变性、淀粉糊化及化学变性、微生物被悉数杀灭、酶被抑制或失活等一系列复杂的生化反应。熔融的物料组织被进一步均化,最终从机头末端的模头被定量、定压地挤出,山于温度和压力突然降至常温、常压状态,致使物料内水分急剧汽化蒸发,体积迅速膨胀,再经冷却成型。挤压过程中淀粉的降解主要是山于挤压过程中的高温、高压、高摩擦和高

第6页,共11页

淀粉在食品工业中的应用

剪切所引起的。挤压过程中的膨化现象产生主要是山于物料从高温高压的机筒中挤出模具后,骤然降到常温常压,水分闪蒸所引起的,温度越高,压力越大,膨化度也越大[o}螺旋形。

3.3湿热处理技术在淀粉改性中的应用

湿热处理可以使淀粉的物理性能得到改善而开发了多种用途,最主要的应用是作为制备抗性淀粉的重要工艺。在抗性淀粉制备中,日本的食品化工公司利用高直链玉米淀粉为原料,经过湿热处理后,制成食物纤维高达60%的功能性食品材料,该产品添加在而包中,作为主食己经在市场上销售。抗性淀粉作为主要填充料添加于食品中,可改善食品质地,延长食品保质期,具有热量少、防止结肠癌、降血脂、预防胆结石、促进人体对矿物质的吸收等保健作用。此外,日木二和淀粉工业株式会社经过近十年的基础,利用减压蒸汽处理,己成功地生产出不同性质的湿热处理淀粉商品。3.4挤压技术在淀粉改性中的应用

挤压技术应用于淀粉的物理和化学改性有着广泛的应用前景,是近些年来新兴的一种淀粉改性技术。以挤压生产预糊化淀粉为例,将淀粉调到一定的含水量在挤压机套筒中,螺杆运离子、电子、或不饱和基团;高聚物空间结构发生改变。基于这些变化,微粒中内能的聚集和大量新表而的形成使其处于化学活跃状态,易于发生化学反应;物料因高度的表而活性而极易分散,吸附和溶解。[11]

式中:V为沉降速度;de为微粒有效径;d1为分散相的密度;dZ为分散介质的密度;g为重力加速度;为分散介质的粘度。由上式可看出,固体微粒直径越小,其溶液的稳定性越好。超微粉具有较小的颗粒半径,故其速溶的稳定性较好。

4.淀粉改性制备高吸水性树脂的合成

淀粉与MA配比的影响

淀粉中含有大量的经基可直接与顺配进行酷化反应形成顺丁烯二酸单酷(形成双醋且需加催化剂)即通过醋化反映直接在淀粉上引人不饱和键使其很容易和

第7页,共11页

淀粉在食品工业中的应用

丙烯酸和交联剂进行共聚。

从[12] [13]可知,淀粉与顺醉的醋化率对吸水树脂的性能有很大的影响.当顺醉与淀粉的质量比太低时,其醋化率很低,即大部分淀粉链上未引人不饱和键,丙烯酸难于与淀粉形成高的共聚物,使得大部分高分子未形成三维网络结构,树脂可溶于水;反之,当MA与淀粉的混合比太高时,淀粉链上的经基大部分被醋化,形成的共聚物的交联度过大,反而使形成的三维网络结构的空间变小,致使产品的吸水能力变差.经实验得知,当MA与淀粉的质量比为0.4时,所得产品的吸水率最高.交联剂的选择及其浓度的影响。

从[14] [15] [16]可知,可用着高吸水性树脂交联剂的单体很多.例如,二乙二醇二甲基丙烯酸醋、N,N一二亚甲基一二甲基丙烯酸酞胺、甲基丙烯酸一2一经基乙酷等.本实验采用N.N一二亚甲基一二甲基丙烯酸酞胺作交联剂,其在单体中的浓度对树脂吸水率的影响见下表。

由上表可知,随着交联剂用量的增加树脂的吸盐水能力会逐渐增加,最后趋于恒定.而吸收去离子水的能力呈先增加后略下降的趋势.这是由于随着交联剂的浓度的增加,共聚物的交联度也增加,其中形成的网络结构的空间变小,故吸水率变小.实验发现交联剂的浓度以单体总量的0.3%为宜。引发剂的选择与浓度的影响。

由于该实验在溶剂中聚合,故应运用油溶性自由基作引发剂,常见的有过氧化苯甲酞(BPO),偶氮二异丁睛(AIBN)两类.一般,引发剂的类型对树脂的性能影响不大,但它们的活性在不同的温度下有很大的差别.在90℃时,AIBN分解成自由基的速度非常快,仅几分种的时间,使得单体很容易发生暴聚。

从[17] [18]可知,膨润土是一种以蒙脱石为主要成分的勃土,它的化学式A1z0,•4Si0z•nHzO(n通常大于2),它是一种三层结构的硅酸盐矿物,每个晶层

第8页,共11页

淀粉在食品工业中的应用 的两端都是硅氧四面体,中同夹看一层铝氧八面体,晶层之间的氧原子联系力很小,水很容易进人晶层中间,引起膨胀,因此膨润土有很强的吸水性;而且晶格中的Al'`和S14+常易被M犷、Fe'` } ZnZ`等离子置换,吸附离子后,使得晶层之间的距离增加,更易吸收水.因此,膨润土是一很好的无机吸水性材料,其耐盐水性也很好.通过实验可知,当膨润土占体系总重量的12%时,吸水率最好,保水性能也很好,能够满足我们的应用要求。[19] 氢氧化钠的加人量对树脂的吸水性也有较大的影响.氢氧化钠的量太少时,树脂中还含有较多的拨酸,在水中形成足够多的三维网状结构,吸水性差;但氢氧化钠的加人量过多,树脂中的梭基大部分被中和,使得树脂的水溶性增加,吸水与保水能力变差.当加人氢氧化钠的物质的量为体系中总梭基的物质的量的一半时,树脂的吸水与保水性均较好。

5.环保塑料袋生产技术的成熟

目前,国际上可以用作环保型的塑料袋大致有光降解型、完全生物降解型、水降解型和淀粉改性型等4种。我国可降解塑料的技术发始于20世纪70年代,基木与世界同步。我国环保塑料袋技术较为成熟的是生物降解型和淀粉改性型两种。用这两种技术生产的可降解塑料袋产品己经出口美国、日木及欧洲发达国家。

据了解,可生物降解型的塑料袋是以聚乙烯塑料为主料,掺混淀粉等生物降解剂制成的。这种塑料袋丢弃在野外后,降解塑料袋中所含的淀粉,在短期内被上壤或垃圾中的微生物分泌的酶迅速降解而生成空洞,泞致制品力学性能卜降。伴随着空洞的生成,表而积扩大,增大了它与上壤的接触而,加快了塑料袋的降解速度。[20]

目前,在市而上使用的大多数可降解塑料袋的化学成分是锭粉改性聚烯烃聚乙烯”,淀粉含量在90%以上。这种塑料袋在结束其正常使用寿命后,再经过半年到1年的时间就可以完成所有降解过程。全淀粉塑料的生产原理是使淀粉分子变构而无序化,形成具有热塑性能的淀粉树脂,淀粉在各种环境中都具备完全的生物降解能力,塑料中的淀粉分子降解或灰化后,形成一氧化碳气体,不对上壤或空气产生毒害。同时,淀粉又是可再生资源,取之不竭,对节约资源也有很大的帮助。

据了解,目前我国大大小小规模不等的塑料包装企业共有6力一多家,其中

第9页,共11页

淀粉在食品工业中的应用

一半以上的企业都处于亏损的困境。造成这种现象的原因是多方而的,如政策、标准、技术、市场等等。目前国家己经计划投资2亿元人民币,对可降解产业尤其是生物可降解产业给子资金上的扶持。这对经营困难、濒临破产的环保塑料企业来说,无疑是一个好消息。[21] 7.结论

我国幅员辽阔,淀粉作物品种多,产量大。山于淀粉改性技术落后,一方而国内淀粉产品过剩,销路不畅,另一方而又须从国外进口高质量的变性淀粉。这种矛盾只有通过提高淀粉改性技术才能解决。今后的发展趋势将趋于品种多样化、功能复合化,两性淀粉和多元改性淀粉具有比中一改性产品史优越的使用性能,将受到青睐。相信我国的淀粉改性技术将有巨大的发展新的变性淀粉产品将不断涌现。

参考文献

[1]张丽娜.天然高分子改性材料及应用[M].北京:化学工业出版社,2006 [2]CN:1043135A [3]何照范,熊绿芸,工绍美1植物淀粉及其利用「M] 1贵阳贵州人民出版社,1990 [4]易春,卫华,沙谷淀粉基可生物降解纤维的研究进展,7月材料导报,2001 [5]

Biliaderis C G1 Stnzchires and phase transitions of starch [M ]saccharide As Stmchzres inFoods(Walte)Marcel,Dekket-1998 57 [6]段善海,徐大庆,缪铭物理法淀粉改性中的研究进展5月1,食品利学,2 007 28(3): 361一365 [7]陈代杰,罗敏玉生物高分了,北京化学工业出版社,2004 [8]惠斯特勒R淀粉的化学与工艺学[M],北京:中国食品出版社,1987 [9] 陈华,马建中,杨宗邃,等,改性淀粉DF-B的制备研究,中国科学报,1993 [10]裘兆蓉,裴峻峰,离子高分子絮凝剂合成及表征6月1,江苏工 业学报,2003 [11]陈彦逍,刘绍关,淀粉衍生物絮凝剂的研究进展[J]1工业水处理,2007, [12]徐玫,白建,部分淀粉衍生物的制备及应用[J],太化利技,1990 [13]张淑媛,李自法,罗伟含铬废水的处理[J] 1水处理技术,1999 [14]张淑媛,李承法,不溶性淀粉黄原酸醋用于处理含镍废水水处理技术,2001 [15]邹新禧,两性淀粉赘合剂吸附性能的研究,8月功能高分了学报,1999 [16]工杰,肖锦,詹怀宇,两性高分了絮凝剂的制备及其应用研究,2001 [17]马希晨,曹亚峰,部玉蕾以淀粉为基材的两性大然高分了絮凝剂的合成[J]大连轻工业学院学报,2001

第10页,共11页

淀粉在食品工业中的应用

[18]伊华,彭辉,刘慧漩,等.淀粉改性阳离子絮凝剂的制备及絮凝剂性能研究,环境科学与技术,2000,1(1).[19]黄进,周紫燕.木质素改性高分子材料研究进展[J].高分子通报,2007(1):50-57.[120]李铭,葛英勇.甲壳素、壳聚糖的改性研究[[J].杭州化下,2004.34(2): 1-7.[21]邹时英,王克,殷勤俭,等.瓜尔胶的改性研究,北学研究与应用,2003(6): 317-320.第11页,共11页

第四篇:DSC在淀粉中的应用

DSC在淀粉中的应用(Application of DSC in the research starch)

生化学院 食品101班

李玉娇 3100401119

摘要:介绍了DSC 热分析仪的原理与性能, 利用DSC研究淀粉糊化与老化过程的热力学性质,测定玻璃化转变温度,并对其在食品研究中的发展趋势进行了展望。关键词:DSC;淀粉;玻璃化;应用

A b st r a ct : This paper introduces the principle and performance of DSC.The method of differential scanning calorimetry(DSC)was used to study thermodynamic property of gelatinization.The prospect of its application in food research is also mentioned.K e y w o r d s: DSC;starch;glass state;application

前言

差示扫描量热技术(DSC)是一种使用最为普遍的热分析技术, 主要用来直接测量程序控制温度下物质的物理性质与温度的关系 热分析曲线, 特别适合于研究伴随有焓变或比热容变化的现象。淀粉作为大多数高等植物的主要储藏物,是由直链淀粉和支链淀粉构成, 它的许多性质如糊化、老化、玻璃化相变等都与热有关, 都伴随着热焓或比热容的变化。故而许多研究人员都采用DSC来检测淀粉在热相变过程中的热流变化,为深入研究淀粉颗粒在热相变过程中的结构变化提供有价值的参考资料[ 1]。

淀粉是绿色植物果实种子块根块茎的主分是空气中二氧化碳 和 水经光合作用合成的产物取之不尽用之不竭的天然资源目前广泛应用于造纸 纺织 精细化工 包装材料制造等工业类在 4000多年前就开始使用淀粉,但大规模工产和以应用淀粉及对其结构的研究,只有 100多年历史。淀粉是人类主食,在营养方面起着重要作用。此外,经改修饰或化学处理的淀粉衍生物也可用于多种食品中。近几十来,国内外对变性淀粉研究十分活跃,在变性淀粉科学研究市场开发方面取得一定进展。变性淀粉产品开发和研制通常借助于DSC(Differential Scanning Calorimetry)即差示扫描量[2-4]。差示扫描量热仪(DSC, Differential Scan-ning Calorimetry)测定原理DSC 即差示扫描量热法[5]是在维持样品与参比物的温度相同的程序控制下, 测量输送给被测物质和参比物质的能量差值与温度之间关系的一种热分析技术方法。DSC 有两套独立的加热装置在

相同的温度条件下采用电补偿, 并测量样品对热量的吸收, 两个加热器在整个过程中保持在一定的温度范围之内, 可以精确、快速地控制温度并进行热容、热焓的测量。DSC 分为功率补偿型、热通量DSC 和热流型3 种类型, 具有易定量分析、分辨率高、灵敏度高等优点, 能定量测定多种热力学和动力学参数, 且可进行晶体微细结构分析等工作, 如样品的焓变, 比热容等的测定。DSC 的工作原理参见图1 【6】。样品与参照物的温差(ΔT)反映出热效应的大小。DSC 在操作时, 其样品量非常少, 通常固体样品在10~20 mg, 液体样品在10~20 μL 范围内。样品的制备与进样对测定结果均有很大的影响。

样品与参照物的温差(ΔT)反映出热效应的大小。DSC 在操作时, 其样品量非常少, 通常固体样品在10~20 mg, 液体样品在10~20 μL 范围内。样品的制备与进样对测定结果均有很大的影响。

2淀粉的糊化性质

淀粉与水混合后,淀粉颗粒就会吸水膨胀,当加热淀粉乳 时,淀粉分子开始剧烈震动,淀粉分子内和分子间氢键就被打 断,因此在原来氢键位置上就吸入大量水(水化作用),淀粉结

晶区开始慢慢消失,当结晶区完全消失时即称为糊化,此时温 度为糊化温度。 因淀粉糊化过程代表淀粉分子从有序状态到无 序状态转变,同时也伴随着能量变化,因此可利用DSC 进行测 量。 淀粉糊化是食品加工过程中的一种重要现象,如面包和蛋糕的焙烤、谷物类品的挤压等都有赖于适度的淀粉糊一直以来学者们对淀粉糊化的工艺性都很关注,根据淀粉颗粒的性质, 采不同的方法研究了淀粉的糊化。这些法包括:粘度法、显微观察法、光透射、双折射法等, 但这些方法都受到一些数诸如淀粉/水比例、温度范围等的限而用DSC却不受这些因素的限制[8]。原因在于 DSC可以在较宽的淀粉/比例范围内研究淀粉糊化;DSC可测定100℃以上的糊化温度;根据C检测结果可以估算相变热焓值[ 7]。

刘京生等[9]利用DSC 研究了脱脂米粉与未脱脂米粉淀粉 的糊化过程,结果见图2。淀粉的老化现象

通过冷却糊化后的浓缩淀粉水悬浮液可以得到淀粉凝胶。在凝胶陈化

过程中,其流变学性质、结晶度和持水能力发生显著变化, 这一变化过程就是淀粉老化。它是影响淀粉食品质构的主要因素。一般认为, 淀粉老化包括两个相互独立的过程,(a)糊化过程中可溶性直链淀粉凝胶化。(b)糊化后的淀粉颗粒内支链淀粉的重结晶。通常用定量DSC技术来研究淀粉老化过程中支链淀粉重结晶的速率和程度, 也就是说,DSC技术是一种检测重结晶凝胶网络结构形成过程的可行方法。根据DSC曲线中融化吸热峰的大小, 可以计算出老化淀粉结晶的量, 从而判断淀粉的老化程度[ 10-11]。

丁文平等[12]利用DSC 对糯小麦淀粉老化(回生)特性进行 研究,测试条件为将糊化后的样品分别在4 ℃下储藏1、3、5、和14 d 后重新用DSC 进行回生测定。扫描范围为20 ~100 ℃,温速率为10 ℃/min,结果见表4。

由表4可知,糊化淀粉在DSC 分析过程中不再有热力学过 程发生,而在冷却时,随着糊化淀粉在低温下放置时间不同,

老化程度也不同。时间越长,回生程度越大,从而导致回生后 淀粉的分析结果相差很大,这与淀粉回生理论相一致。因此,可以用DSC 分析手段来检测淀粉回生程度。淀粉的玻璃化相变

玻璃化相变是影响大分子聚合物物理性质的一种重要相变特性。它是无定形聚合物的特征, 是一个二级相变过程[ 13]。在低温下, 聚合物长链中的分子是以随机的方式呈 冻结状态的。如果给聚合物以热量即加热, 则长链中的分子开始运动,当能量足够大时, 分子间发相对滑动,致使聚合物变得有粘性、柔韧,呈橡胶态。这一变化过程即称为玻璃化相变[ 14]。淀粉作为一种半结晶半无定形的聚合物,也具有璃化相变, 在相变过程中,其热学性质如比热、比容等都发生了明显的变化, 用DSC能快速而又准确地检测这些量的变化, 并研究结晶度、分含量等因素对玻璃化转变温度(Tg)的影响。与其它方法相比, DSC是测定淀粉的玻璃化转变温度的更有效方法。对高水分含量体系,玻璃化相变温度可能低于室温, 用普通DSC无法检测[15]。另淀粉结晶度越大,Tg 值越大。结晶度增大和水分含量下降使Tg 值增大的效果相同, 并且水分含量下降产生的效果随着结晶度的增大而加[16] 3 展 望

各种具 有 特 殊 用 途 的 差 示 扫 描 量 热 法—— —调制DSC、调 温 DSC、交 变 DSC、压 力 DSC 等 方 法 层出 不 穷[17]。如 美 国(R & DMagazine)主 要 是 针 对DSC 的 高 灵 敏 传 感 器 的 研 发。2006年

出现 的DSC823, 比市场上仪器的灵敏度提高5 倍。低温显微镜DSC 系统(有究其在测定冻结食品Tg中的应 用): 把 低 温 显 微 技 术 与DSC 技 术 结 合, 可 在 观察 样 品 形 态 的 图 象 信 息 变 化 的 同 时, 获 得 物 理 化学 方面的参数信息, 得到更精确的结论。Wolanczyk(1996)指出, 对 于DSC 曲 线 上 有 玻璃化转变迹象的点, 应该用另一种仪器加以证实。Reid 等(1998)也认为, 仅仅靠一种仪器来确定Tg′是不精确的, 最有力的工具是几种仪器的 组合。Hegenbart(1999)建 议, 从 食 品 技 术 和 产 品 发 展 的观 点 来 看, 最 好 能 找 到 一 种 简 单、快 捷、便 宜 且 能准确测量实际食品Tg′的方法。

对于DSC 测定食品玻璃化转变的研究一直是大家关注的热点。发展和改进检测技术, 深入研究食 品 体 系 的 玻 璃 化 转 变 动 力 学、热 力 学 及 其 对 食品品质的影响是今后研究的重点。随着DSC 热分析 技 术 的 成 熟 与 发 展, 会 使 其 对 食 品 中 某 些 成 分的性质研究更加方便、快捷, 并指导食品加工和 贮藏。人们采用 DSC 对食品的研究在不断深入, 它作为 一 种 热 分 析 手 段 可 以 对 食 品 的 质 量 进 行 控 制,在食品领域中将得到更广泛的应用。参考文献

[1] V.R.Harwalkar and C-Y.MA, ThermalAnalysis of Foods.Elsevier Publishers Ltd,1992 [2]梁诚.对邻硝基氯苯发展与产品链建设[J].化工中间体,2003,(7):1-7.

[3]Pavlath A,Olah G .Acta Chim Acad Sci Hung,1956,10:227-230.

[4]虞鑫红,陈钟瑛,辛彦林,等.2,3,4-三氟硝基苯的合成[J].中国医药 [5]黄海.DSC 在食品中的运用[J].食品与机械,2002,(2):6-9.

[6]C.G.Biliaderis, T.J.Maurice, and J.R.Vose,StarchGelatinition Phenomena StudiedbyDifferentialScanningCalorimetry.Journal of FoodScience.1980, 45(1): 1669.[7] 陶锦鸿, 郑铁松, 胡月珍.莲子淀粉凝胶力学性能影响因素的研究[J].食品

科学, 2009, 30(21): 109-112.[8]黄立新,周俊侠,杨兆禧,等.用差示扫描量热法研究酸变性淀粉的糊 化特性[J].华南理工大学学报:自然科学版,1998,26(2):17-21.

[9]刘京生,王保怀.差示扫描量热法在大分子体系研究中的应用[J].华北电力大学学报,2003,30(3):101-103. [10] 丁文平,郭学科.糯小粉糊化回生特性研究[J].粮油加工与食品机械,2006,(3):59-61.

[11]张燕萍.变性淀粉制造与应用[M].2版.北京: 化学工业出版社, 2007:60-61.[12] 丁文平, 王月慧, 夏文水.淀粉的回生机理及其测定方法[J].粮食与饲料工业, 2004(12): 28-30.[13]赵思明,熊善柏,张声华淀粉老化动力学研究述评闭农业机械学报,2以”,31(6):11本117 [14]赵 黎 明.DSC 和NMR脉 冲 研 究 食 品 的 玻 璃 化 和 玻 璃 化 转变温度[J].食品科技, 2001(1): 14 —18.[15] K.J.Zeleznak and R.C.Hoseney.TheGlassTransition in Starch.Cereal Chemistry,1987, 64(2): 121~123.[16]丁文平.人米淀粉l可生及鲜湿米线生产的研究IDI.无锡:江南人学,2(X)3.[17] K.J.Zeleznak and R.C.Hoseney.TheGlassTransition in Starch.Cereal Chemistry,1987, 64(2): 121~123.

第五篇:淀粉塑料研究进展

得分:_______

南 京 林 业 大 学

研究生课程论文

2013 ~2014

学年

第二

学期

课 程 号: 课程名称: 论文题目: 学科专业: 学

号: 姓

名: 任课教师:

73414 生态环境科学

热塑性淀粉材料的研究进展与应用 材料学 3130161 王礼建 雷文

二○一四 年 五 月 热塑性淀粉材料的研究进展与应用

王礼建

(南京林业大学理学院,江苏 南京210037)

摘要:淀粉与其他生物降解聚合物相比,具有来源广泛,价格低廉,易生物降解的优点因而在生物降解塑料领域中具有重要的地位。本文介绍了淀粉的基本性质、塑化和塑化机理,以及增强体在热塑性淀粉中的应用现状和进展,并对市场应用现状和目前淀粉塑料存在的不足等方面进行了相关的分析。

关键字:淀粉塑料;塑化;增强;市场应用

Research progress and application of thermoplastic starch

materials

WANG Li-jian(College of Science, Nanjing Forestry University, Nanjing 210037, China)Abstract: Starch has an important status in the biodegradable plastics’ area compared with other biodegradable polymer, because it has a lot of advantages such as a wide range of sources, low cost and easy to be broken down.In this thesis, introduces the basic properties of starch, plastic and plasticizing mechanism, as well as reinforcement application status and progress of the thermoplastic starch, and reinforcement application status and progress of the thermoplastic starch.Aspects of the application and the current status of the market and the presence of starch plastics were insufficient correlation analysis.Key words: Starch plastics;plasticizers;enhanced;market applications 1 淀粉的基本性质

淀粉以葡萄糖为结构单元,分子链呈顺式结构,一般分为直链淀粉和支链淀粉两种。直链淀粉是以α-1,4-糖苷键连接D-吡喃葡萄糖单元所形成的直链高分子化合物,而支链淀粉是在淀粉链上以α-1,6-糖苷键连接侧链结构的高分子化合物,分子量通常要比直链淀粉的大很多。通常玉米淀粉中直链淀粉占28%,分子量大约为(0.3~3×106),占72%的支链淀粉分子量则可以达到数亿[1-2]。

淀粉是一种多羟基化合物,每个葡萄糖单元上均含有三个羟基。分子链通过羟基相互作用形成分子间和分子内氢键,因此淀粉具有很强的吸水性。淀粉与水分子相互结合,从而形成颗粒状结构,因此淀粉具有亲水性,但不溶于水,从而大量存在于植物体中。

淀粉是一种高度结晶化合物,分子间的氢键作用力很强,淀粉的糖苷键在150℃时则开始发生断裂,因此其熔融温度要高于分解温度。热塑性淀粉的塑化

2.1 热塑性淀粉的塑化机理

淀粉分子含大量羟基,分子间及分子内部氧键作用很强,对其直接加热,升至理论熔融温度之前,淀粉便开始分解,即淀粉颗粒内的平衡水因升温会而丢失,导致淀粉的分解(通常天然淀粉水分含量约为9%~12%)。淀粉的热塑性增塑就是使淀粉分子结构无序化,形成具有热塑性能的淀粉树脂。其机理就是在热力场、外力场和增塑剂的作用下,淀粉分子间和分子内氢键被增塑剂与淀粉之间较强的氢键作用所取代,淀粉分子活动能力得到提高,玻璃化转变温度降低。增塑剂的加入破坏了淀粉原有的结晶结构,使分子结构无序化,实现由晶态向非晶态的转变,从而使淀粉在分解前实现熔融,淀粉表现出热塑性[3]。2.2 热塑性淀粉的塑化剂

塑化剂的作用是降低材料的熔体黏度,玻璃化转变温度及产品的弹性模量,但不改变被增塑材料基本的化学性质。被塑化的淀粉颗粒状结构变小(球晶尺寸变小)甚至消失,球晶结构受到破坏,只剩少数片晶分散于非晶态连续相中。同时,淀粉分子间和分子内的氧键作用被削弱破坏,分子链扩展力提高。淀粉在塑化过程中伴随有二级相变过程一玻璃化相变,淀粉的玻璃化转变温度降低,在分解前可实现微晶熔融,长链分子开始运动,分子间产生相对滑动,并由双螺旋构象变为无规线团构象,聚合物变得有粘性,柔韧,从而使淀粉具有热塑加工的可能性。

热塑性淀粉常用的塑化剂有:水,多元醇(丙三醇,乙二醇,丙二醇,山梨醇等),酰胺类(尿素,甲酰胺,乙酰胺等),高分子类(聚乙烯醇,聚乙二醇等)。

(1)水

水是淀粉加工中最常用的塑化剂。由于水的存在,使淀粉颗粒在加工过程中发生一系列不可逆转转变,通常将这些变化称为凝胶化或糊化。此时可观察到淀粉颗粒发生吸水,膨胀,无定形化,双折射等现象[4],使淀粉在高温高剪切条件下转变成热塑性淀粉。

Biliaderis [5]发现,淀粉的溶融温度依赖于水分的含量。一方面,水分的含量要能在淀粉降解前对结晶产生足够的破坏,另一方面,水分也不能过多,以免造成熔体粘度低和材料的低模量。另外,水分过低,加工过程中发生热降解,离模膨胀加剧。熊汉国[6-7]以水,丙三醇等小分子为塑化剂,发现塑化淀粉的结晶峰数急剧减少,说明淀粉结晶区被塑化剂破坏,淀粉中无定形成分增加,淀粉转变为具有热塑性的高分子材料。他认为水是淀粉最有效的塑化剂,其用量达淀粉质量的15wt%。而Mwootton和A.C.Eliasson认为:使小麦淀粉凝胶化的最小水分含量为33%左右[8]。

但是Loercks[9]认为,热塑性淀粉挤出过程中,若淀粉中水的质量分数≥5%,生成的是解体淀粉而非热塑性淀粉,解体淀粉的结构未完全破坏,材料变脆且无可伸缩性,不能用于制备降解塑料。Loerkcks以疏水性可生物降解聚合物(脂肪族,脂肪族聚醋与芳香族聚酷等)作塑化剂加入淀粉溶体,均勻混合并制成淀粉母料,发现疏水性可生物降解聚合物作为增塑剂,可避免在热塑性淀粉溶体中有可迁移,使淀粉在溶融-塑炼过程中形成热塑性淀粉而非解体淀粉。他同时指出,天然淀粉转变为热塑性淀粉有两个关键因素:1.原淀粉与塑化剂混合时,需将原淀粉溶点降至制止淀粉分解温度以下;2.淀粉应充分干燥,以抑制解体淀粉的形成。

尽管水对于生成热塑性淀粉所起到的塑化作用还需进一步研究,但根据GBT/2035-1996中热塑性塑料的定义:在塑料整个特征温度范围内,能够反复加热软化和反复冷却硬化,且在软化状态采用模塑,挤塑或二次成型,通过流动能反复模塑为制品的塑料,称为热塑性塑料。所以在这里仍可把淀粉中水的质量分数≥5%时制备的材料称为热塑性淀粉。

(2)多元醇

水作塑化剂时对温度控制要求较高,而小分子量的多元醇同样可以替代水的作用,所以人们通常用沸点更高的多元醇作为淀粉塑化剂。王佩章[10]对淀粉热塑机理进行了研究,分别使用甘油,乙二醇,聚乙烯醇,山梨醇四种增塑剂制备热塑性淀粉。他认为釆用适当含羟基的高分子量增塑剂和低分子量增塑剂混合增塑,利于提高制品的力学性能。在对于玉米淀粉,木薯淀粉以及可溶性淀粉三种淀粉的塑化研究中发现,直链淀粉比支链淀粉更易塑化及与树脂混合。于九皋[11]用单螺杆挤出机制备了淀粉与多元醇混合物,并研究了其力学性能和流变性能,发现随多元醇的分子量增大及经基数的增加,其塑化能力下降。小分子量的乙二醇和丙三醇比分子量略大的木糖醇和甘露醇分子更易运动,因此可更有效地渗入淀粉分子链间,对淀粉分子间氧键作用破坏更大。而大分子的木糖醇和甘露醇,由于每个分子所含经基数太多,虽与淀粉分子间作用力也较强,但渗透作用远不如乙二醇和丙三醇。通过计算共混物的粘流活化能△Eη辨别分子链柔性大小,发现木糖醇共混物的△Eη=225.1kg/mo1,两三醇共混物的△Eη=122.5kg/mol,后者分子链的刚性明显小于前者。热塑性淀粉的增强

热塑性淀粉材料耐水和力学性能的不足,限制了应用范围,近年来研究表明,加人增强体形成热塑性淀粉复合材料,其耐水和力学性能可得到很好的改善。增强体为复合材料中承受载荷的组分[12]。目前,用于增强热塑性淀粉的增强体主要有有机纤维和无机矿物两大类材料。3.1 有机纤维增强热塑性淀粉

有机纤维密度小、比强度高、韧性好,是理想的增强材料[13],主要包括天然纤维和合成纤维。3.1.1 天然纤维

天然纤维的结构比较复杂,一般主要由纤维素、半纤维素、木质素和果胶四种高分子聚合物组成。纤维的机械性能取决于纤维含量和微纤丝角。当纤维作为强化剂时,我们希望纤维中纤维素含量较高,微纤丝角较小。纤维的品质和其他特性还有纤维的生长条件、纤维的大小、成熟度及纤维的提前方法有关。天然纤维在自然环境中容易吸潮,其缺点就是在含水量高时的耐久性和形状稳定性较差。

马晓飞等[14]在尿素/甲酰胺混合体系(增塑剂:玉米淀粉质量比为3:10)的UFTPS中加入微棉绒纤维(长度大约12mm),一步挤出成型。微棉绒纤维的加入可以有效提高UFTPS的力学性能、耐水性和热稳定性。纤维质量分数从0%增加到20%时,拉伸强度提高了3倍,达到15.16 MPa,而断裂伸长率则从105%降到了19%。另外实验还指出,纤维含量在15%以下,样品具有很好的加工性能。Romhany等[15-16]采用跨层级亚麻纤维(平均纤维直径在68μm)增强TPS,研究其拉伸断裂行为,使用的含量分别为20%、40%、60%,在亚麻纤维为40%之前,随纤维含量增加,复合材料的拉伸性能是提高的,当亚麻纤维含量为40%时,拉伸强度是纯TPS的3倍。用声发射的方法研究样品内部缺陷成长和断裂行为,指出主要由亚麻纤维的含量和排列方式决定。3.1.2 合成纤维

目前,用合成纤维来增强热塑性淀粉的例子比较少,这主要是因为多数合成纤维降解性能差,而热塑性淀粉本身是要取代传统石油塑料的应用,减少污染。Jiang等[17]采用原位聚合法将聚乳酸(PLA)纤维化后来增强热塑性淀粉,得到的复合材料耐水性能和力学性能均有很大提高,且PLA为可降解材料,被认为是具有很强的经济竞争力的高效复合材料。

3.2 无机矿物材料增强热塑性淀粉

无机矿物材料由于共价键结合力强,具有质坚硬,抗压强度高,耐热性好,熔点较高等优点,且化学稳定性较强[18],在热塑性淀粉中加入无机矿物材料来增强体系的力学性能和耐水性已被广泛研究。Huang等[19]使用乙醇胺改性和柠檬酸活化的蒙脱土来增强甲酰胺/乙醇胺混合增塑剂增塑的FETPS,制备纳米复合材料,从X射线衍射(WAXD)可以看到,蒙脱土改性后层间距离由1.0lnm增加到了2.08 nm,FETPS可以很好地分布在层间。当改性后的蒙脱土含量为5%时,该纳米复合材料的拉伸应力达到7.5MPa,拉伸应变为85.2%,而纯的FETPS的这两项值分别为5.6MPa和95.6%。同样的改性MMT也用来增强尿素/乙醇胺混合增塑剂增塑的UETPS[20],效果类似。Schmitt等[21]用未改性埃洛石纳米管(HNT)和苯扎氯铵改性的埃洛石纳米管(MHNT)来增强热塑性小麦淀粉TPWS,埃洛石纳米管具有100—120 nm的外径和60~80nm的内径,长度平均在500—1200 nm。埃洛石纳米管的加入轻微地增强了ST的热性能,分解温度移向高温。不管是改性或未改性的埃洛石纳米管,添加后,拉伸性能显著增强,同时还不破坏纳米复合材料的延展性。

3.3 其他增强材料

其他增强材料有粉煤灰[22]、羧酸盐多壁碳纳米管[23]、纳米SiO2[24]、海藻酸钠[25]、壳质素[26]等均可使热塑性淀粉材料的力学性能和耐水性能得到改善。

粉煤灰是燃烧煤粉的副产品,却也可以用来增强热塑性淀粉,对于甘油增塑的GTPS而言,粉煤灰能使其拉伸强度从4.55 MPa增加到12.86 MPa,同时杨氏模量增加6倍。当含量超过20%时,效果开始下降。羧酸盐多壁碳纳米管的添加量在1.5%以下时,具有较好的增强效果,且该体系具有一定的导电性能;当含量超过1.5%时,易发生团聚,甘油在一定程度上可以抑制团聚,但效果有限。纳米SiO2,的加入可以和淀粉形成很好的相互作用,用酶分解淀粉,纳米SiO2/TPS体系有效减缓了淀粉的分解的速度,同时分解程度也得到减小。1%的海藻酸钠加入可以降低挤出机的加工温度,明显提高TPS的杨氏模量,体系的力学性能主要由海藻酸钠的含水量决定。0.1%-10%的壳质素添加可有效提高复合材料的拉伸性能和耐水性,这是由于壳质素的刚性和相对淀粉的低亲水性。市场应用现状

近年来,国内外生物降解塑料蓬勃发展,逐渐呈现出取代传统塑料的趋势。淀粉基生物降解塑料广泛应用于人们生产生活的各个方面,如包装材料,农用地膜等。目前欧美国家已经建立起了万吨级的生产线。意大利Novanmont公司是世界最先开发淀粉基生物降解塑料的国家,其中淀粉/聚乙烯醇、淀粉/聚己内酯生物降解塑料已有多年历史,主要用途为包装材料,堆肥袋,卫生用品,一次性餐具,农用地膜等,市场规模从2001年的24kt增长到2003年的120kt。美国 Warner-Lambert公司生产的商品名为“Noven”的生物降解材料,以糊化淀粉为主要原料,添加少量可生物降解的添加剂如聚乙烯醇,经螺杆挤出机加工而成的热塑性淀粉复合材料,淀粉含量达90%以上,并具有较好的力学性能。美国Air Product & Chemical 公司开发了“Vinex”品牌,它是以聚合度较低的聚乙烯醇与淀粉共混,具有水溶性、热塑性和生物降解性,近年来受到了极大的重视。日本合成化学工业公司也开发出商品名为“Ecomate AX”的具有热塑性、水溶性和生物降解性的淀粉基树脂,该树脂引入具有热塑效果分子结构的乙烯醇共聚物,可在挤塑、吹塑、注塑等工艺下成型。

加拿大 EPI 公司开发的氧化-生物降解塑料添加剂技术应用于传统聚烯烃塑料制品,不改变或影响塑料传统加工制造过程。TDPA-PE购物袋样品以LDPE和 LLDPE 为基础,聚合物分子分解成氧化分子碎片,暴露或埋藏于土壤,或与成熟堆肥混合,在设定的时间内,可生物降解成 65%-75%的矿化物质(由微生物把碳转化成二氧化碳)以及10%-15%细胞生物量。

淀粉基塑料及淀粉与BDP共混物是我国积极开发的产品,研制而的单位相当多。主要研发单位有中科院理化所,长春应化所,江西科学院,北京理工大学和天津大学等。已经进行中试的单位有广东上九生物降解塑料有限公司,浙江天示生态科技有限公司等。

中科院长春应化所研制的淀粉基生物降解薄膜,采用独特的三元增塑体系制成,淀粉含量60%以上,机械性能(厚度20-50μm,断裂强度12-30MPa,断裂伸长率50-250%)与同等厚度的PE薄膜相当,适用于购物袋、垃圾袋、杂物袋等。

江苏九鼎集团近期内开工建设“两万吨生物可降解塑料项目”。九鼎集团聘请中科院专家担任技术指导和总工程师,3年试验和攻关完成了一系列科研课题,生物可降解塑料生产技术取得重大突破,在国内首次具备完全工业化生产能力,今后3年内可以形成年产2万吨生物可降解塑料生产能力。热塑性淀粉塑料存在的主要问题

虽然热塑性淀粉早己有人用不同的方法进行了研制,而且应用于食品工业,但用于制造塑料却是在近期,全淀粉热塑性塑料是20世纪90年代的新型材料。然而其推广应用还存在一些问题。

(1)降解性能:填充型和淀粉共混聚烯烃塑料型的主要成分为合成树脂,不能完全降解,只是使材料整体力学性能大幅度降低进而崩馈成碎片或呈网架式结构,且其碎片更难以收集处理。比如将其用于农用地膜,聚稀轻产物仍残留于土壤中,长期累积会导致农业大量减产。此外,还存在降解速度低于堆积速度,产品降解速度的人为控制性不好等问题。

(2)使用性能:目前,国内外研制的全淀粉塑料强度大多不如现行使用的通用塑料,主要表现在耐热性和耐水性差,物理强度不够,仅适于制造一次性使用的是传统塑料在应用中的最大优点。

(3)成本价格偏高:全降解塑料的价格比传统塑料制品高3~8倍,尽管目前的生物降解塑料中,全淀粉塑料是最有可能与普通塑料价格持平的,但国内外的淀粉降解塑料价格仍比普通塑料高许多,使推广受到限制。美国Novon International公司,円本谷物淀粉公司,円本住友商事会社,意大利Ferruzzi公司和Novamont公司等已宣布研制成功全淀粉降解塑料[w(淀粉)=90~100 %],能在1~12个月内实现完全生物降解,不留任何痕迹,无污染,能够用于制造各种薄膜,容器和垃圾袋等。由于价格原因,现阶段只能作为医用材料,高级化妆品以及美国海军出海食品用的容器。而对环境影响较大的垃圾袋,一次性餐具,一次性包装袋及农用膜等材料,热塑性淀粉塑料目前还难以涉足。展望

生物降解塑料无论从地球环境保护,或开发取之不尽的可再生资源的角度来看,还是从合成功能性高分子和医用生物高分子的高科技产品的角度来看,都充分显示了其重要意义,符合可持续发展战略的要求,前景看好。

参考文献:

[1] 王佩璋, 王澜, 李田华.淀粉的热塑性研究[J].中国塑料, 2002, 16(4): 39-43.[2] 刘娅, 赵国华 , 陈宗道等.改性淀粉在降解塑料中的应用[J].包装与食品机械, 2003, 21(2): 20-22.[3] 孙炳新, 马涛.全淀粉热塑性生物降解材料研究进展[J].食品工业科技, 2008, 29(9): 283-285.[4] Walia P S, Lawton J W, Shogren R L.Mechanical Properties of Thermoplastic Starch/Poly(hydroxyl ester ether)Blends: Effect of Moisture During and After Processing[J].Journal of Applied Polymer Science, 2002, 84: 121-131.[5] Biliaderis C G, Maurice T J, Vose J R.Starch gelatinization phenomena studied by differential scanning calorimetry[J].J.Food Sci.1980, 1669-1680.[6] 熊汉国等.淀粉的塑化机理及其在生物降解餐具上的应用研究[J].食品科学.2001, 22.[7] 熊汉国,曾庆想,潭军,等,淀粉的塑化及其生物降解餐具性能研究[J].中国粮油学报, 2002, 17(2): 55-58.[8] Wootton M, Bamunuarachchi A.Application of differential scanning calorimetry to starch gelatinization Effect of heating rate and moisture level[J].Starch/Starke, 1999, 31: 262-264.[9] Loercks J R, Pommeranz W E, Schmidt H E, etal.Biodegradable polymeric mixtures based on thermoplastic starch [P].US:6235815, 2006.[10] 王佩章, 王澜, 李华.淀粉的热塑性研究[J].中国塑料, 2002, 16: 39-43.[11] 于九皋, 郑华武.淀粉与多元醇共混物性能的研究[J].天津大学学报, 1999, 32: 141-144.[12] 张晓明,刘雄亚,纤维增强热塑性复合材料及其应用[M].北京:化学工业出版社,2007:59-82.

[13] 鲁博, 张林文, 曾竟成.天然纤维复合材料[M].北京: 化学工业出版社, 2005: 16-80.

[14] MA Xiaofei, YU Jiugao, KENNEDY J F.Studies on the properties of natural fibers-reinforced thermoplastic starch composites[J].Carbohydr Polym, 2005, 62: 19-24.[15] ROMHANY G, KOCSIS J K, CZIGANY T.Tensile fracture and failure behavior of thermoplastic starch with unidirectional and cross-ply flax fiber reinforcements[J].Macromol Mater Eng, 2003, 288: 699-707.[16] ROMHANY G, CZIGANY T, KARGER.Determination of J-R Curves of thermoplastic starch composites-containing crossed quasi-unidirectional flax fiber reinforcement[J].Compos Sci Technol, 2006, 66: 3179-3187.[17] JIANG Long, LIU Bo, ZHANG Jinwen.Novel high-strength thermoplastic starch reinforced by in situ poly(1actic acid)fibrillation[J].Macromol J, 2009, 294: 301-305.[18] 周达飞.材料概论[M].北京:化学工业出版社, 2001, 45-46.[19] HUANG Mingfu, Yu Jiugao, MA Xiaofen, et a1.High performance biodegradable thermoplastic starch—EMMT nanoplastics[J].Polymer, 2005, 46: 3157-3162.[20] HUANG Mingfu, YU Jiugao.Structure and properties Of thermoplastic corn/ starch-montmorillonite biodegradable composites[J].J Appl Polym Sci, 2006, 99: 170-176.[21] SCHMITY H, PRASHANTHA K, SOULESTIN J, et a1.Preparation and properties of novel

melt—blended

halloysite

nanotubes/wheat

starch nanocomposites[J].Carbohydr Polym, 2012, 89: 920-927.[22] MA Xiaofei, YU Jiugao, WANG Ning.Fly ash—reinforced thermoplastic starch composites[J].Carbohydr Polym, 2007.67: 32-39.[23] LIU Zhanjun, ZHAO Lei, CHEN Minnan, et a1.Effect of carboxylate multiwalled carbon nanotubes on the performance of thermoplastic starch nanocomposites[J].Carbohydr Polym, 2011, 83: 447-451.[24] ABBASI Z.Water resistance,weight loss and enzymatic degradation of blends starch/polyvinyl alcohol containing Si02 nanoparticle[J].J Taiwan Inst Chem Eng, 2012, 43: 264-268.[25] SOUZA R C R, ANDRADE C T.Processing and properties of thermoplastic starch and its blends with sodium alginate[J].J Appl Polym Sci, 2001, 81: 412-420.[26] ROSA R C R S, ANDRADE C T.Effect of chitin addition on injection molded thermoplastic corn starch[J].J Appl Polym Sci, 2004, 92: 2706-2713.

下载11淀粉在高分子材料中的应用研究进展(共5篇)word格式文档
下载11淀粉在高分子材料中的应用研究进展(共5篇).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    高分子复合材料在各种航空航天工具中应用

    高分子复合材料在各种航空航天工具中应用 多种高性能的高分子复合材料目前已经用于各种航空航天工具中。例如,碳纤维复合材料不久前还只在军用飞机上用做主结构如机身和机翼......

    淀粉基泡沫材料的研究进展

    淀粉基泡沫材料的研究进展 随着聚合物工业发展,其所导致的环境污染引起 了人们对聚合物废弃物处理问题的关注。泡沫塑料密度小、体积大、不便于集中和运输,而且本身化学性质稳......

    淀粉聚乳酸共混可降解材料研究进展要点

    收稿日期:2006Ο09Ο16;修订日期:2006Ο12Ο11 基金项目:中国农业科学院杰出人才基金项目;科技部仪器设备改造专项项目(2005JG100340 作者简介:魏巍(1981-,男,河南新乡人,西......

    有机铁在猪饲料中的应用研究进展

    有机铁在猪饲料中的应用研究进展 应用,比无机铁有较高的生物利用效价,对猪生产性能可提高采食量、生长速度、饲料效率和健康水平等。近年来,有机铁的研究应用受到重视。 1 生化......

    表面活性剂在石油工程中的应用研究进展论文(共五则)

    摘要:表面活性剂在石油工程的油气钻井、开采及储运中均有很广泛的应用。综述了表面活性剂在石油工程中的研究及应用现状,由于国内一些大型油气藏已到开采后期,油田采收率较低,利......

    改性淀粉用作混凝土减水剂的研究进展5篇

    改性淀粉用作混凝土减水剂的研究进展 摘要:综述了混凝土减水剂的发展状况和目前存在的问题,介绍了淀粉的结构、改性淀粉如羧甲基淀粉、磺化淀粉和淀粉丁二酸单酯等的合成方法,......

    大米淀粉的制备和应用

    大米淀粉的制备和应用 摘要:大米淀粉是一种重要的谷物淀粉,具有颗粒细小等独特的性质。介绍了大米淀粉的制备方法,包括碱浸法、表面活性剂法、超声波法、酶法和物理分解法......

    水性涂料的应用及研究进展

    1 九江学院化学与环境工程学院专科论文 JIU JIANG UNIVERSITY 毕 业 论 文 题 目 水性涂料的应用及研究进展 英文题目 Application and research progress of Waterborne......