第一篇:初中数学的工程问题
浅谈数学中工程问题
一、基本概念理解。
工作量:完成工作的多少,可以是全部工作量,为了方便解题,一般用数“1”表示,也可以是部分工作量,常用分数表示。例如工程的一半可表示成1/2,工程的五分之一可表示成1/5。常用的数量关系式1:小明一分钟能写15个汉字,请问五分钟他能写多少个汉字?
【解题关键点】工作量=工作效率×工作时间,15×5=75(个)。常用的数量关系式2:做500个零件,平均每天做50个,几天可以做完?
【解题关键点】工作时间=工作量÷工作效率,500÷50=10(天)。常用的数量关系式3:4小时做了100个零件,平均每小时做多少个零件?
【解题关键点】工作效率=工作量÷工作时间,,100÷4=25(个)。
常用的数量关系式4:甲一天能生产10个产品,乙一天能生产20个产品,问甲、乙一天一共生产多少个产品?
【解题关键点】总工作量=各份工作量之和,10+20=30(个)。
二、合作完工问题。
通过计算工效和,来算出工作时间。工效和为所有工作人员的效率之和。工作总量÷工效和=工作时间
合作完工问题1:一项工程,由甲工程队单独做需20天完成,由乙工程队单独做需30天完成,两队合作需多少天完成?
分析:设总工作量为1,由甲工程队单独做需20天完成,由乙工程队单独做需30天完成,可知甲、乙的工作效率分别是1/20、1/30。
【解题关键点】工作总量÷工效和=工作时间,1 ÷(1/20+1/30)=12(天)。
合作完工问题2:甲乙两车运一堆货物。若甲单独运,则甲车运的次数比乙车少5次;如果两车何运,那么各运6次就能运完,甲车单独运完这堆货物需要多少次?
【解题关键点】设甲单独运需要X次,则乙单独需要X+5次,则甲、乙的工作效率分别为1/X、1/(X+5)依题意有1/X + 1/(X+5)=1/6解得X=10
三、组合合作完工问题。
工效和-一方工效=剩下方工效
组合合作完工问题1:一项工程,甲、乙合做6天可以完成。甲独做18天可以完成,乙独做多少天可以完成? 【解题关键点】 把一项工程的工作总量看作“1”,甲、乙合做6天可以完成,甲、乙合做一天,完成这项工程的1/6,甲独做18天可以完成,甲做一天完成这项工程的1/18。把甲、乙工作效率之和,减去甲的工作效率1/18,就可得到乙的工作效率:1/6-1/18= 1/9工作总量“1”中包含了多少个乙的工作效率,就是乙独做这项工程的需要的时间。1÷(1/6-1/18)=9(天)
组合合作完工问题2:甲、乙合作完成一项工作,由于配合得好,甲的工作效率比单独做时提高1/10,乙的工作效率比单独做时提高1/5,甲、乙合作6小时完成了这项工作,如果甲单独需要11小时,那么乙单独做需要几小时?
【解题关键点】甲、乙合作的效率是1/6,甲单独做效率是1/11。合作时效率提高
1/10,因此甲合作时候的效率是(1+1/10)×1/11=1/10。那么乙合作时候的效率就是1/6-1/10=1/15。乙单独做的时候是合作时候的5/6,因此乙单独做效率是5/6× 1/15=1/18,即要做18小时。
四、合作+单干完工问题
将整个工程根据题意分段,并分别算出每个过程的参与工作的人的工效和,根据已知量 求未知量。
合作+单干完工问题:甲、乙、丙共同加工一批零件,前三天三人一起完成全部工作量的1/5,第四天丙没参加,甲、乙完成了全部工作量的1/18,第五天甲、丙没参加,乙完成了全部工作量的1/90,第六天起三人一起工作只到工作结束,问加工这批零件一共需要多少天完成?
【解题关键点】前五天一共完成了全部工作量的1/5 + 1/18 + 1/90 = 4/15,三人一起工作每天可完成全部工作量的1/5÷3 = 1/15,则还需(1-4/15)÷1/15=11,故一共需5+11=16(天)完成工作。
五、轮流工作完工问题
将整个工程分段,根据“工作时间=工作量÷工作效率”等相关公式按要求解答。
轮流工作完工问题1:一堆沙重480吨,用5辆载重相同的汽车运三次,完成了运输任务的25%,余下的沙由9辆相同的汽车来运,几次可以运完?
【解题关键点】 方法一:此题关键算出每辆汽车每次运多少。每辆每次运量=480×25%÷5÷3=8(吨),余下的运沙的次数=(480-480×25%)÷9÷8=5(次)。
方法二:由题意知25%的沙需要运5×3=15车,那么剩下75%的沙,则需要45车运完,即9辆同样的汽车运需要45÷9=5(次)。
轮流工作完工问题2:加工一批零件,单独1人做,甲要10天完成,乙要15天完成,丙要12天完成。如果先由甲、乙两人合做5天后,剩下的由丙1人做,还要几天完成? 【解题关键点】 题目要求剩下的工作量由丙1人做,还要几天完成,必须知道剩下的工作量和丙的工作效率。
加工一批零件,单独1人做,甲要10天完成,甲一天加工一批零件的1/10;乙要 15天完成,乙一天加工一批零件的1/15;丙要12天完成,丙一天加工一批零件的
1/12。甲、乙合做一天,完成这批零件的1/10+1/15=1/6,合做5天完成这批零件的1/6×5=5/6,工作总量“1”减去甲、乙合做5天的工作量,就得到剩下的工作量。把剩下的工作量除以丙的工作效率,就可以求出剩下的工作量由丙1人做还要几天完成。综合算式:[1-(1/10+1/15)×5]÷1/12 =2(天)
轮流工作完工问题3:加工一批零件,原计划每天加工15个,若干天可以完成。当完成工作任务的3/5时,采用新技术,效率提高20%。结果,完成任务的时间提前10天,这批零件共有几个?
【解题关键点】效率提高20%的话每天加工15×120%=18个,即每天多3个。原计划的10天内共生产150个零件,而由于每天多3个导致提前10天结束,则效率提高后共生产了150÷3=50天。这部分原计划生产60天,则全部零件原计划生产60÷2/5=150天,共有零件150×15=2250(个)。
第二篇:初中数学的工程问题专题总结
数学中工程问题
一、基本概念理解。
工作量:完成工作的多少,可以是全部工作量,为了方便解题,一般用数“1”表示,也可以是部分工作量,常用分数表示。例如工程的一半可表示成1/2,工程的五分之一可表示成1/5。常用的数量关系式1:小明一分钟能写15个汉字,请问五分钟他能写多少个汉字?
【解题关键点】工作量=工作效率×工作时间,15×5=75(个)。常用的数量关系式2:做500个零件,平均每天做50个,几天可以做完?
【解题关键点】工作时间=工作量÷工作效率,500÷50=10(天)。常用的数量关系式3:4小时做了100个零件,平均每小时做多少个零件?
【解题关键点】工作效率=工作量÷工作时间,,100÷4=25(个)。
常用的数量关系式4:甲一天能生产10个产品,乙一天能生产20个产品,问甲、乙一天一共生产多少个产品?
【解题关键点】总工作量=各份工作量之和,10+20=30(个)。
二、合作完工问题。
通过计算工效和,来算出工作时间。工效和为所有工作人员的效率之和。工作总量÷工效和=工作时间
合作完工问题1:一项工程,由甲工程队单独做需20天完成,由乙工程队单独做需30天完成,两队合作需多少天完成?
分析:设总工作量为1,由甲工程队单独做需20天完成,由乙工程队单独做需30天完成,可知甲、乙的工作效率分别是1/20、1/30。
【解题关键点】工作总量÷工效和=工作时间,1 ÷(1/20+1/30)=12(天)。
合作完工问题2:甲乙两车运一堆货物。若甲单独运,则甲车运的次数比乙车少5次;如果两车何运,那么各运6次就能运完,甲车单独运完这堆货物需要多少次?
【解题关键点】设甲单独运需要X次,则乙单独需要X+5次,则甲、乙的工作效率分别为1/X、1/(X+5)依题意有1/X + 1/(X+5)=1/6解得X=10
三、组合合作完工问题。
工效和-一方工效=剩下方工效
组合合作完工问题1:一项工程,甲、乙合做6天可以完成。甲独做18天可以完成,乙独做多少天可以完成?
【解题关键点】 把一项工程的工作总量看作“1”,甲、乙合做6天可以完成,甲、乙合做一天,完成这项工程的1/6,甲独做18天可以完成,甲做一天完成这项工程的1/18。把甲、乙工作效率之和,减去甲的工作效率1/18,就可得到乙的工作效率:1/6-1/18=1/9工作总量“1”中包含了多少个乙的工作效率,就是乙独做这项工程的需要的时间。
1÷(1/6-1/18)=9(天)
组合合作完工问题2:甲、乙合作完成一项工作,由于配合得好,甲的工作效率比单独做时提高1/10,乙的工作效率比单独做时提高1/5,甲、乙合作6小时完成了这项工作,如果甲单独需要11小时,那么乙单独做需要几小时? 【解题关键点】甲、乙合作的效率是1/6,甲单独做效率是1/11。合作时效率提高1/10,因此甲合作时候的效率是(1+1/10)×1/11=1/10。那么乙合作时候的效率就是1/6-1/10=1/15。乙单独做的时候是合作时候的5/6,因此乙单独做效率是5/6×1/15=1/18,即要做18小时。
四、合作+单干完工问题
将整个工程根据题意分段,并分别算出每个过程的参与工作的人的工效和,根据已知量 求未知量。
合作+单干完工问题:甲、乙、丙共同加工一批零件,前三天三人一起完成全部工作量的1/5,第四天丙没参加,甲、乙完成了全部工作量的1/18,第五天甲、丙没参加,乙完成了全部工作量的1/90,第六天起三人一起工作只到工作结束,问加工这批零件一共需要多少天完成?
【解题关键点】前五天一共完成了全部工作量的1/5 + 1/18 + 1/90 = 4/15,三人一起工作每天可完成全部工作量的1/5÷3 = 1/15,则还需(1-4/15)÷1/15=11,故一共需5+11=16(天)完成工作。
五、轮流工作完工问题
将整个工程分段,根据“工作时间=工作量÷工作效率”等相关公式按要求解答。
轮流工作完工问题1:一堆沙重480吨,用5辆载重相同的汽车运三次,完成了运输任务的25%,余下的沙由9辆相同的汽车来运,几次可以运完?
【解题关键点】 方法一:此题关键算出每辆汽车每次运多少。每辆每次运量=480×25%÷5÷3=8(吨),余下的运沙的次数=(480-480×25%)÷9÷8=5(次)。
方法二:由题意知25%的沙需要运5×3=15车,那么剩下75%的沙,则需要45车运完,即9辆同样的汽车运需要45÷9=5(次)。
轮流工作完工问题2:加工一批零件,单独1人做,甲要10天完成,乙要15天完成,丙要12天完成。如果先由甲、乙两人合做5天后,剩下的由丙1人做,还要几天完成?【解题关键点】 题目要求剩下的工作量由丙1人做,还要几天完成,必须知道剩下的工作量和丙的工作效率。
加工一批零件,单独1人做,甲要10天完成,甲一天加工一批零件的1/10;乙要15天完成,乙一天加工一批零件的1/15;丙要12天完成,丙一天加工一批零件的1/12。甲、乙合做一天,完成这批零件的1/10+1/15=1/6,合做5天完成这批零件的1/6×5=5/6,工作总量“1”减去甲、乙合做5天的工作量,就得到剩下的工作量。把剩下的工作量除以丙的工作效率,就可以求出剩下的工作量由丙1人做还要几天完成。综合算式:[1-(1/10+1/15)×5]÷1/12 =2(天)
轮流工作完工问题3:加工一批零件,原计划每天加工15个,若干天可以完成。当完成工作任务的3/5时,采用新技术,效率提高20%。结果,完成任务的时间提前10天,这批零件共有几个?
【解题关键点】效率提高20%的话每天加工15×120%=18个,即每天多3个。原计划的10天内共生产150个零件,而由于每天多3个导致提前10天结束,则效率提高后共生产了150÷3=50天。这部分原计划生产60天,则全部零件原计划生产60÷2/5=150天,共有零件150×15=2250(个)。
初中数学应用题(工程问题)训练题
1、某单位分三期完成一项工程,第一期用了全部工程时间的40%,第二期用了全部工程时36%,第三期工程用了24天,完成全部工程共用了多少天?
2、一个水箱有两个塞子,拔出甲塞,箱里的水5分钟流完,拔出乙塞,7分钟流完,若两塞拔出2分钟,一共放水1200升,再把甲塞塞上,问还需多少分钟,把水箱里的水放完?
3、有水桶两只,甲桶的容量是400升,乙桶的容量是150升,如果从甲桶放出的水是乙桶放出的2倍,那么甲桶剩的水是乙桶所剩的4倍。问每桶放出了多少升水?
4、一项任务由甲完成一半以后,乙完成其余的部分,两人共用2小时。如果甲完成任务的1小时50分钟。间由甲、乙两人单独完成分别要用几小时?
5、一工程原计划要270个工人若干天完成。现只有200个工人,由于工作效率提高了50%,结果比原计划提前10天完成。求原计划工作的天数?
6、车工班原计划每天生产50个零件,改进操作方法后,实际上每天比原计划多生产6个零件,结果比原计划提前5天,并超额8个零件,间原计划车工班应该生产多少个零件?
7、某工厂甲、乙、丙三个工人每天生产的零件数,甲和乙的比是3:4,乙和丙的比是2:3。若乙每天所生产的件数比甲和丙两人的和少945件,问每个工人各生产多少件?
8、某工程由甲、乙两队完成,甲队单独完成需16天,乙队单独完成需12天。如先由甲队做4天,然后两队合做,问再做几天后可完成工程的
9、一个工人在计划时间内加工一批零件,如果每小时做35个,就少10个不能完成任务;如果每小时做40个,则可超额20个。间他加工多少个零件,计划时间是几小时?
1以后,由乙完成其余部分,则两人共用356?
10、两个班组工人,按计划本月应共生产680个零件,实际第一组超额20%、第二组超额15%完成了本月任务,因此比原计划多生产118个零件。问本月原计划每组各生产多少个零件?
11、有一项工作,甲完成需要60小时,如果乙完成需要30小时;(1)甲每小时可以完成工作量的几分之几?(2)那么乙每小时完成工作量的几分之几?
(3)如果两人合作,每小时可以完成工作量的几分之几?(4)完成这项工作,两人合作需要几天?
(5)如果甲先工作了10小时,则他完成了工作量的几分之几?
(6)在(5)的情况下,乙又工作了x小时,则剩余的工作占工作量的几分之几?
12、一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作4天后,剩下的部分由乙单独做,需要几天完成?
13、完成某项工程,甲单独做要8天,乙单独做需要12天,乙单独做5天后,两队合作,问合作几天后可以完成全部工程?
14、甲、乙两人合作一项工作,24天可以完成,若乙队独做需要36天,问甲对独做需要几天?
15、已知某水池有进水管与出水管一根,进水管工作15小时可以将空水池放满,出水管工作24小时可以将满池的水放完;
a)b)c)d)
16、水池中一根进水管、一根出水管同时打开可以将满池的水在60分钟放完,如果单独打开进水管,需要90分钟将水池注满,问单独打开出水管多少时间,可以将满池的水放完?
如果单独打开进水管,每小时可以注入的水占水池的几分之几? 如果单独打开出水管,每小时可以放出的水占水池的几分之几? 如果将两管同时打开,每小时的效果如何?如何列式?
对于空的水池,如果进水管先打开2小时,再同时打开两管,问注满水池还需要多少时间? 1.某电子元件厂准备生产4600个电子元件,甲车间独立生产了一半后,由于要尽快投入市场,乙车间也加入该电子元件的生产,若乙车间每天生产的电子元件是甲车间的1.3倍,结果用33天完成任务,问甲车间每天生产电子元件多少个?在这个问题中设甲车间每天生产电子元件x个,根据题意可得方程为()
A.
2.甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是()
A.8
B.7 C.6
D.5 B.
C.
D.
3.某工厂生产一种零件,计划在20天内完成,若每天多生产4个,则15天完成且还多生产10个.设原计划每天生产x个,根据题意可列分式方程为()
A.
B.
C.
D.
4.某服装加工厂计划加工400套运动服,在加工完160套后,采用了新技术,工作效率比原计划提高了20%,结果共有了18天完成全部任务.设原计划每天加工x套运动服,根据题意可列方程为()A.
B.
C.
D.
5.甲队修路120m与乙队修路100m所用天数相同,已知甲队比乙队每天多修10m.设甲队每天修路xm,依题意,下面所列方程正确的是()
A.=
6.甲、乙两个工程队共同承包某一城市美化工程,已知甲队单独完成这项工程需要30天,若由甲队先做10天,剩下的工程由甲、乙两队合作8天完成.问乙队单独完成这项工程需要多少天?若设乙队单独完成这项工程需要x天.则可列方程为
A.+=1
B.10+8+x=30
C.
+8(+)=1
D.(1﹣)+x=8 B.=
C.
=
D.
=
7.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间比原计划生产450台机器所需时间相同,现在平均每天生产
台机器.
8.列方程或方程组解应用题:某园林队计划由6名工人对180平方米的区域进行绿化,由于施工时增加了2名工人,结果比计划提前3小时完成任务,若每人每小时绿化面积相同,求每人每小时的绿化面积.
9.2013年4月20日,我省雅安市芦山县发生了里氏7.0级强烈地震.某厂接到在规定时间内加工1500顶帐篷支援灾区人民的任务.在加工了300顶帐篷后,厂家把工作效率提高到原来的1.5倍,于是提前4天完成任务,求原来每天加工多少顶帐篷?
10.某地区为了进一步缓解交通拥堵问题,决定修建一条长为6千米的公路.如果平均每天的修建费y(万元)与修建天数x(天)之间在30≤x≤120,具有一次函数的关系,如下表所示.
(1)求y关于x的函数解析式;
(2)后来在修建的过程中计划发生改变,政府决定多修2千米,因此在没有增减建设力量的情况下,修完这条路比计划晚了15天,求原计划每天的修建费. 11.某车队要把4000吨货物运到雅安地震灾区(方案定后,每天的运量不变).
(1)从运输开始,每天运输的货物吨数n(单位:吨)与运输时间t(单位:天)之间有怎样的函数关系式?(2)因地震,到灾区的道路受阻,实际每天比原计划少运20%,则推迟1天完成任务,求原计划完成任务的天数.
12.一项工程,甲队单独做需40天完成,若乙队先做30天后,甲、乙两队一起合做20天恰好完成任务,请问:(1)乙队单独做需要多少天能完成任务?
(2)现将该工程分成两部分,甲队做其中一部分工程用了x天,乙队做另一部分工程用了y天,若x、y都是整数,且甲队做的时间不到15天,乙队做的时间不到70天,那么两队实际各做了多少天?
13.为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两个工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍. 根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品.
14.为改善生态环境,防止水土流失,某村计划在荒坡上种1000棵树.由于青年志愿者的支援,每天比原计划多种25%,结果提前5天完成任务,原计划每天种多少棵树?
15.2013年4月20日8时,四川省芦山县发生7.0级地震,某市派出抢险救灾工程队赶芦山支援,工程队承担了2400米道路抢修任务,为了让救灾人员和物资尽快运抵灾区,实际施工速度比原计划每小时多修40米,结果提前2小时完成,求原计划每小时抢修道路多少米?
16.在咸宁创建”国家卫生城市“的活动中,市园林公司加大了对市区主干道两旁植“景观树”的力度,平均每天比原计划多植5棵,现在植60棵所需的时间与原计划植45棵所需的时间相同,问现在平均每天植多少棵树?
17.在国道202公路改建工程中,某路段长4000米,由甲乙两个工程队拟在30天内(含30天)合作完成,已知两个工程队各有10名工人(设甲乙两个工程队的工人全部参与生产,甲工程队每人每天的工作量相同,乙工程队每人每天的工作量相同),甲工程队1天、乙工程队2天共修路200米;甲工程队2天,乙工程队3天共修路350米.(1)试问甲乙两个工程队每天分别修路多少米?
(2)甲乙两个工程队施工10天后,由于工作需要需从甲队抽调m人去学习新技术,总部要求在规定时间内完成,请问甲队可以抽调多少人?
(3)已知甲工程队每天的施工费用为0.6万元,乙工程队每天的施工费用为0.35万元,要使该工程的施工费用最低,甲乙两队需各做多少天?最低费用为多少?
18.甲、乙两个工程队共同承担一项筑路任务,甲队单独施工完成此项任务比乙队单独施工完成此项任务多用10天,且甲队单独施工45天和乙队单独施工30天的工作量相同.(1)甲、乙两队单独完成此项任务个需多少天?
(2)若甲、乙两队共同工作了3天后,乙队因设备检修停止施工,由甲队继续施工,为了不影响工程进度,甲队的工作效率提高到原来的2倍,要使甲队总的工作量不少于乙队的工作量的2倍,那么甲队至少再单独施工多少天?
19.某市为进一步缓解交通拥堵现象,决定修建一条从市中心到飞机场的轻轨铁路.实际施工时,每月的工效比原计划提高了20%,结果提前5个月完成这一工程.求原计划完成这一工程的时间是多少月?
20.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需要的时间与原计划生产450台机器所需要的时间相同,现在平均每天生产多少台机器?
21.我市新城区环形路的拓宽改造工程项目,经投标决定由甲、乙两个工程队共同完成这一工程项目.已知乙队单独完成这项工程所需天数是甲队单独完成这项工程所需天数的2倍;该工程如果由甲队先做6天,剩下的工程再由甲、乙两队合作16天可以完成.求甲、乙两队单独完成这项工程各需要多少天?
第三篇:初中数学应用题(工程问题)训练题
初中数学应用题(工程问题)训练题
基本量之间的关系:工作量=工作效率×工作时间.
常见等量关系:甲的工作量+乙的工作量=甲、乙合作的工作总量. 在题目中未给出工作总量时,设工作总量为单位1。
例题:一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程?
例题:某工程,甲工程队单独做40天完成,若乙工程队单独做30天后,•甲,乙两工程队再合作20天完成.
(1)求乙工程队单独做需要多少天完成?
(2)将工程分两部分,甲做其中的一部分用了x天,乙做另一部分用了y天,其中x,y均为正整数,且x<15,y<70,求x,y.
1、某单位分三期完成一项工程,第一期用了全部工程时间的40%,第二期用了全部工程时36%,第三期工程用了24天,完成全部工程共用了多少天?
2、一个水箱有两个塞子,拔出甲塞,箱里的水5分钟流完,拔出乙塞,7分钟流完,若两塞拔出2分钟,一共放水1200升,再把甲塞塞上,问还需多少分钟,把水箱里的水放完?
3、有水桶两只,甲桶的容量是400升,乙桶的容量是150升,如果从甲桶放出的水是乙桶放出的2倍,那么甲桶剩的水是乙桶所剩的4倍。问每桶放出了多少升水?
4、一项任务由甲完成一半以后,乙完成其余的部分,两人共用2小时。如果甲完成任务的13以后,由乙完成其余部分,则两人共用1小时50分钟。间由甲、乙两人单独完成分别要用几小时?
5、一工程原计划要270个工人若干天完成。现只有200个工人,由于工作效率提高了50%,结果比原计划提前10天完成。求原计划工作的天数?
6、车工班原计划每天生产50个零件,改进操作方法后,实际上每天比原计划多生产6个零件,结果比原计划提前5天,并超额8个零件,间原计划车工班应该生产多少个零件?
7、某工厂甲、乙、丙三个工人每天生产的零件数,甲和乙的比是3:4,乙和丙的比是2:3。若乙每天所生产的件数比甲和丙两人的和少945件,问每个工人各生产多少件?
8、某工程由甲、乙两队完成,甲队单独完成需16天,乙队单独完成需12天。如先由甲队做4天,然后两队合做,问再做几天后可完成工程的56?
9、一个工人在计划时间内加工一批零件,如果每小时做35个,就少10个不能完成任务;如果每小时做40个,则可超额20个。间他加工多少个零件,计划时间是几小时?
10、两个班组工人,按计划本月应共生产680个零件,实际第一组超额20%、第二组超额15%完成了本月任务,因此比原计划多生产118个零件。问本月原计划每组各生产多少个零件?
11、有一项工作,甲完成需要60小时,如果乙完成需要30小时;(1)甲每小时可以完成工作量的几分之几?(2)那么乙每小时完成工作量的几分之几?
(3)如果两人合作,每小时可以完成工作量的几分之几?(4)完成这项工作,两人合作需要几天?
(5)如果甲先工作了10小时,则他完成了工作量的几分之几?
(6)在(5)的情况下,乙又工作了x小时,则剩余的工作占工作量的几分之几?
12、一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作4天后,剩下的部分由乙单独做,需要几天完成?
13、完成某项工程,甲单独做要8天,乙单独做需要12天,乙单独做5天后,两队合作,问合作几天后可以完成全部工程?
14、甲、乙两人合作一项工作,24天可以完成,若乙队独做需要36天,问甲对独做需要几天?
15、已知某水池有进水管与出水管一根,进水管工作15小时可以将空水池放满,出水管工作24小时可以将满池的水放完;
a)如果单独打开进水管,每小时可以注入的水占水池的几分之几? b)如果单独打开出水管,每小时可以放出的水占水池的几分之几?
c)如果将两管同时打开,每小时的效果如何?如何列式?
d)对于空的水池,如果进水管先打开2小时,再同时打开两管,问注满水池还需要多少时间?
e)
16、水池中一根进水管、一根出水管同时打开可以将满池的水在60分钟放完,如果单独打开进水管,需要90分钟将水池注满,问单独打开出水管多少时间,可以将满池的水放完?
第四篇:初中数学行程问题
好读书教育
好读书中高考学校
初一精品班专用
行程问题
【基本关系式】
(1)行程问题中的三个基本量及其关系:
路程=速度×时间 时间=路程÷速度 速度=路程÷时间
(2)基本类型
① 相遇问题:快行距+慢行距=原距 ② 追及问题:快行距-慢行距=原距
③ 航行问题:顺水(风)速度=静水(风)速度+水流(风)速度
逆水(风)速度=静水(风)速度-水流(风)速度 顺速–逆速 = 2水速;顺速 + 逆速 = 2船速
顺水的路程 = 逆水的路程
注意:抓住两码头间距离不变,水流速和船速(静水速)不变的特点考虑相等关系。常见的还有:相背而行;环形跑道问题。
例1.甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。
(1)慢车先开出1小时,快车再开。两车相向而行。问快车开出多少小时后两车相遇?
(2)两车同时开出,相背而行多少小时后两车相距600公里?
(3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?
(4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?
(5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?
今天决定未来 好读书教育
好读书中高考学校
初一精品班专用
例2.有一火车以每分钟600米的速度要过完第一、第二两座铁桥,过第二铁桥比过第一铁桥需多5秒,又知第二铁桥的长度比第一铁桥长度的2倍短50米,试求各铁桥的长.
一、行程(相遇)问题 1.两村相距35千米,甲乙二人从两村出发,相向而行,甲每小时行5千米,乙每小时行4千米,甲先出发1小时后,乙才出发,当他们相距9千米时,乙行了多长时间?
2.A、B两地相距360千米,甲车从A地出发开往B地,每小时行驶72千米,甲车出发25分钟后,乙车从B地出发开往A地,每时行驶48千米,两车相遇后,各自按原来的速度继续行驶,那么相遇后两车相距120千米时,甲车从出发一共用了多少时间?
二、行程(追击)问题 1.甲、乙两人从同地出发前往某地。甲步行,每小时走4公里,甲走了16公里后,乙骑自行车以每小时12公里的速度追赶甲,问乙出发后,几小时能追上甲?
2.、敌我两军相距25千米,敌军以5千米/时的速度逃跑,我军同时以8千米/时的速度追击,并在相距一千米处发生战斗,问战斗是在开始追击几小时发生的?
3、乙两人同时从A地出发步行去B地,5分钟后,甲返回A地去取东西,没有停留,继续步行去B地,如果从两人同时出发起计时,那么35分钟后两人同时到达。已知甲每分钟所行路程比乙每分钟所行路程的2倍少30米。求甲、乙二人的速度各是多少?
今天决定未来 好读书教育
好读书中高考学校
初一精品班专用
三、行程(行船、飞行)问题
1.一架飞机飞行在两个城市之间,风速为24千米/时.顺风飞行需要2小时50分,逆风飞行需要3小时.求飞机在无风时的速度及两城之间的飞行路程.2、一艘轮船航行于两地之间,顺水要用3小时,逆水要用4小时,已知船在静水中的速度是50千米/小时,求水流的速度.3、一架飞机,最多能在空中连续飞行4小时,飞出去时的速度是950千米/小时,返回时的速度是850千米/小时,这架飞机最远能飞出多少千米就应返回?(答案保留整数)
四、行程(跑道)问题 1.乙两人都以不变速度在400米的环形跑道上跑步,两人在同一地方同时出发同向而行,甲的速度为100米/分,乙的速度是甲速度的遇(2)第二次相遇呢?
2.一条环形的跑道长800米,甲练习骑自行车平均每分钟行500米,乙练习赛跑,平均每分钟跑200米,两人同时同地出发。
(1)若两人背向而行,则他们经过多少时间首次相遇?(2)若两人同向而行,则他们经过多少时间首次相遇?
32倍,问(1)经过多少时间后两人首次相
五、行程(错车、过桥)问题 1.两列迎面行驶的火车,A列速度为20米每秒,B列速度为25米每秒,若A列车长200米,B列车长160米,则两车错车的时间是几秒?
2.一列火车长160米,全车通过440米的桥需要30秒钟,这列火车每秒行多少米?
今天决定未来
第五篇:初二数学工程问题
2.一项工程,甲单独做比甲、乙合做需多用3天,如甲、乙两人先合做6天,再由乙单独做10天,那么才完成这项工程的2/3,试问甲、乙单独完成这项工程各需多少天? 3.某工作甲乙合作2小时后,由甲再工作1小时完成;已知独做完成此工作,甲所用时间是乙的3/2倍.则完成此工作甲独做需___小时,乙独做需___小时
4.一项工程,甲独做比甲乙合作多用5天,乙独做比两人合作时间的3倍少5天,那么甲乙两人合作这项工程要用____完成
5.某工作,甲独做恰好按期完成,乙要超出6天才能完成;如果甲乙合作4天,余下由乙独做恰好按期完成,则规定日期是___天
6.火车因故在途中耽误6分钟,为准时到站,在余下的20千米路程内,火车的速度每小时增加10千米,则火车原来的速度为__千米/小时.7.某工程,甲乙独做完成分别比两队合作完成多18天和32天,求甲乙独做完成各需几天.8.甲乙两人绕城而行,甲绕城一周需要3小时,现两人同时同地背向出发,乙自遇甲后再行4小时才能到达原出发点,求乙绕城一周所需时间.9.火车在行驶24千米后因故受阻12分钟,再以每小时比原来快6千米的速度开往目的地,虽然后一段路程比前一段长12千米,但仍准点到达,求火车原来的速度.10.飞机的速度为250千米/小时,在飞行495千米的距离时,逆风比顺风多用24分钟,求风速。
11.有一河流的水流速度为2千米/小时,现有一船沿河航行,来往于相距3.5千米的A,B两地,共用去1小时40分钟,求该船在静水中的速度.12.甲乙两人分别从相距30公里的A,B两地同时出发,相向而行,3小时后相遇,相遇后每人各用原速度继续前进,甲到达B地比乙到达A地早2.5小时,求甲乙两人的速度.