第一篇:八年级数学A卷试卷分析
太和县2011—2012学年度第二学期期末考试
八年级数学A卷
试卷分析
三塔镇中心校
张杰
一、学生考试成绩分析:
本次参加应试学生40人(仅本人所任班级),及格人数23人,及格率57.50%;优秀人数4人,优秀率10.00%;平均分为65.15分。应该说,这个结果基本能够反映绝大部分学生的对所学知识的掌握及运用情况。
二、试卷分析:
这次期末数学试卷由县教研室统一命题、制卷,共六个大题(25个小题);考试时长90分钟,试卷满分100分。试卷检测的范围是《八年级数学(下)》所涉及的内容。从卷面看,大致可以分为两大类,第一类是基础知识,通过填空、选择、和基本的计算题的检测。第二类是综合应用题,主要是考查综合运用知识解决问题的能力(如试卷的第五、六两大题)。试卷能从检测学生的学习能力入手,细致、灵活地来抽测学过的数学知识。打破了学生的习惯思维,能测试学生思维的多角度性和灵活性。应该说内容是比较全面的,难易程度——偏难,计算量稍大,有相当一部分学生因计算量大而未能把题做完,还有不少学生因计算量大而出现计算错误(如:第五大题的第2小题)。不过,本试卷还是比较能如实反映出学生的实际数学知识的掌握情况的。从考试成绩来看,基本达到了检测的预期目标。
三、答题情况分析:
第一大题(选择题)完成情况比较好。这一大题共10个小题,计30分。其中得分在24分以上(含24分)有25人,占考生人数的57.5%;得满分(30分)的有9人,占考生人数的22.5%。在这一大题中,失分最多的是第3题。失分原因是学生判断a的取值范围是只注意到了方程的解是负数,而忽略了分式方程可能会产生增根这一重要条件,因此,把这一答案B错误地选成了A。
第二大题(填空题)7个小题,共21分。本大题得满分的只有2人,失分最多的有第1、2、3、7题。其主要原因是第1、2、3题均有两解,而绝大部分学生只给出了一解,可见学生还缺乏考虑问题的全面性,这也是题目偏难的一个方面;第7题出错的原因可能是计算的错误或对梯形中位线定理不清楚,这也是复习不到位造成的。
第三大题包括3个小题,共18分,由分式的混合运算、整数指数幂的运算和解分式方程组成。这一题得分率较高,得满分就有15人,占37.5%。其他失分大部分由于粗心、没仔细检查造成的,由此可见,培养学生严谨的学习态度势在必行。
第四大题包括2个小题,共12分。目的是考查学生对定理的基本运用(如第2 小题是一个运用三角形中位线定理的证明题)、用待定系数法求函数解析式的方法(如第1小
题)。失分最多是第1小题,只有11位学生得分,仅占27.5%。应该说,这一天失分的原因是学生复习的不够,时间一长,给淡忘了。由此可见,在进行新课时不断提醒学生适时进行复习,应养成良好的学习习惯。
第五大题也包括2个小题,共12分。目的是考查学生的应用能力,即解决实际问题的能力。第1 小题失分严重,仅有6人得分,占15%。可见学生分析问题、解决问题的能力比较差。第2小题仅有2人没有得分,失分原因主要是计算量大,计算出现错误。
第六大题是一个开放性的题目(7分),仅有7个学生完整解答,占17.5%。失分原因有三:一是学生对这一类题目缺乏经验,无从下手,或者说有点“怕”;二是学生受知识水平的影响,的确无法解答,作为压轴题属于正常;三是前面的答题耗时过长,导致没有时间再解答(如果时间允许的话,估计还应该有3至5人可以解答)。不过,这一题对尖子生的解题能力是一个考验,更有利于他们潜力的挖掘。
总体来说,本试卷题目类型全、内容广。既考查了学生基础知识的掌握,又考查了学生应用知识分析问题、解决问题的能力,基本能够达到检测学生学习效果的目的。但本试卷也有值得商榷的地方,如:填空题的第1小题是一个考查完全平方式的问题,与本学期所学内容没有直接关系,应由其他题目代替(或删去);题目过多(中考120分钟也只有23或24题,而本试卷90分钟25个题目),计算量过大,造成得分较低,不利于学生学习兴趣的培养。我们检测的目的不仅要检测学生的知识掌握情况,更重要的是通过考试鼓励、激发学生的学习热情。
四、今后的教学方向:
1、立足于教材,扎根于生活。教材是我们的教学之本,在教学中,我们既要以教材为本,扎扎实实地渗透教材的重点、难点,又要关注生活,培养实践能力,加强教学内容和学生生活的联系,让数学从生活中来,到生活中去,用数学解决生活的问题。这也是数学新课标的重要内容。
2、教学中要重在凸现学生的学习过程,培养学生的分析能力。在平时的教学中,作为教师应尽可能地为学生提供学习材料,创造自主学习的机会。尤其是在应用题的教学中,要让学生的思维得到充分的展示,让他们自己来分析题目,设计解题的策略,多做分析和编题等训练,让有的学生从“怕”应用题到喜欢应用题。
3、多做多练,切实培养和提高学生的计算能力。提醒他们不能凭自己的直觉做题,不讲道理,不想原因。这点可以从试卷上很清晰地反映出来。学生排除计算干扰的本领。
4、关注过程,引导探究创新。数学教学不仅要使学生获得基础知识和基本技能,而且要着力引导学生进行自主探索,培养自觉发现新知、发现规律的能力。这样既能使学生对知识有深层次的理解,又能让学生在探索的过程中学会探索的科学方法。让学生的学习不仅知其然,还知其所以然。
第二篇:八年级数学期中考试试卷分析
八年级数学期中考试试卷分析
农村实验中学
本学期的期中考试已经结束,现进行如下分析:
一、试题分析:120分的卷子包含了18分的填空题,32分的选择题,70分的解答题(其中包括试题难度层次分明的4道解答题)。本张卷子试题难度不大,知识点考察全面,注重基础,灵活度高。
二、试卷分析:
1.选择题 基础知识再现的6道选择题,看似简单,但想要得满分简单也困难,出现问题最多的是第6题,它综合考察了全等三角形和外角的知识,对于这个题稍有一个知识点考虑不到就会失分。
2.填空题 学生第7题丢分和第10题丢分由于审题不认真,而第13题考察知识全面,思维缜密,这样的题型相对来说会有难度,一旦学生的知识链有丁点缝隙或者考虑不全面都会使此题型漏选或者多选导致失分,而本题相对于简单,但学生还是漏选了。
3.解答题 第15题和第16题主要考察了内角和定理与三角形的三边关系,而第17题和第18题是两道几何证明问题和计算问题,这四道题相对基础简单,学生做起来失分较少。第19题和第20题是两道继17,18题之后的稍难一点的几何证明和计算题,失分最多的是第20题的第二问,数量关系写错,平时要注重从特殊到一般思想的培养。第21题和第22题两道几何证明题考察了知识的灵活运用,特别是22题解题方法不止一种,但解题思维相似。而第23题本来简单的答题思路,有个别同学思路绕的很远。对于第24题第三问有难度,学生很难想到,做出来的学生很少,但对于做出此问的学生,大部分利用了延长线段的方法,有位同学利用了本题的第二问打开思路,虽然此种方法相对于延长线段的方法麻烦了些,但值得鼓励。
第三篇:八年级数学期末考试试卷分析
八年级数学期末考试试卷分析
资阳市雁江区迎接镇初级中学
一、试题分析
1、题型与题量
全卷共有三种题型,分别为选择题、填空题和解答题。其中选择题有10个小题,每题3分,共30分;填空题有10个小题,每题3分,共30分;解答题有9个小题,共60分;全卷合计27小题,满分120分,考试用时120分钟。
2、内容与范围
从考查内容看,几乎覆盖了人教版八年级下册数学教材中所有主要的知识点,而且试题偏重于考查教材中的主要章节,如轴对称、一次函数等。试题所考查的知识点隶属于数与代数、空间与图形、实践与综合应用三个领域。纵观全卷,所有试题所涉知识点均遵循《数学课程标准》的要求。
3、试卷特点等方面:
从整体上看,本次试题难度适中,符合学生的认知水平。试题注重基础,内容紧密联系生活实际,注重了趣味性、实践性和创新性。突出了学科特点,以能力立意命题,体现了数学课程标准精神。有利于考察数学基础和基本技能的掌握程度,有利于教学方法和学法的引导和培养。有利于良好习惯和正确价值观形成。其具体特点如下:
(1)强化知识体系,突出主干内容。
考查学生基础知识的掌握程度,是检验教师教与学生学的重要目标之一。学生基础知识和基本技能水平的高低,关系到今后各方面能力水平的发展。本次试题以基础知识为主,既注意全面更注意突出重点,对主干知识的考查保证了较高的比例,并保持了必要的深度。
(2)贴近生活实际,体现应用价值。
“人人学有价值的数学,”这是新课标的一个基本理念。本次试题依据新课标的要求,从学生熟悉的生活索取题材,把枯燥的知识生活化、情景化,通过填空、选择、解决问题等形式让学生从中体验、感受学习数学知识的必要性、实用性和应用价值。
二、学生答题分析
1、基本功不扎实。
综观整套试题,可以说体现了对学生计算能力、综合分析能力、解决实际问题能力等方面的综合测试。尤其是本套试题提升了实践能力,是对学生学习的全方面情况进行了测查。我校学生在测试中,充分展示了自身的学习状况,学生成绩不理想。如第19题、20题、21题的计算的能力测试中,参加考试的学生的正确率也是比较低的,体现了扎实的基本功和准确进行计算的能力。
2、应用知识的能力不强。
运用数学基础知识,解决数学和生活中的数学问题,是数学课标中提出的最基本教学目标。本次试题比较集中地体现了这一思想。尤其是在第22题和23题中充分体现了学生分析解决问题的能力是不突出的。
三、存在的主要问题及采取的措施
此次测试,虽然教学上取得了一些成绩,但是也发现了一些问题。现归纳如下,以便于将来改进。
1、部分学生审题能力较差。一个学生知识不懂,老师可以再讲,可如果养成了做题不认真的习惯,那可是谁也帮不了。所以在今后的教学中,不光但要注意知识能力的培养,还要注意一些好习惯的培养。
2、学生的知识应用能力不强。
学生对基本的知识和概念掌握的不够牢固,应用基本概念和基本知识解决问题的能力不强.缺乏独立思考的习惯,如第25题和27题,学生失分较大。
四、今后努力方向
1、在课堂上下功夫,认真研究教材和教参,把握每节课的重难点,指导学生牢固掌握知识.提高课堂教学的效率,注重学生学法的研究。从本次的考试看出学生对书本上的知识、技能掌握还是比较扎实的,但还应该看到,本次考试的试卷,区分度不大。部分题目一有变化,学生容易上当受骗,思维就显得混乱、没有条理。说明我们平时的教学灌输的较多,程式化的知识强调过多,建议课堂教学要多引导学生自主探索、动手实践,加强数学与生活的联系让学生从学会走向学活,提高学生分析问题和解决问题的能力。
2、培养学生良好的常常习惯,包括认真听讲的习惯,上课积极思考的好习惯,按时完成作业的习惯.
3、认真指导学生读应用题,思考解决问题的方法.逐步培养学生解应用题的能力.培养学生做计算题正确率高的能力.
4、提优补差,加强后进生的辅导,多鼓励他们建立学习的自信心,使他们的学习逐步提高,让所有学生都有发展。从这次的考试中可以看出,两极分化的严重性。要关注这部分学生,和他们一起分析原因找出对策,防止拉大差距。同时也要让那部分学有余力的学生尽快突颖而出,使全校的教学质量有更大的提高.资阳市雁江区迎接镇初级中学
2012年7月2日
第四篇:八年级数学期中考试试卷分析
八年级数学期中考试试卷分析
为全面提高数学教育质量,促进数学课程改革和教学改革,我校进行了一次期中考试。现做试卷分析如下:
一、试卷分析
本套试卷共6页,分值为100分。主要考察了八年级数学第十六章分式和十七章反比例函数的内容。其中包括:分式、分式的运算、分式的方程、反比例函数及其性质以及实际问题与反比例函数。试卷的总体难度适宜,能坚持“以纲为纲,以本为本的原则”,注重考察基础知识的掌握,覆盖面较广,控制题目的烦琐程度,题目力求简洁明快,不在运算的复杂上做文章。
第一题为选择题共十个小题,学生出错率较高的题有2、3、6、8、10。第2题涉及到分式的运算,题目难度适中,部分学生由于粗心马虎造成失分;第3题考查反比例函数性质的掌握,题目比较容易,学生对反比例函数的基本性质掌握不熟练导致出错;第6小题考查解分式方程中化分式方程为整式方程,本小题涉及到变号问题,学生做起来感觉吃力;第8和10小题涉及到实际问题,学生应用数学知识解决实际问题的能力较弱,所以出错率较高。
第二题为填空题共七个小题,学生出错率较高的题是12和16。其中12题考查反比例函数的形式及其性质,出错的原因还是基础知识掌握不牢。16题涉及到“增根”,学生出错是由于对增根的理解不到位。
第三题为解答题共七个小题。18题考查分式的混合运算,19题考查解分式方程,题目难度较低,属于简单题。20题是先化简再求值。实质也是考查分式的混合运算,只是难度较18题略有提高,学生多在化简过程中出现错误。21题主要考查用待定系数法确定反比例函数的关系式,题目简单,学生一般会拿到分数。22题实质也是解分式方程,是对解分式方程能力的拓展和提高,有一定难度,学生出错率也较高。23题是列分式方程解应用题,难度适中,学生出错的原因与8和10相同。24小题考查反比例函数与实际问题,难度不大,一般都能做对。
二、学生分析
我所带班级是八年级一班,学生程度参差不齐,两级分化现象严重。学生学习氛围不太浓厚,部分学生学习态度不端正。程度较好的学生对题目的应变能力较弱,程度一般的学生对基础知识的掌握还有欠缺,对部分概念的理解不到位。学生普遍存在的问题就是解决实际问题能力较弱。
三、改进措施
在今后教学中应做如下改进:
1、回归课本,夯实基础
我们要加强基础知识教学和训练,使学生掌握必要的基础知识、基本技能和基本方法。同时加强学生对基本概念的理解,依据大纲要求,不脱离课本,加强训练,打好初中数学基础。
2、尊重学生个体差异,因材施教
学生程度良莠不齐,我们应该因材施教,特别是后进生,应给与更多帮助和关注,避免学生掉队的情况出现。同时鼓励优等生,使其不断进步。
3、关注生活,加强应用
使学生能用数学眼光认识世界,并能用数学知识和数学方法处理解决周围的实际问题。教学中要时常关注社会生活实际,编拟一些贴近生活,贴近实际,有着实际背景的数学应用性试题,引导学生学会阅读、审题、获取信息、解决问题。切实提高学生解决实际问题的能力。
4、强化训练,提高计算能力
在夯实基础的前提下,强化训练,不仅可以提高学生的解题计算能力,还能加深学生对基础知识的理解。对例题、习题、练习题和复习题等,不能就题论题,要以题论法,以题为载体,变换试题,探究解法,研究与其他试题的联系与区别,挖掘出其中蕴涵的数学思想方法等,将试题的知识价值、教育价值一一解析。
第五篇:八年级数学期中考试试卷分析
文章来 源
w w
w.5 Y K J.Com 1
八年级数学期中考试试卷分析
一、试卷特点
今年期中数学试卷,结构稳定,考查内容、方法、设问方式都是考生熟悉和常见的。四道解答题考查的主体与去年一致,依然是以四边形、旋转、平移、勾股定理为主要载体,考查考生各方面的数学能力。其中平移仍然是最容易得分的题目。试卷的答题形式也参照了以往的做法,在填空题中设计了一个双解题,在解答题中采用了分步设问的命题方式,但试卷稳定中有所提高,题目的书写量大,计算量大,且知识点交*较多,这与去年相比有较大提高。
本套试卷从整体上来看难易程度适中,但知识覆盖面比较全面,几乎包括所有的内容,每章的重点内容特别突出。本次试卷题型多种多样,灵活多变。总的来说,本次试卷出的很成功。下面做具体分析:
试卷对知识内容的考查,体现了《课标》立足基础、突出重点的原则。在试卷中《课标》规定各个部分知识。对重点内容,三章几何、一章代数完全按照教材及《课标》分配,几何约占30分左右,代数约占70分左右,在试卷中有着重点考查。这样考查对新教材的教学起到了良好的促进和正确的指导作用。
二、试题分析和学生做题情况分析
1、单项选择题:出的相当不错,看似简单的问题,要做对却需要足够的细心,含盖的知识面广。主要考察了学生对基础知识的运用,但很多学生都掌握不好,在做题时不能灵活的运用所学的知识解决问题,导致得分较低,以后要注意基础知识的掌握和灵活应用。如第5,9题考查了一次函数的解析式和图象的关系,学生出错率较高。
2、填空:第16题是结合实际生活确定函数图形,学生做的不好。第17题主要考察了学生对三角形全等条件的理解,但学生在做题时语言描述不准确,导致失分。第14、15题是是一题多解,学生做的较好。
3、解答题:第25题考察了学生的运用待定系数法解决问题的能力,学生做的相对比较好,但是还是有一些学生在确定k,b上面出错。第26(1)题学生审题不清,导致第1题失分。第26(2,3)题较难,既考察了学生对一次函数和反比例函数的交点的以及如何利用函数图形来比较函数值的大小,难度较大。在以后的教学中,要注意综合知识运用能力的培养,让学生养成良好的学习习惯。试卷的较难试题基本集中在解答题的最后两题,尤其是第25题及第26题。而在选择中也出现了有一点难度的试题,这种控制绝对难度、位置难度的方法既保证了试卷的总体难度比去年有所提高,又能让学生的正常发挥。
总的来说,本次试卷题型灵活多样,题量适中,难度适宜,紧紧联系课本内容,重点考察学生的基础知识掌握的情况,没有偏题,怪题。
文章来 源w w
w.5 Y K J.Com 1