第一篇:交流异步电动机制动的几种方式附原理案例
交流异步电动机制动的几种方式附原理案列
工业变频 2009-06-16 16:00:42 阅读4628 评论1 字号:大中小 订阅
一、再生回馈制动
再生回馈制动是在外加转矩的作用下,转子转速超过同步转速,电磁转矩改变方向成为制动转矩的运行状态。再生回馈制动与反接制动和能耗制动不同,再生回馈制动不能制动到停止状态。
二、反接制动
反接制动是在电机定子三根电源线中的任意两根对调而使电机输出转矩反向产生制动,或者在转子电路上串接较大附加电阻使转速反向,而产生制动。
三、能耗制动
电机在正常运行中,为了迅速停车,在电机定子线圈中接入直流电源,在定子线圈中通入直流电流,形成磁场,转子由于惯性继续旋转切割磁场,而在转子中形成感应电势和电流,产生的转矩方向与电机的转速方向相反,产生制动作用,最终使电机停止。于惯性继续旋转切割磁场,而在转子中形成感应电势和电流,产生的转矩方向与电机的转速方向相反,产生制动作用,最终使电机停止。
1.能耗制动的原理
如果三相异步电动机定子绕组断开三相电源后,则电机内无磁通势。从而电磁转矩
=0,电动机在负载转矩作用下,自然停车,这是自然制动过程。
能耗制动的电路原理图如图5.22所示,三相异步电动机定子绕组切断三相交流电源后(1K断开),同时,在定子绕组任意两相上接入直流电流
(也称直流励磁电流),即接通开,最大幅值为
。在关2K,从而在电机内形成一个不旋转的空间位置固定的磁通势 三相交流电源切断后的瞬间,电动机转子由于机械惯性其转速 逆时针方向旋转。此时,直流电流
不能突变,而继续维持原
相对于旋转的转子
产生的空间固定不转的磁通势
是一个旋转磁通势;旋转方向为顺时针,转速大小为 感应电动势,并产生电流
和电磁转矩
。这种相对运动导致了转子绕组有的方向与磁通势,根据左手定则可知,相对于转子的旋转方向是一样的,但与转速 电机转速迅速下降,直到转速 的方向相反,电动机处于制动运行状态,与转子相对静止,=0,=0,时,磁通势
, 减速过程结束,电动机将停转,实现了快速制动停车。如果负载是反抗性负载,则电机转速 将停车。如果负载是位能性负载,则电机转速
时必须立即用机械抱闸,将电机轴刹住停车。
图5.22 能耗制动接线图
由于制动过程,转轴的机械能转换成电能消耗在转子回路的电阻上,因此,称为能耗制动。2.能耗制动的机械特性
三相异步电动机能耗制动的机械特性的推导类似于三相异步电动机固有机械特性的推导。当异步电动机切断三相交流电源,接入直流电流
时的等值电路如图5.23所示。它是转子绕组相数、匝数、绕组系数及转子电路的频率都折合到定子边界的结果。
图5.23 能耗制动的等值电路 图5.24 能耗制动的电流关系 图中 为能耗制动转差率。当直流磁通势
于转子之间相对转速(既转差)不变时,即,且 的相对转子的转速即同步转速为,则
转子绕组感应电动势 的大小和频率为:
图中 为等值电流,它是通过三相异步电动机定子绕组接入直流电流
等效替代直流磁通势
换算得到的。利
与 用三相交流电流产生的旋转磁通势 的关系如下:
当电动机定子绕组为ㄚ 形接法时,有 的办法,可推导出
当电动机定子绕组为△形接法时,有
根据等值电路画出能耗制动时各电流之间的关系图如图5.24 所示,则
(5.25)忽略励磁电阻 的铁损耗作用,则
(5.26)对于转子功率因数角,有
(5.27)将式(5.26)、(5.27)代入式(5.25),整理各得
则
(5.28)上式为能耗制动的机械特性表达式。和电动机运行状态时的机械特性参数表达式推导方法一样,可导出能耗制动时的最大转矩
及相应的转差率
为
(5.29)根据式(5.28)画出三相异步电动机能耗制动时的机械特性如图 5.25 所示,图中曲线
图5.25 能耗制动的机械特性 图5.26 能耗制动过程 1为直流电流为 电阻,转子串入电阻
时的特性;曲线2为直流电流为
(>),转子串入电阻,转子串入
时的特时的特性;曲线3为直流电流为
性;曲线4为电机运行的固有特性。3.制动过程分析
三相异步电动机工作于电动运行状态时,采用能耗制动停车,电动机的运行点如图5.26所示。即 的大小。4.直流电流。改变直流电流 的选择 的大小而改变制动转矩的大小,从而改变制动时间对于三相鼠笼式异步电动机取
对于三相绕线式异步电动机取
式中 为异步电动机的空载电流,一般取
。能耗制动广泛应用于要求平稳准确停车的场合。也可用于起重机一类带位能性负载的机械限制重物下放的速度,使重物保持匀速下降,只需改变直流电流 的大小(调节电位器 RP)或改变转子回路串电阻R值,则可达到目的。5.3.2 反接制动
三相异步电动机的反接制动分为定子电源反接的反接制动和倒拉反接制动两种 1.定子电源反接的反接制动(1)反接制动原理
三相绕线式异步电动机处于正常电动运行,当改变三相电源的相序时,如图5.27电路接线图中1K断开,2K闭合则改变了电源相序,电动机便进入了反接制动过程。由于电源相序改变,圆形旋转磁场反向,而转子不可能立即改变转向,因而转子感应电动势反向,电流反向,则电磁转矩也反向,电动机处于制动运行状态,电动转速迅速下降,直到转速,电机将停转,从而实现了快速制动停车。(2)机械特性
电动机的固有特性如图5.28所示的曲线1。当定子两相反接时,旋转磁场改变方向,则同步转速为,转差率,反接制动机械特性变为曲线2。根据异步电动机等值电路中表示机械负载的附加电阻,则机械功率为
即负载向电动机内输入机械功率。而定子传递到转子的电磁功率为
表明定子仍向电源吸收电功率,再由定子向转子传递电磁功率。由于
表明转子回路的铜损耗来自定子吸收电源的电功率和负载送入的机械功率,这个数值很大。若不在转子回路串入较大的电阻器,转子铜损耗将无法消耗,将导致电机转子绕组过热而损坏,因此,电机转子回路必须串入大电阻R,此时,反接制动的机械特性为曲线3。(3)制动过程分析
三相绕线式异步电动机工作于电动状态时,开关1K 闭合2K 断开。当电机定子电源反接时,开关1K 断开2K 闭合,同时转子回路串入大电阻,即3K 断开,电动机的运行点以,使得电动机快速停车。如果电动机拖动较小的反抗性恒转矩负载或位能性恒转矩负载运行,并采用定子电源反接的反接制动停车,那么必须当电机转速 断电源并停车,否则电动机将反向起动到
点。
时切(4)反接制动电阻的计算
根据新要求的最大制动转矩进行。例5.6 JZR51-8型绕线式异步电动机,A, 大制动转矩为
=22kW, ,V,。如果拖动额定负载运行时,采用反接制动停车,要求制动开始时最,求转子每相串入的制动电阻值。
解:电动机额定转差率
转子每相电阻
制动后瞬间电动机转差率
过制动开始点(=1.964,)的反接制动机械特性的临界转差率为
固有机械特性的 为
转子串入反接制动电阻为
定子电源反接的反接制动广泛用于要求迅速停车和需要反转的生产机械上,多用于三
图5.27 定子电源反接的反接制动 图5.28 反接制动的机械特性 相绕线式异步电动机中。对于三相鼠笼式异步电动机由于转子回路无法串电阻,则反接制动只能用于不频繁制动的场合。2.倒拉反接制动
这里仅对倒拉反接制动过程进行分析。
倒拉反接制动状态指三相绕线式异步电动机拖动位能性恒转矩负载时,在转子回路上串入较大电阻,使机械特性变为图5.29(b)所示的曲线2,电动机反转运行于第Ⅳ象限的B点。曲线1为电动机的固有特性。
倒拉反接制动适用于位能性恒转矩负载。例如,起重机将重物保持均匀速度下降时,使得位能性负载—重物倒过来拉着电动机反转。如图5.29(a)所示电动机定子电源断开时(既1K断开2K闭和)。工作运行于
点,即转数,处于停车状态。电动机按提升方向接通,即2K断开)。由于起动转矩 点加速到
点,电磁转矩
负载转,电动机电源(既1K闭和,并在转子回路串入电阻 矩 ,电机被重物拖着反转,电机运行点由
处于稳定的反接制动运行状态,且电机以 的转速重物匀速下放。
(a)接线原理图(b)机械特性
图5.29 倒拉反接制动4.直流电流 的选择
对于三相鼠笼式异步电动机取
对于三相绕线式异步电动机取
式中 为异步电动机的空载电流,一般取。
能耗制动广泛应用于要求平稳准确停车的场合。也可用于起重机一类带位能性负载的机械限制重物下放的速度,使重物保持匀速下降,只需改变直流电流 的大小(调节电位器 RP)或改变转子回路串电阻R值,则可达到目的。5.3.3 回馈制动
前面所述反接制动机械特性,如图5.28所示曲线2或曲线3。当三相异步电机拖动位能性恒转矩负载,定子电源接成负相序 制动运行点),对应的电磁转矩
时,电动机运行于第Ⅳ象限的,转速,且
点(称为回馈, 则称为反向回馈制动运行。例如,起重机下放重物(如图5.30所示),电机利用回馈制动下放重物时,定子两相反接,这时同步转速由
起动转矩为
(图5.28的C点)。由于转矩 , 则 ,电机将反向加速运行到 点。以 的转速使重物匀速下放。下放过程中,重物贮存的位能不断被电机定子绕组吸收,并转换成电能“回馈”到电网中。为防止下降转
速过快,转子串电阻 值不宜太大。图
5.30 起重机下放重物的回馈制动
同理,正向回馈制动运行是指电动机工作于第Ⅱ象限,且
电机转速 的机械功率 功率
功率 , 除了定子绕组上的铜损耗 ,转差率,电磁功率
。电动机输入,电动机的输入
。即正向回馈制动过程中,转子送出的电磁外,其余的回馈给定子电源了。例如下章叙述的变极或变频调速过程,则为正向回馈制动过程。
5.3.4 三相异步电动机的各种运行状态 和直流电动机一样,三相异步电动机按其转矩
与转速 的方向的异同,可分为电动运行状态和制动运行状态。各种运行状态如图5.31 所示。1.电动运行状态 当 与 , 同方向,机械特性及其稳定运行点在第Ⅰ、Ⅲ象限。若电机运行于第Ⅰ象限,, 称为正向电动状态,其稳定运行点 ,、称为正向电动运行点;若电机、称为反向运运行于第Ⅲ象限,, 称为反向电动状态,其稳定运行点
行点。在电动状态,电机通过定子向电网吸收电能,经过转子转换成机械能输出。
2.制动运行状态 图5.31 三相异步电动机的各种运行状态 当 与 反方向,机械特性及其稳定运行点在第Ⅱ、Ⅳ象限。能耗制动、反接制动、倒拉反接制动和回馈制动点等各种制动运行过程和状态根据上述分析结果绘于图5.31中。例5.7 某起重机吊钩由一台绕线式三相异步电动机拖动,电动机额定数据为: , 提升重物 , ,,下放重物
。电动机的负载转矩。
为工作在固有特性上的转速,低
kW, 的情况是:(1)提升重物,要求有低速、高速二档,且高速时转速 速时转速
路应串入的电阻值。
(2)下放重物要求有低速、高速二档,且高速时转速,工作于转子回路串电阻的特性上。求两档转速各为多少及转子回
为工作在负序电源的固有机械特性上的转速,低速时转速,仍然工作于转子回路串电阻的特性上。求两档转速及转子应串入的电阻值。说明电动机运行在哪种状态。
解:(1)根据题意画出该电动机运行时相应的机械特性,见下图所示。点A、B是提升重物时的两个工作点。
(2)计算固有机械特性的有关数据: 额定转差率
固有机械特性的临界转差率
额定转矩
1)提升重物转速及转子回路串入电阻的计算 提升重物时负载转矩
高速为
低速时转子每相串入电阻 低速为
低速时B点的转差率为 的计算:
过B点的机械特性的临界转差率为
低速时每相串入电阻,则
2)下放重物两档速度及串入电阻的计算 下放重物时负载转矩
负载转矩为 在固有机械特性上运行时的转差率为
(另一解不合理,舍去)
相应转速降落为
负相序电源高速下放重物时电动机运行于反向回馈制动运行状态,其转速为
低速下放重物电动机运行于倒拉反转状态。低速下放转速为
相应转差率为
过D点的机械特性的临界转差率为
低速下放重物时转子每相串入电阻值为,则
第二篇:变频器供电的异步电动机电气制动方法与原理
变频器供电的异步电动机电气制动方法与原理
The Electric Brake Method and Principle of AC Motor Based 本文来自2005年第4期“请选择栏目”上 ,已经被阅读过593次
作 者 :马鞍山钢铁集团 自动化部 陆文龙
摘 要 :本文简要介绍了交流异步电动机的运行原理,着重阐述了采用变频器供电的异步电动机电气制动的几种方法与制动原理,指出了各种制动方法的优缺点及其适应场合。
英文摘 要 :he running principle of AC motor is introduced briefly in this paper, especially some electric brake methods and principle of AC motor based on inverter control are expounded, also the merits and defects of those brake methods and their acclimation are pointed out.关键词: 变频器 异步电机运行原理 制动方法引言
在通用变频器、异步电动机和机械负载所组成的变频调速传动系统中,当电动机减速或者拖动位能负载下放时,电动机的实际速度将高于旋转磁场的旋转速度。为了使电动机的实际速度与给定速度相符,就必须采取制动措施。异步电动机的制动方法有再生发电制动、直流制动和机械抱闸制动。而机械抱闸制动直观,这里不做介绍,只介绍前面两种电气制动方法。为了便于介绍电气制动的原理与方法,首先回顾一下,异步电动机的运行原理。异步电机运行原理
众所周知,异步电动机的定子上装有一套在空间上对称分布的三相绕组AX、BY、CZ如图1所示。当给这三相绕组通以交流电时, 则在定转子气隙中产生磁场。此磁场在任何瞬间都是三相绕组各磁场的总和。通过右手定则对图1中不同瞬间电流与磁场方向的关系可知,合成磁场FΣ的方向与电流为最大值那一相绕组的轴线方向一致。因此随着电流最大值依次由A相→B相→C相→A相等顺序变化,合成磁场的方向也依次指向A相→B相→C相→A相等各相绕组的轴线方向。这就是说,这个合成磁场是一个“旋转磁场”。其旋转速度n0(同步转速)与交流电源频率成正比,而与磁场极对数成反比。
图1 旋转磁场形成
由于旋转磁场的作用,转子导体切割磁场磁力线而产生感应电势,这个感应电势使闭合的转子导体产生电流,通电导体在磁场中又受到一个力的作用,这个作用在导体上的力,将使异步电动机旋转,其某一瞬间情况如图2所示。根据右手定则可知转子闭合导体电流的方向。再根据左手定则可知转子导体受力方向。此作用力产生的转矩XTD将克服阻力矩Mfz,使电机加速到电动力矩等于阻力矩为止。
图2 旋转力矩形成 电气制动的方法与原理
采用通用变频器供电的异步电动机电气制动有直流制动与再生发电制动(能耗制动)两种。现就这两种制动方法与制动原理分述如下。
3.1 直流制动
直流制动是使变频器向异步电动机的定子任意两相通以直流电,异步电动机便处于能耗制动状态。这种情况下变频器的输出频率为零,异步电动机的定子磁场不再旋转。直流制动主要用于准确停车与防止起动前电动机由于外因引起的不规则自由旋转(如风机类负载)。当直流制动用于准确停车时,一般都应先进行再生发电制动,在电动机减速到较低时,进行直流制动。这是因为高速时进行直流制动,异步电动机转子电流的频率与幅值都很高,转子铁损很大,导致电动机发热严重,但得到的制动转矩却并不太大,另一方面准确停车也较难保证,而采用先再生发电制动,等降频到fDB再进行直流制动,只要合理调整fDB、制动时间tDB、制动直流电压UDB就可确保准确停车。转动着的转子切割这个静止磁场而产生制动转矩,如图3所示。旋转系统存储的动能转换成电能消耗于异步电动机转子回路中。图3的(a)与(b)还说明这种制动与通入直流电的极性无关。
图3 直流制动原理
3.2 再生发电制动
当给定频率降低时,定子旋转磁场的旋转速度降低或位能负载下放倒拉。此时异步电动机转子旋转速度将超过旋转磁场的旋转速度,因此转子导体中的感应电势反向,电流反向,电动转矩反向,如图4,电动转矩(与阻力矩同向)起制动作用,使电动机减速。此时的异步电动机相当于一台异步发电机,将旋转系统存储的动能或重物下放的位能转换成电能。这部分电能如果不进行处理,将引起直流侧过压,而引起故障跳闸或损坏变频器,因此必须处理好这部分电能。其处理方法一般有如下三种:
图4 发电状态
(1)动力制动
这种方法就是通过与直流回路滤波电容并联的放电电阻,将这部分电能消耗掉,因此也称再生能耗制动,如图5所示,图5中虚线框内为制动单元(PW),它包括内部制动电阻RB,制动用的晶体管VB等,VB的通断是通过检测直流电压大、小来控制。实际上电阻中的电流是间歇的,所以西门子公司资料称“脉冲电阻”(Pulsed Resistor)。此单元实际上只起消耗电能防止直流侧过电压的作用。它并不起制动作用,但人们习惯称此单元为制动单元。要提高制动的快速性,就要快速消耗掉这部分电能,可以在图5中H,G两点间外接制动电阻REB,REB阻值与功率应符合产品样本要求。
图5 动力制动
(2)再生制动
这种方法就是通过与整流器反并联的回馈单元,将这部分电能回馈给电网如图6所示,这种情况整流单元也必须采用晶闸管整流元件,一般采用逻辑无环流工作方式。回馈单元与电网之间应串接一台自耦变压器,此种制动方法虽然可以把旋转系统存储的能量回馈给电网,但对供电电网的要求比较高;一是电网电压波动要小,且必须可靠;二是电网短路容量要大,否则在回馈期间,电源电压偏低或电源被切断,有源逆变器就会迅速直通,引起换流失败,烧坏快速熔断器及晶闸管元件。因此,对电网电压波动较大(如带有电炉负载的电网),或采用接触式供电(如行车、机车车辆)的场合以采用动力制动为好,虽然浪费了一点电能,但可靠性大大提高。
图6 回馈单元
(3)直流公共母线
所谓直流公共母线是用一台整流器给多台逆变器供电如图7所示,它利用工作在电动状态的电动机吸收工作在发电状态电动机的电能, 但当发电状态多于电动状态时, 吸收能力不足仍将引起直流过电压,因此还需要有前面两种方法之一(如图7中虚线框所示)做后备吸收才较完美。
图7 直流公共母线 结束语
通用型变频器在异步电动机的调速系统中已得到了越来越广泛的应用。为了满足生产机械快速制动与准确停车等方面的要求,必须对异步电动机进行制动,而机械抱闸闸皮容易磨损,维护工作量大,而且浪费电能,因此一般是先进行电气制动,最后才进行机械抱闸以达到准确停车的目的。因此本文以交流异步电动机的运行原理为基础,着重介绍了采用变频器供电的异步电动机的几种方法与原理,指出了各种制动方法的优缺点及适应场合,以供从事这方面工作的人员参考。参考文献
第三篇:变频器供电的异步电动机电气制动方法与原理
变频器供电的异步电动机电气制动方法与原理 引言
在通用变频器、异步电动机和机械负载所组成的变频调速传动系统中,当电动机减速或者拖动位能负载下放时,电动机的实际速度将高于旋转磁场的旋转速度。为了使电动机的实际速度与给定速度相符,就必须采取制动措施。异步电动机的制动方法有再生发电制动、直流制动和机械抱闸制动。而机械抱闸制动直观,这里不做介绍,只介绍前面两种电气制动方法。为了便于介绍电气制动的原理与方法,首先回顾一下,异步电动机的运行原理。异步电机运行原理
众所周知,异步电动机的定子上装有一套在空间上对称分布的三相绕组AX、BY、CZ如图1所示。当给这三相绕组通以交流电时, 则在定转子气隙中产生磁场。此磁场在任何瞬间都是三相绕组各磁场的总和。通过右手定则对图1中不同瞬间电流与磁场方向的关系可知,合成磁场FΣ的方向与电流为最大值那一相绕组的轴线方向一致。因此随着电流最大值依次由A相→B相→C相→A相等顺序变化,合成磁场的方向也依次指向A相→B相→C相→A相等各相绕组的轴线方向。这就是说,这个合成磁场是一个“旋转磁场”。其旋转速度n0(同步转速)与交流电源频率成正比,而与磁场极对数成反比。
图1 旋转磁场形成
由于旋转磁场的作用,转子导体切割磁场磁力线而产生感应电势,这个感应电势使闭合的转子导体产生电流,通电导体在磁场中又受到一个力的作用,这个作用在导体上的力,将使异步电动机旋转,其某一瞬间情况如图2所示。根据右手定则可知转子闭合导体电流的方向。再根据左手定则可知转子导体受力方向。此作用力产生的转矩XTD将克服阻力矩Mfz,使电机加速到电动力矩等于阻力矩为止。
图2 旋转力矩形成 电气制动的方法与原理
采用通用变频器供电的异步电动机电气制动有直流制动与再生发电制动(能耗制动)两种。现就这两种制动方法与制动原理分述如下。
3.1 直流制动
直流制动是使变频器向异步电动机的定子任意两相通以直流电,异步电动机便处于能耗制动状态。这种情况下变频器的输出频率为零,异步电动机的定子磁场不再旋转。直流制动主要用于准确停车与防止起动前电动机由于外因引起的不规则自由旋转(如风机类负载)。当直流制动用于准确停车时,一般都应先进行再生发电制动,在电动机减速到较低时,进行直流制动。这是因为高速时进行直流制动,异步电动机转子电流的频率与幅值都很高,转子铁损很大,导致电动机发热严重,但得到的制动转矩却并不太大,另一方面准确停车也较难保证,而采用先再生发电制动,等降频到fDB再进行直流制动,只要合理调整fDB、制动时间tDB、制动直流电压UDB就可确保准确停车。转动着的转子切割这个静止磁场而产生制动转矩,如图3所示。旋转系统存储的动能转换成电能消耗于异步电动机转子回路中。图3的(a)与(b)还说明这种制动与通入直流电的极性无关。
图3 直流制动原理
3.2 再生发电制动
当给定频率降低时,定子旋转磁场的旋转速度降低或位能负载下放倒拉。此时异步电动机转子旋转速度将超过旋转磁场的旋转速度,因此转子导体中的感应电势反向,电流反向,电动转矩反向,如图4,电动转矩(与阻力矩同向)起制动作用,使电动机减速。此时的异步电动机相当于一台异步发电机,将旋转系统存储的动能或重物下放的位能转换成电能。这部分电能如果不进行处理,将引起直流侧过压,而引起故障跳闸或损坏变频器,因此必须处理好这部分电能。其处理方法一般有如下三种:
图4 发电状态
(1)动力制动
这种方法就是通过与直流回路滤波电容并联的放电电阻,将这部分电能消耗掉,因此也称再生能耗制动,如图5所示,图5中虚线框内为制动单元(PW),它包括内部制动电阻RB,制动用的晶体管VB等,VB的通断是通过检测直流电压大、小来控制。实际上电阻中的电流是间歇的,所以西门子公司资料称“脉冲电阻”(Pulsed Resistor)。此单元实际上只起消耗电能防止直流侧过电压的作用。它并不起制动作用,但人们习惯称此单元为制动单元。要提高制动的快速性,就要快速消耗掉这部分电能,可以在图5中H,G两点间外接制动电阻REB,REB阻值与功率应符合产品样本要求。
图5 动力制动
(2)再生制动
这种方法就是通过与整流器反并联的回馈单元,将这部分电能回馈给电网如图6所示,这种情况整流单元也必须采用晶闸管整流元件,一般采用逻辑无环流工作方式。回馈单元与电网之间应串接一台自耦变压器,此种制动方法虽然可以把旋转系统存储的能量回馈给电网,但对供电电网的要求比较高;一是电网电压波动要小,且必须可靠;二是电网短路容量要大,否则在回馈期间,电源电压偏低或电源被切断,有源逆变器就会迅速直通,引起换流失败,烧坏快速熔断器及晶闸管元件。因此,对电网电压波动较大(如带有电炉负载的电网),或采用接触式供电(如行车、机车车辆)的场合以采用动力制动为好,虽然浪费了一点电能,但可靠性大大提高。
图6 回馈单元
(3)直流公共母线
所谓直流公共母线是用一台整流器给多台逆变器供电如图7所示,它利用工作在电动状态的电动机吸收工作在发电状态电动机的电能, 但当发电状态多于电动状态时, 吸收能力不足仍将引起直流过电压,因此还需要有前面两种方法之一(如图7中虚线框所示)做后备吸收才较完美。
图7 直流公共母线 结束语
通用型变频器在异步电动机的调速系统中已得到了越来越广泛的应用。为了满足生产机械快速制动与准确停车等方面的要求,必须对异步电动机进行制动,而机械抱闸闸皮容易磨损,维护工作量大,而且浪费电能,因此一般是先进行电气制动,最后才进行机械抱闸以达到准确停车的目的。因此本文以交流异步电动机的运行原理为基础,着重介绍了采用变频器供电的异步电动机的几种方法与原理,指出了各种制动方法的优缺点及适应场合,以供从事这方面工作的人员参考。
第四篇:三相异步电动机制动方法及应用
西安科技大学继续教育学院 《电力拖动技术课程设计》报告书
三相异步电动机制动方法及应用
专 业:电气自动化 学生姓名: sjcqing 班 级:09电气自动化大专班 指导老师:
提交日期: 2012 年 3 月
西安工程技术学院
摘 要
近几十年来,随着电力电子技术、微电子技术及现代控制理论的发展,中、小功率电动机在工农业生产及人们的日常生活中都有极其广泛的的应用。特别是在乡镇企业及家用电器中,更需要有大量的中、小功率电动机。由于这种电动机的发展及广泛的应用,它的使用、保养和维护工作也越来越重要。电机是现代工农业生产和交通运输的重要设备,与电机配套的控制设备的性能已经成为用户关注的焦点。电机的控制包括电机的起动、调速和制动。异步电动机由于具有结构简单、体积小、价格低廉、运行可靠、维修方便、运行效率较高、工作特性较好等优点,因而在电力拖动平台上得到了广泛应用。据统计,其耗电量约占全国发电量的40%左右。当电机并入电网时,电机转速从静止加速到额定转速的过程称为电机的起动过程。异步电动机的起动性能最重要的是起动电流和起动转矩。因此在电机的起动过程中,如何降低起动电流,增大起动转矩,一直是机电行业的专家们探讨的重要课题。电动机机应用广泛,种类繁多、性能各异,分类方法也很多。本文是对三相异步电动机做出深入的剖析与设计。三相异步电动机是一种具有高效率、低磨损、低噪声的电机机种.本设计在介绍三相异步电动机中,关于相数、极数、槽数及绕组连接方式的选择方法和应遵从的规律详细的加以说明和介绍。文中主要介绍了几种常用的制动方式的特点,对不同制动方式进行了技术比较,分析了他们各自的实用场所,为实际应用提供了科学的理论依据。
关键词: 三相异步电动机
结构
制动方式
西安工程技术学院
Abstract In recent decades, along with the electric power electronic technology, microelectronic technology and modern control theory, medium, small power motors in industrial and agricultural production and people's daily life are extremely extensive application.Especially in the township enterprises and household appliances, needs to have plenty of medium, small power motor.Due to the development of the motor and the widespread application, its use, maintenance and maintenance work is more important.The motor is a modern industrial and agricultural production and transport of the essential equipment, and machine control equipment performance has become a user focus.Motor control includes a motor starting, speed regulation and braking.Asynchronous motor due to its simple structure, small volume, low cost, reliable operation, convenient repair, high efficiency, good working properties, and thus in the electric drive platform has been widely used.According to statistics, its power consumption accounted for about40% of generating capacity.When the motor is connected with the power grid, the motor speed to accelerate from zero to the rated speed of the process is known as the motor starting process.Asynchronous motor starting performance, the most important is the starting current and starting torque.Therefore in the motor starting process, how to reduce the starting current, increase the starting torque, is a mechanical and electrical industry experts to explore the important subject.Motor machine a wide range of applications, a wide range of different classification methods, properties, also a lot of.This article is on the three-phase asynchronous motor to make deep analysis and design.The three-phase asynchronous motor is a kind of high efficiency, low wear, low noise motor models.The design in the design of the three-phase asynchronous motor, on the phase number, the number of poles, slot number and winding connection mode selection method and the laws that should be obeyed.This paper mainly introduces several common braking characteristics, for different braking modes of technology, analyzes their practical places, for practical applications to provide scientific theoretical basis.Key words: three-phase asynchronous motor structure braking method
西安工程技术学院
前 言
电动机是把电能转换成机械能的设备。近几十年随着科技的发展电动机在机械、冶金、石油、煤炭、化学、航空、交通、农业以及其他各种工业中,被广泛地应用着。随着工业自动化程度不断提高,需要采用各种各样的控制电机作为自动化系统的元件,人造卫星的自动控制系统中,电机也是不可缺少的。此外在国防、文教、医疗及日常生活中(现代化的家电工业中)电动机也愈来愈广泛地应用起来
与单相电动机相比,三相异步电动机运行性能好,并可节省各种材料。按转子结构的不同,三相异步电动机可分为笼式和绕线式两种。笼式转子的异步电动机结构简单、运行可靠、重量轻、价格便宜,得到了广泛的应用,其主要缺点是调速困难。绕线式三相异步电动机的转子和定子一样也设置了三相绕组并通过滑环、电刷与外部变阻器连接。调节变阻器电阻可以改善电动机的起动性能和调节电动机的转速。而三相异步电动机的制动方法,在其中无疑起到了关键性的作用,其在切断电源以后,利用电气原理或机械装置使电动机迅速停转。其制动方法主要分为,电力制动和机械制动。电力制动和机械制动又可分为若干制动方式。其制动方法和制动原理在第二章会重点介绍。
在本次课题设计中共分为三大章节,第一章为课题介绍,在其中说明了本课题的设计背景、设计意义以及本课题的主要工作。第二章则着重于三相异步电动机制动方法的介绍、分类以及其结构原理。第三章是三相异步电动机的绕组故障分析以及故障处理方法。
此课题在设计过程中,重点介绍了三相异步电动机的制动方法,在查阅相关资料和老师、同学的帮助下完成了相关理论知识的设计,由于个人设计的水平有限,难免有疏漏和欠妥之处,敬请老师和同学指正,谢谢!
西安工程技术学院
目录
前 言.........................................................................3 第1章 课题介绍...............................................................5
1.1 课题背景.............................................................................................................................5 1.2 课题意义.............................................................................................................................5 1.3 本课题主要工作.................................................................................................................5 第2章 三相异步电动机的制动方法...............................................6
2.1 何谓三相异步电动机的制动.............................................................................................6 2.2 三相异步电动机的制动介绍.............................................................................................6 2.3 三相异步电动机的制动步骤.............................................................................................8 2.4 回馈制动(又称发电制动、再生制动).......................................................................16 第3章 三相异步电动机绕组的故障分析和处理....................................18
3.1 绕组接地.........................................................................................................................18 3.2 绕组短路.........................................................................................................................18 3.3 绕组断路.........................................................................................................................19 3.4 绕组接错.........................................................................................................................20 总 结......................................................................21 参考文献......................................................................22 致 谢......................................................................2
3西安工程技术学院
第1章 课题介绍
1.1 课题背景
由于生产机械的不断更新和发展,对电动机的起动性能也提出了越来越高的要求。电动机作为重要的动力装置,已被广泛用于工业、农业、交通运输、国防军事设施以及日常生活中。直流电动机其调速在过去一直占统治地位,但由于本身结构原因,例如换向器的机械强度不高,电刷易于磨损等,远远不能适应现代生产向高速大容量化发展的要求。相比之下,三相异步交流电动机拥有延长设备的使用寿命,有强大的降噪能力,操作智能化,维护简便、通用性强等众多特性,特别是三相线笼式异步电动机,由于其结构简单、制造方便、价格低廉,而且坚固耐用,惯量小,运行可靠等优势,在工业中得到了极为广泛的应用,也正在发挥着越来越重要的作用。
三相异步电动机在各种电动机中的应用最广,需求量最大,在工业生产、农业机械化交通运输、国防工业等电力拖动装置中有很大的比重,这是因为三相异步电动机具有结构简单、制造方便、价格低廉、运行可靠等一系列优点,另外还具有较高的运行效率和较好的工作特性,能满足各行业大多数生产机械的转动要求。
因此三相交流异步电动机的技术在我国有极为广泛的发展前景。
1.2 课题意义
通过本课题的设计,了解三相异步电动机的基本自动方式,进一步了解三相异步电动机的结构、工作原理、三相异步电动机的分类及用途、各种制动方式和三相异步电动机在应用中经常出现的问题。本次课程设计将对三相异步电动机的制动控制方式进行分析,进一步分别讨论了三相异步电动机的几种制动方式特性以及在不同设备中的应用情况。
1.3 本课题主要工作
介绍三相异步电动机的基本结构和工作原理,详细介绍了三相异步电动机的制动方法、控制线路和使用过程中的故障处理。
西安工程技术学院
第2章 三相异步电动机的制动方法
2.1 何谓三相异步电动机的制动
在切断电源以后,利用电气原理或机械装置使电动机迅速停转的方法称为三相异步电动机的制动
2.2 三相异步电动机的制动介绍
制动的方法一般有两类:机械制动和电力制动。
机械制动:利用机械装置使电动机断开电源后迅速停转的方法叫机械制动。机械制动常用的方法有:电磁抱闸和电磁离合器制动。
电气制动:电动机产生一个和转子转速方向相反的电磁转矩,使电动机的转速迅速下降。三相交流异步电动机常用的电气制动方法有反接制动、能耗制动和回馈制动。2.2.1 机械制动
采用机械装置使电动机断开电源后迅速停转的制动方法。如电磁抱闸、电磁离合离合器等电磁铁制动器。
(1)电磁抱闸断电制动控制电路
电磁抱闸抱闸断电控制电路如图1所示。合上电源开关QS和开关K,电动机接通电源,同时电磁抱闸线圈YB得电,衔铁吸合,克服弹簧的拉力使制动器的闸瓦与闸轮分开,电动机正常运转。断开开关,电动机失电,同时电磁抱闸线圈YB也失电,衔铁在弹簧拉力作用下与铁芯分开,并使制动器的闸瓦紧紧抱住闸轮,电动机被制动而停转。图中开关K可采用倒顺开关、主令控制器、交流接触器等控制电动机的正反转,满足控制要求。倒顺开关接线示意图如图2所示。这种制动方法在起重机械上广泛应用,如行车、卷扬机、电动葫芦(大多采用电磁离合器制动)等。其优点是能准确定位,可防止电动机突然断电时重物自行坠落而造成事故。
西安工程技术学院
7(2)电磁抱闸通电制动控制电路
电磁抱闸断电制动其闸瓦紧紧抱住闸轮,若想手动调整工作是很困难的。因此,对电动机制动后仍想调整工件的相对位置的机床设备就不能采用断电制动,而应采用通电制动控制,其电路如图3所示。当电动机得电运转时,电磁抱闸线圈无法得电,闸瓦
西安工程技术学院
2.3 三相异步电动机的制动步骤 2.3.1反接制动的方法
异步电动机反接制动有两种,一种是在负载转矩作用下使电动机反转的倒拉反转反接制动,这种方法不能准确停车。另一种是依靠改变三相异步电动机定子绕组中三相电源的相序产生制动力矩,迫使电动机迅速停转的方法。
反接制动的优点是:制动力强,制动迅速。缺点是:制动准确性差,制动过程中冲击强烈,易损坏传动零件,制动能量消耗大,不宜经常制动。因此反接制动一般适用于制动要求迅速、系统惯性较大,不经常启动与制动的场合。(1)速度继电器(文字符号KS)
速度继电器是依靠速度大小使继电器动作与否的信号,配合接触器实现对电动机的反接制动,故速度继电器又称为反接制动继电器。
感应式速度继电器是靠电磁感应原理实现触头动作的。从结构上看,与交流电机类似,速度继电器主要由定子、转子和触头三部分组成。定子的结构与笼型异步电动机相似,是一个笼型空心圆环,有硅钢片冲压而成,并装有笼型绕组。转子是一个圆柱形永久磁铁。
西安工程技术学院
速度继电器的结构原理图
速度继电器的符号
速度继电器的轴与电动机的轴相连接。转子固定在轴上,定子与轴同心。当电动机转动时,速度继电器的转子随之转动,绕组切割磁场产生感应电动势和电流,此电流和永久磁铁的磁场作用产生转矩,使定子向轴的转动方向偏摆,通过定子柄拨动触头,使常闭触头断开、常开触头闭合。当电动机转速下降到接近零时,转矩减小,定子柄在弹簧力的作用下恢复原位,触头也复原。常用的感应式速度继电器有JY1和JFZ0系列。JY1系列能在3000r/min的转速下可靠工作。JFZ0型触头动作速度不受定子柄偏转快慢的影响,触头改用微动开关。一般情况下,速度继电器的触头在转速达到120r/min以上时能动作,当转速低于100r/min左右时触头复位。
西安工程技术学院
(2)反接制动的控制线路
单向启动反接制动控制线路
当电动机正常运转需制动时,将三相电源相序切换,然后在电动机转速接近零时将电源及时切掉。控制电路是采用速度继电器来判断电动机的零速点并及时切断三相电源的。速度继电器KS的转子与电动机的轴相连,当电动机正常运转时,速度继电器的常开触头闭合,当电动机停车转速接近零时,KS的常开触头断开,切断接触器的线圈电路。
西安工程技术学院
3)反接制动控制线路工作原理分析(A)单向启动
(a)单向启动原理示意图
(西安工程技术学院)反接制动
(B
西安工程技术学院
(b)反接制动原理示意图
2.3.2 能耗制动的方法
当电动机切断交流电源后,立即在定子绕组的任意二相中通入直流电,迫使电动机迅速停转的方法叫能耗制动。
(1)能耗制动的方法
西安工程技术学院
先断开电源开关,切断电动机的交流电源,这时转子仍沿原方向惯性运转;随后向电动机两相定子绕组通入直流电,使定子中产生一个恒定的静止磁场,这样作惯性运转的转子因切割磁力线而在转子绕组中产生感应电流,又因受到静止磁场的作用,产生电磁转矩,正好与电动机的转向相反,使电动机受制动迅速停转。由于这种制动方法是在定子绕组中通入直流电以消耗转子惯性运转的动能来进行制动的,所以称为能耗制动。
能耗制动的优点是制动准确、平稳,且能量消耗较小。缺点是需附加直流电源装置,设备费用较高,制动力较弱,在低速时制动力矩小。所以,能耗制动一般用于要求制动准确、平稳的场合。
(2)能耗制动控制线路
对于10KW以上容量较大的电动机,多采用有变压器全波整流能耗制动控制线路。如图2-74所示为有变压器全波整流单向启动能耗制动控制线路,该线路利用时间继电器来进行自动控制。其中直流电源由单相桥式整流器VC供给,TC是整流变压器,电阻R是用来调节直流电流的,从而调节制动强度。
单向启动能耗制动控制线路
西安工程技术学院
(3)线路工作原理分析如下
(A)单向启动运转
西安工程技术学院
(B)双向启动运转
2.4 回馈制动(又称发电制动、再生制动)
这种制动方法主要用在起重机械和多速异步电动机上。
当起重机在高处开始下放重物时,电动机转速n小于同步转速n1,这时电动机处于电动运行状态,但由于重力的作用,在重物的下放过程中,会使电动机的转速n大于同步转速n1,这时电动机处于发电运行状态,转子相对于旋转磁场切割磁力线的运动方向会发生改变,其转子电流和电磁转矩的方向都与电动运行时相反,电磁力矩变为制动力矩,从而限制了重物的下降速度,不致于重物下降得过快,保证了设备和人身安全。
西安工程技术学院
对多速电动机变速时,如使电动机由二级变为四级时,定子旋转磁场的同步转速n1由3000转/分变为1500转/分,而转子由于惯性仍以原来的转速n(接近3000转/分)旋转,此时n>n1,电动机产生发电制动作用。
发电制动是一种比较经济的制动方法。制动时不需改变线路即可从电动运行状态自动地转入发电制动状态,把机械能转换成电能再回馈到电网,节能效果显著。缺点是应用范围较窄,仅当电动机转速大于同步转速时才能实现发电制动。
西安工程技术学院
第3章 三相异步电动机绕组的故障分析和处理
绕组是电动机的组成部分,老化,受潮、受热、受侵蚀、异物侵入、外力的冲击都会造成对绕组的伤害,电机过载、欠电压、过电压,缺相运行也能引起绕组故障。绕组故障一般分为绕组接地、短路、开路、接线错误。现在分别说明故障现象、产生的原因及检查方法。
3.1 绕组接地
指绕组与铁心或与机壳绝缘破坏而造成的接地。
3.1.1 故障现象
机壳带电、控制线路失控、绕组短路发热,致使电动机无法正常运行。3.1.2 产生原因
绕组受潮使绝缘电阻下降;电动机长期过载运行;有害气体腐蚀;金属异物侵入绕组内部损坏绝缘;重绕定子绕组时绝缘损坏碰触铁心;绕组端部碰触端盖机座;定、转子磨擦引起绝缘灼伤;引出线绝缘损坏与壳体相碰;过电压(如雷击)使绝缘击穿。
3.1.3 处理方法
(1)绕组受潮引起接地的应先进行烘干,当冷却到60——70℃左右时,浇上绝缘漆后再烘干。
(2)绕组端部绝缘损坏时,在接地处重新进行绝缘处理,涂漆,再烘干。(3)绕组接地点在槽内时,应重绕绕组或更换部分绕组元件。
3.2 绕组短路
由于电动机电流过大、电源电压变动过大、单向运行、机械碰伤、制造不良等造成绝缘损坏所至,分绕组匝间短路、绕组间短路、绕组极间短路和绕组相间短路。3.2.1 故障现象
离子的磁场分布不均,三相电流不平衡而使电动机运行时振动和噪声加剧,严重时
西安工程技术学院
电动机不能启动,而在短路线圈中产生很大的短路电流,导致线圈迅速发热而烧毁。3.2.2 产生原因
电动机长期过载,使绝缘老化失去绝缘作用;嵌线时造成绝缘损坏;绕组受潮使绝缘电阻下降造成绝缘击穿;端部和层间绝缘材料没垫好或整形时损坏;端部连接线绝缘损坏;过电压或遭雷击使绝缘击穿;转子与定子绕组端部相互摩擦造成绝缘损坏;金属异物落入电动机内部和油污过多。3.2.3 短路处理方法
(1)短路点在端部。可用绝缘材料将短路点隔开,也可重包绝缘线,再上漆重烘干。
(2)短路在线槽内。将其软化后,找出短路点修复,重新放入线槽后,再上漆烘干。(3)对短路线匝少于1/12的每相绕组,串联匝数时切断全部短路线,将导通部分连接,形成闭合回路,供应急使用。
(4)绕组短路点匝数超过1/12时,要全部拆除重绕。
3.3 绕组断路
由于焊接不良或使用腐蚀性焊剂,焊接后又未清除干净,就可能造成壶焊或松脱;受机械应力或碰撞时线圈短路,短路与接地故障也可使导线烧毁。在并烧的几根导线中有一根或几根导线短路时,另几根导线由于电流的增加而温度上升,引起绕组发热而断路。一般分为一相绕组端部断线、匝间断路、并联支路处断路、多根导线并烧中一根断路、转子断路。3.3.1 故障现象
电动机不能启动,三相电流不平衡,有异常噪声或振动大,温升超过允许值或冒烟。
3.3.2 产生原因
(1)在检修和维护保养时碰断或因制造质量问题。
(2)绕组各元件、极(相)组和绕组与引接线等接线头焊接不良,长期运行过热脱焊。
(3)受机械力和电磁场力使绕组损伤或拉断。
(4)匝间或相间短路及接地造成绕组严重烧焦或熔断等。3.3.3 断路处理方法
(1)断路在端部时,连接好后焊牢,包上绝缘材料,套上绝缘管,绑扎好,再烘干。(2)绕组由于匝间、相间短路和接地等原因而造成绕组严重烧焦的一般应更换新
西安工程技术学院
绕组。
(3)对断路点在槽内的,属少量断点的做应急处理,采用分组淘汰法找出断点,并在绕组端断部将其连接好并绝缘合格后使用。
(4)对笼形转子断路的可采用焊接法、冷接法或换条法修复。
3.4 绕组接错
绕组接错造成不完整的旋转磁场,致使启动困难、三相电流不平衡、噪声大等症状,严重时若不及时处理会烧坏绕组。主要有下列几种情况:某极相中一只或几只线圈嵌反或头尾接错;极(相)组接反;某相绕组接反; 多路并联绕组支路接错;“△”型、“Y”型接法错误。3.4.1 故障现象
电动机不能启动、空载电流过大或不平衡过大,温升太快或有剧烈振动并有很大的噪声、烧断保险丝等现象。3.4.2 产生原因
误将“△”型接成“Y”型;维修保养时三相绕组有一相首尾接反;减压启动是触头位置选择不合适或内部接线错误;新电机在下线时,绕组连接错误;旧电机触头判断不对。3.4.3 处理方法
(1)一个线圈或线圈组接反,则空载电流有较大的不平衡,应进厂返修。(2)引出线错误的应正确判断首尾后重新连接。
(3)减压启动接错的应对照接线图或原理图,认真校对重新接线。(4)新电机下线或重接新绕组后接线错误的,应送厂返修。
(5)定子绕组一相接反时,接反的一相电流特别大,可根据这个特点查找故障并进行维修。
(6)把“Y”型接成“△”型或匝数不够,则空载电流大,应及时更正。怎样测量三相异步电动机六股引出线的相同端头用干电池和万用表判别。
西安工程技术学院
总 结
实践证明,在工农业生产中,根据实际需要,科学地选用三相异步电动机的制动方法可以提高生产效率,收到很好的经济效益。在运行中对电动机进行科学的维护保养,使电动机长期处于非常好的技术状态,延长使用寿命,提高工农业生产的效率是非常有必要的。电动机从发展至今,一代代的产品问世,都是围绕着基本的工作原理而开发的,如何去运行和维护电动机是我们目前主要工作的重中之重。它在我国经济建设中担当着重要的角色。电动机经历了100多年的技术发展,电动机自身的理论基本成熟。随着电工技术的发展,对电能的转换、控制以及高效使用的要求越来越高。电磁材料的性能不断提高,电工、电子技术的广泛应用,为电动机的发展注入了新的活力。未来电动机将会沿着体积更小、机电能量转换效率更高、控制更加灵活的方向继续发展。
西安工程技术学院
参考文献
【1】 邓星钟.机电传动控制[J].华中科技大学出版社,2001.3页码5~10
【2】 唐介.电机与拖动[J].高等教育出版社,2007.12页码11~16
【3】 赵君有,王秀丽.电机与拖动[J].中国电力出版社,2009.7页码17~19
【4】 聂志强.电力拖动控制线路技术[J].哈尔滨工业大学,2008.3页码20~2
322
西安工程技术学院
致 谢
经过一个多月的时间,在各位老师、同学的帮助下,在我的不断努力下,我的课程设计终于要完成了。从设计中我学到许多知识,也理解了做任何事都要细心的道理。知识的积累是一点一滴的,在设计中我也感受颇深。在此我要真诚的感谢老师给予我的指导,在设计过程中老师严格督促我的毕业设计进度,及时的帮我解决我在设计中遇到的各种问题和困难,在设计中一直对我严格要求,在整个课程设计过程中都给予我耐心的指导和讲解,并主动为我提供各种相关技术资料,在老师的帮助和指导下我顺利完成了本次课程设计,也让我在这次课程设计中受益匪浅,在此谨向老师致以深切的谢意!
在这次课程设计中我也遇到了许多困难,且得到了学校里其他老师的帮助和指导,我也要感谢我的母校西安工程技术学院,是她提供了良好的学习环境和生活环境,让我的三年大学生活丰富多彩,为我的人生留下精彩的一笔。
感谢评阅和阅读本设计论文的老师为此付出的辛勤劳动!
在此还要感谢西安工程技术学院的全体老师,感谢他们对我的培养!最后祝愿各位老师:合家欢乐!工作顺利!身体健康!
第五篇:三相异步电动机启动方式教案
教案
课题:三相异步电动机的启动方式
一、教学目的:掌握:三相异步电动机全压启动三种控制方式的工作原理。
了解:三种控制方式的组成以及应用。
重点:自锁控制的工作原理以及线路设计。
二、教学重点、难点:要求学生掌握自锁的概念以及作用并会根据题目要求设
计线路。
三、教学方法:1采用讲授法。
2多媒体演示辅助教学。
四、课时安排:1课时
五、教学步骤:1对本堂课涉及的已学过的知识进行回顾,导出新课
2介绍三相异步电动机启动三种典型方式(原理图、工作原理、应用、保护环节).3通过连续启动控制的原理图引出本节课重点:接触器的自锁控
制
4对启动方式进行仿真,让同学更能对原理有更清晰的认识5总结本堂课讲解的重点、难点内容
6留作业(通过本堂课讲解的内容,经行扩展的作业)
六、板书设计:
黑板最左面黑板中间知识回顾:三相异步电动机启动控制
接触器(KM)三相异步电动机的启动方式分为两种:直接启动和降压启动 熔断器(FU)1点动直接启动:
热继电器(FR)1)原理图
2)工作原理
3)保护环节
4)应用范围
2连续控制直接启动:
※ 接触器的自锁
3混合控制
根据要求设计电路