功放噪音消除经验

时间:2019-05-13 23:49:26下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《功放噪音消除经验》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《功放噪音消除经验》。

第一篇:功放噪音消除经验

功放抗噪四大秘籍

功放噪音来由...................................................................................................................................1

1、电磁干扰.....................................................................................................................................1 1.1 电源变压器................................................................................................................................1 1.2 杂散电磁波........................................................................................................................2 1.3电磁干扰主要防治措施.............................................................................................3 2 地线干扰.......................................................................................................................................3 2.1 地线干扰原理分析....................................................................................................................3 2.2 解决地线干扰实例说明....................................................................................................4 2.3 实际的项目PCB板Layout图来详细说明.....................................................................5 3 机械噪声.......................................................................................................................................7 4 热燥声...........................................................................................................................................7

功放噪音来由

常见一些玩家被有源音箱的各种噪音困扰,这里就笔者在实践中总结出的一些经验与大家分享。顾名思义,有源音箱就是音箱与放大器的组合,因此有源音箱噪音分析与一般放大器噪音与放大器近似,分析、处理时可借鉴HIFI放大器。噪音与放大器相生相伴,是无可避免的,这里讨论降低噪音,目的是将其降低至可接受的范围,而不是、也无法将其彻底根除,换句话说,信噪比只能尽量提高,但不能无限大。有源音箱的噪音按来源可粗略分为电磁干扰、地线干扰、机械噪声与热噪声几类,下面来从噪音产生根源与机理方面简要分析一下,并提出一些经实践检验行之有效的解决方案。

1、电磁干扰

电磁干扰主要来源是电源变压器和空间杂散电磁波。

1.1 电源变压器

电源变压器工作过程是一个“电—磁—电”的转换过程,在电磁转换过程中必然会产生磁泄露,变压器泄磁被放大电路拾取放大,最终表现为由扬声器发出的交流声。电源变压器常见规格有EI型、环型和R型,无论是从音质角度还是从电磁泄露角度来看,这三种变压器各有优缺点,不能简单判定优劣。

1)EI型变压器是最常见、应用最广的变压器,磁泄露主要来源E与I型铁心之间的气隙以及线圈自身辐射。EI型变压器磁泄露是有方向性,如图1所示,X、Y、Z轴三个方向上,线圈轴心Y轴方向干扰最强,Z轴方向最弱,X轴方向的辐射介于Y、Z之间,因此实际使用时尽量不要使Y轴与电路板平行。

图1 EI型变压器

2)环型变压器由于不存在气隙、线圈均匀卷绕铁芯,理论上漏磁很小,也不存在线圈辐射。但环型变压器由于无气隙存在,抗饱和能力差,在市电存在直流成分时容易产生饱和,产生很强的磁泄露。国内不少地区市电波形畸变严重,因此许多用家使用环型变压器感觉并不比EI型变压器好,甚至更差。所谓环型变压器绝无泄露,或是因媒介误导,或是因厂商出于商业宣传需要而杜撰,环型变压器磁泄露极低的说法只是在市电波型为严格的正弦波时才成立。另外,环型变压器还会在引线处出现较强电磁泄露,因此环型变压器的漏磁也是一定方向性的,实际装机时旋转环型变压器,在某个角度上获得最高信噪比。

3)R型变压器可简单看做横截面圆型的环型变压器,但在线圈绕制手法上有区别,散热条件远比环型变压器为好,铁芯展开为渐开渐合型,R型变压器电磁泄露情况与环型变压器类似。由于每匝线长比环型变压器短,能紧贴铁心绕制,因此上述三类变压器中R型变压器的铜损最小。

条件允许,可考虑为变压器装一只屏蔽罩,并做妥善接地处理,该金属罩只能选用铁性材料,一般金属如铜、铝等只有电屏蔽作用而无磁屏蔽作用,不能作为变压器屏蔽罩。

1.2 杂散电磁波

杂散电磁波主要来自有源音箱的功率输出导线、扬声器及功率分频器、无线发射设备和计算机主机,产生原因在这里不做深入讨论。杂散电磁波在传输、感应的形式上与电源变压器类似,杂散磁场频率范围很宽,有用家反映有源音箱莫名其妙接收到当地电台广播就是典型的杂散电磁波干扰。

另外一个需引起重视的干扰源为整流电路。滤波电容在开机进入正常状态后,充电仅集中在交流电峰值时,充电波形是一个宽度较窄的强脉冲,电容量越大,脉冲强度也越大,从电磁干扰角度看,滤波电容并非越大越好,整流管与滤波电容之间走线应尽量缩短,同时尽量远离功放电路,PCB空间不允许则尽量用地线包络整流电路。

1.3电磁干扰主要防治措施

1.降低输入阻抗

电磁波主要被导线及PCB板走线拾取,在一定条件下,导线拾取电磁波基本可视为恒功率。根据P=U^U/R推导,感应电压与电阻值的平方成反比,即放大器实现低阻抗化对降低电磁干扰很有利。例如一个放大器输入阻抗由原20K降低至10K,感应噪声电平将降至1/4的水平。有源音箱音源主要是电脑声卡、随身听、MP3,这类音源带载能力强,适当降低有源音箱输入阻抗对音质造成的影响非常微弱不易觉察,笔者试验时曾尝试将有源音箱输入阻抗降至2KΩ,未感觉音质变化,长期工作也未见异常。

2.增强高频抗干扰能力

针对杂散电磁波多数是中高频信号的特点,在放大器输入端对地增设磁片电容,容值可在47——220P之间选取,数百皮法容值的电容频率转折点比音频范围高两、三个数量级,对有效听音频段内的声压响应和听感的影响可忽略不计。

3.注意电源变压器安装方式

采用质量较好的电源变压器,尽量拉开变压器与PCB之间的距离,调整变压器与PCB之间的方位,将变压器与放大器敏感端远离;EI型电源变压器各方向干扰强度不同,注意尽量避免干扰强度最强的Y轴方向对准PCB。

4.金属外壳须接地

对于HIFI独立功放来说,设计规范的产品在机箱上都有一个独立的接地点,该接地点其实是借助机箱的电磁屏蔽作用降低外来干扰;对于常见有源音箱来说,兼做散热器的金属面板也需接地;音量、音调电位器外壳,条件允许的话尽量接地,实践证明,该措施对工作于电磁环境恶劣条件下的PCB十分有效。地线干扰

2.1 地线干扰原理分析

电子产品的地线设计是极其重要的,无论低频电路还是高频电路都必须要个遵照设计规则。高频、低频电路地线设计要求不同,高频电路地线设计主要考虑分布参数影响,一般为环地,低频电路主要考虑大小信号地电位叠加问题,需

独立走线、集中接地。从提高信噪比、降低噪音角度看,模拟音频电路应划归低频电子电路,严格遵循“独立走线、集中一点接地”原则,可显著提高信噪比。

音频电路地线可简单划分为电源地和信号地,电源地主要是指滤波、退耦电容地线,小信号地是指输入信号、反馈地线。小信号地与电源地不能混合,否则必将引发很强的交流声:强电地由于滤波和退耦电容充放电电流较大(相对信号地电流),在电路板走线上必然存在一定压降,小信号地与该强电地重合,势必会受此波动电压影响,也就是说,小信号的参考点电压不再为零。信号输入端与信号地之间的电压变化等效于在放大器输入端注入信号电压,地电位变化将被放大器拾取并放大,产生交流声。增加地线线宽、背锡处理只能在一定程度上减弱地线干扰,但收效并不明显。有部分未严格将地线分开的PCB由于地线宽、走线很短,同时放大级数很少、退耦电容容量很小,因此交流声尚在勉强可接受范围内,只是特例,没有参考意义。

需注意的是,变压器电磁干扰引发的交流声频率一般为50HZ左右,而地线布线不当导致的交流声,由于整流电路的倍频作用频率约为100HZ,仔细区分还是可以察觉的。

2.2 解决地线干扰实例说明

正确的布线方法是,选择主滤波电容引脚作为集中接地点,强、弱信号地线严格区分开,在总接地点汇总。下面以最常见的LM1875(TDA2030A)为例,以生产商推荐线路说明一下:

图2

图中R1、R2是输入落地电阻,C2是直流反馈电容,接地点是小信号地,标记为蓝色,;C3、C4、C6、C7是退耦电容,接地端标记为红色,属电源地。正确的接地方式为:三个小信号接地点可混合在一条地线上,四个电源地汇集为另一条地线,电源地与小信号地在总接地点处汇合,除总接地点外,两种地不得有其他连通点!功放输出端的茹贝尔(zobel)移相网络(R5、C5)接地点处理方法较特殊,该接地点如并入电源地,地线电压扰动将经R4反馈至LM1875反相输入端,引起交流声;而并入小信号地的话,由于信号的相位、强度不一致,将导致音乐信号质量严重下降。因此,如印刷电路板空间允许,最好能单独走线。

2.3 实际的项目PCB板Layout图来详细说明

1.TDA2030 PCB图:

这张PCB图中,存在明显的地线设计错误,小信号地与电源地完全重合,因此该板必然存在交流噪声,且不受音量电位器控制。图中C2、C3、C4、C5是退耦电容,C7、R2、C6、JP1第一脚、JP2第三脚等五个接地点则属小信号地,大小信号地重叠后通过跳线引至C8、C9的总接地点。同时,zobel移相网络接地点(C1第二脚)也混杂在一条地线上,必然使实际情况更加复杂。

2.LM4766 PCB图:

该图中,C5、C11、C12为OP退耦电容,接地端属电源地,图中用红色细线标记出电流走向;而R5、R6、R7、R9等HPF电路电阻接地端属小信号地,与C5、C11、C12等退耦地共用一条地线走线的话,退耦电容工作电流与地线内阻引起的压降势必会叠加在R5、R6、R7、R9接地端,引发交流声甚至自激。

3.一张地线布线正确的PCB:

这张PCB中,大小信号地严格分开,同时采用了一些其他降噪手段,信噪比例很高,输入端开路时,实测输出端残留噪音不高于0.3mV,夜深人静时耳朵贴在扬声器单元上也没有任何噪声。为看图方便,仅画出一声道的地线做示范。C9、R1、C10及信号输入插座接地端是小信号地,通过红色地线接至总接地点,左侧

地线是扬声器及zobel网络地,右侧地线是退耦电容的电源地,三条地线在主滤波电容C4的1脚汇合,实现真正意义上的“一点接地”。机械噪声 4 热燥声

第二篇:噪音治理经验分享

噪音治理经验分享

在提倡环境文明的今天,噪声已成为一个多年的老大难问题。各种媒体每每提及它,老百姓在谈论它,噪声污染已成为社会一大公害,足见噪祸之害烈矣。

喇叭长鸣声不绝、长时间鞭炮鸣放、野马般的摩托飞车急驶而过,伴着大音量高分贝的流行歌曲、街道促销广告声音„„声声侵耳,道路两旁的住宅居民的安寝,用夜不成寐、苦不堪言来形容也毫不为过。于是乎,市民们大声疾呼:当还文明县城一片宁静。

●对于家庭的噪音,有很多种办法。

喜欢这样一句话:心安即是家。希望遇到一个人,有家的感觉,一颗漂浮的心,尘埃落定。在家里,会让我们感到心安。家的安宁、温馨是我们的港湾。然而,城市经济的快速发展,噪音无处不在,使得许多人不愿回家,不愿再自己的港湾驻足。

因此,家庭噪音治理亟待解决。

1、家庭墙面在装修时进行要进行隔音处理。墙面传音是很多家庭的烦恼,在装修完毕的情况下,进行隔音处理不但投入的资金增加,而且会对墙面和家具造成损坏。可以在装修时在噪音治理专家的指导下用吸音棉和石膏板或者使用专业的隔音材料做一层隔墙。

2、对于装修好的家庭进行噪音处理。简单一点的办法就是安装复生隔音门、隔音窗。复生隔音门具有防火,隔音,逃生优质功能,使用性能稳定,精工制作而成。结构合理,整体性好,强度高,施工方便,表面平整美观,开启灵活,坚固耐用,耐高温等优点。复生隔音窗中低频隔音性能好,解决了普通中空玻璃普遍存在的低频共振低谷现象。解决了通风与隔声的矛盾。

3、布艺多用点,使用布艺来消除噪声也是较为常用且有效的办法。噪音治理专家称,悬垂与平铺的织物,其吸音作用和效果是一样的,如窗帘、地毯等,以窗帘的隔音作用最为重要。

另外是铺设地毯,其柔软的触感不但能产生舒适温馨的感觉,而且能消除脚步的声音,有利于人们休息。在卧室,为了保证宁静的休息环境,应选用质地厚实的窗帘帷幔织物,控制光线和外界噪声。

多选用布工艺装饰和软性装饰。因为布工艺饰品有非常好的吸音效果。一般来说,越厚的窗帘吸音效果越好,质地以棉麻最佳。一条质地好的窗帘可以减少10%——20%的外界噪音。另外铺地毯也对室内噪音有吸收作用。

4、地面使用实木地板的隔音效果好一些。如果楼板隔音效果太差,在铺装时应该进行浮着隔音工艺处理,可以大大降低楼板传音。也可以用河南复生隔音材料做专门的隔音吊顶。

5、利用室内摆放的绿色植物进行降低噪音。可以在临街的窗台、阳台摆放一些枝叶比较多的绿色植物,也能够降低噪音的传入。●酒店噪音治理

酒店装饰设计在很大程度上决定了室内的声环境,噪音也会影响酒店营业状况。在装饰装修过程中,酒店的噪音应考虑在装修范围内。在装饰装修设计中将装饰与噪音治理结合,为酒店创造出一种新的特色和优势。

河南复生噪音治理公司对于酒店的噪音进行的噪音治理方案。

1、窗的隔音能力较低,且需经常开启,应采用复生噪音治理双层玻璃窗。

2、客房间隔墙的隔音量是客房内的生活噪声级和客房内的允许噪声级的差值再加4-5分贝,应合理、经济的确定客房间隔墙的隔声量。

3、楼板的隔音(1)面层处理

(2)在楼板与地面饰面间加一层弹性隔音垫层(3)在楼板下加设天花板

4、客房门的隔音

(1)合理制作门内结构

(2)用隔音门并将门套与门改为软性连接

5、管道穿过墙的空隙应填堵,并以砂浆抹严;管道间设隔音门 ●KTV、酒吧、迪厅、舞厅等娱乐场所噪音治理

KTV、酒吧等娱乐场所的噪声治理一直是业内公认的难度较大的治理项目,一般来说,如果KTV、酒吧是单层结构,四周与其他民宅建筑没有连接点或距离较远,则主要在墙面、门窗、排气口方面控制声波的透射和衍射即可。但如果酒吧是在居民楼尤其是高层建筑中间和底层,控制难度则相当大,治理重点则应放在低频振动的传播上,从各个点、面都进行必要的减震隔音,才有可能达到设计要求。

1、墙体隔音设计

隔墙是隔绝歌厅噪音向周边区域传播的主要屏障,其合理的隔声处理最大限度的减轻了KTV娱乐噪声对外界的影响,而且力求阻断或降低墙体的“固体声桥”作用,使KTV的娱乐噪声对周围住户的影响降到最低程度。

2、地面隔音设计

房间的空气噪声可以透过楼板传到楼下,三楼的低音也会以震动的方式向楼下和结构传播.设计中顶棚的吸隔声处理作为重中之重的工程控制措施。找平地面,满铺隔音材料,安装地板。以这样的方式可以很好的隔绝楼上噪音向楼下传播的途径。

3、天花板的隔音设计:

KTV包厢顶棚的吸隔声处理也至关重要,其效果如何是夹层能否达到声学控制设计指标的组成部分。为此,设计根据受声强弱和结构传声特点,以及所需的整体隔声量,采用单腔共振复合式吸隔声吊顶实施整体控制。

4、处理好各个门窗的隔声

可以用隔音门、隔音窗。效果好、美观时尚,绿色环保。每个房间的门都要作好隔声减震处理。

5、音箱的合理布局,可以减少互相干扰

一般的设计是临近的两个包房的音箱吊挂采用背靠背的设计,同时减少音箱后背板碰着墙面,一来方便布线和供电,二来也可以减少声音的干扰。

6、其他

包厢里的摆设、家具在一定程度上对声扬起到的改善的作用,所以在选择材料上应选择硬质材料为宜,尤其不能选择框架结构的外面是三合板材质的,因为这种材质很容易产生共振现象。

●机房噪音治理

机房噪声治理工程必须根据机房的具体情况进行设计和施工,但对于任何一个机房,为保障机组的正常工作。

1.机械本身减振:在发电机组机座上安装隔振垫(即弹性支承),减少机器振动向基础的传递量,使机器的振动得已有效的隔离,抑制噪声和降低固体传声。2.声源屏蔽隔声:发电机房为砖混结构,墙体及屋面板本身具有一定的隔声性能,但因为工作需要必须在发电机房内设门及进、排风系统,而为防止声波由于绕射能力从门及进、排风系统传出而使机房的隔声性能降低,采用隔声门与进、排风消声道进行治理。

3.消音降噪:对于发电机组排气造成的空气动力性噪声,采用在排烟管上加装二级消声器的措施进行治理,让从烟管外传的噪声通过吸收、减弱。●电梯噪音治理

由于电梯的噪音主要表现为低中频振动,它的主要传播途径为振动型固体传声,且穿透力很强(一般的噪声是空气作为传声媒质)。因此常规的加隔音板只能降低以空气作为传声媒质的噪声,而对电梯的低频噪音传动降低毫无作用。而且这种情况在噪声振源一定的情况下,要彻底解决噪声,则只有通过控制噪声及振动的传播途径来消除噪声和振动。

1、在电梯机房的四周墙体采用轻钢龙骨固定吸声棉,再在外层加小孔吸音板或石棉隔音板固定(当然从施工工艺上来说,可以要根据机房的大小及费用情况设计为一层板一层棉、一层棉两层板或两层棉一层板施工,以实现不同的效果)。

2、在采用1方法的基础上,于电梯承重工字钢上再贴减振胶或吸声海棉体等。

3、在电梯机房墙贴减振隔声毡的基础上再按2方案施工。

4、在机房四周墙体喷涂目前国内应用于体育场馆较多的新型吸声材料.●空调室机噪音治理

如何对空调机组设备进行消声、隔离、减震,从而使得建筑周边及使用房间噪声达到规范规定要求。有效降低空调设备的噪声值,使周围环境满足要求的环境标准,对提高人们生活质量、创造安静生活环境具有十分重要的社会意义。

1、控制空调室外机的噪音首先要生产低噪声的产品;其次是设计安装时要注意采取防振和降噪措施。

2、采用变速调节,降低夜间噪声

3、另外,机组在安装时应注意,室外机尽可能落地安装,基座下垫减振块或10~15mm厚的胶皮,保持机组平稳;

4、所有与外间连接的管路均应采用减振软管

5、进排风要通畅,减少回流。

河南复生噪音治理公司:http://www.xiexiebang.com

第三篇:功放心得体会

调音预期达到目标

业内有一种说法:汽车音响效果不是买来的,而是设计安装调试出来的。可见,设计安装调试在音响安装过程中的重要性。同样一个主机、几个喇叭、几根电线,不同的安装工人施工,效果会迥jiǒnɡ然不同。专业店为了改善车主收听的环境,会对车辆进行科学的安装设计,安装后凭借专业的测试设备进行调音,使所有音响器材的效果发挥到最佳状态。

好的汽车音响应具备多种因素,以下为鉴别音质六要素。在调音预期要达到的目标。

1、清晰度。美妙的音质层次十分清晰,透明度好,每个字都能听得清。

2、丰满度。中、低音充分,高音适度,有温暖、舒适感,有弹性。如果混响的时间偏短,尤其是低频段的混响时间比中频段还要短,其丰满度不会太好;音响系统的输出频率特性差,缺乏中低音,这样的声音就会显得干瘪无力,也谈不上丰满。

3、亲切感。就是通常人们所说的传神,即听到的声音存在着一种交流、倾诉感。而一般或很差的音质是体会不到这种效果的,它会使你感到紧迫而遥远。

4、平衡感。指的是左、右扬声器,主扬声器和辅助扬声器之间的输出功率的比例协调与相位的正确。立体声的左右声道一致性好,声像正常。如果声像有时有偏移又不够协调,那就算不上是好的音质。

5、环境感。声音的空间感好,整个给人逼真的感觉,用身临其境来形容好的音质是最恰当不过了。

6、响度。在响度方面,好的音质听起来是适宜、舒服的。

特别提醒,在辨别音质时应该选择优秀的声源作为试听的节目源,还有选择自己熟悉的内容做测试是更有利的。

音响频率与音质的关系如表,在调音过程中针对具体感觉,参考下表,增强或减弱相应的频段增益。

各乐器所占的频率范围

熟悉音乐中乐器所占的频率范围对音响的校调非常重要.比如若想突出定音鼓,可以对频段为上段低频(20-40 hz)适当加强。以下就是各个乐器所涵盖的频率范围。

一、低频(20-160hz)

低频又分成两段,极低频(20-40hz)与上段低频(40-80hz)。

1、极低频(20-40hz)

管风琴(可达16hz)、巴松管、土巴号、低音大提琴(double cello)

2、上段低频(40-80hz)

定音鼓、低音木管、大提琴。

中频(160-1280hz)

中频也分成两段,中段中频(320-640hz)和上段高频(640-1280hz)

1、中段中频(320-640hz)

男低音、中提琴与铜管

2、上段高频 640-1280hz 女高音、小提琴与木管

高频(1280-20240hz)

较小乐器单纯发出纯高频声音。

常见乐器频率

一般乐器不会是发出纯低频、或纯中频、或纯高频。常出乐器对应频段如下。

1、管风琴 涵盖10个八度音

2、钢琴 27hz--4186hz

3、小提琴 208---2636hz,极限高频基音 2.2khz

4、中提琴 124---1308hz

5、大提琴 65-----657hz,低音大提琴41-----195hz。

6、竖琴 65-----3135hz

7、木琴 173---2093hz

8、管钟琴 261---696hz

9、吉他 164---987hz

10、班鸠 130---880hz

11、木管、长笛 261---2093hz

12、短笛 560---4186hz

13、竖笛 139---1760hz

14、中音萨克斯风246---1391hz

15、双簧管(英国管)246-1391hz

16、巴松管 61-----589hz

17、法国号 61-----695hz

18、小喇叭 164---1046hz

19、伸缩喇叭82-----440hz 以上的数据随资料来源不同会有些微差异。如何塑造汽车音响的声场

若对音响效果很高的评价可以用这样的一句话来表达:―声音真实,而且几乎感觉不出来是电声设备扩音的效果‖。这句话其实包含了两个方面的内容:―声音真实‖表示这次音响的音质很好,充分展现了演唱者高音高亢的歌喉!―感觉不出来是电声设备扩音的效果‖则说明声场塑造的自然、真实,让每一个人感觉到美妙的歌声是从舞台上的演唱者口中发出,而不是从来自于舞台周围的音箱。

好的声场就应该是让聆听者能够感受到舞台上表演者的存在,能够很清晰地分辨出乐器、演唱者的位置和远近。当声场处理得不好时,声音就会像是被压缩机直接塞到了听着的脑袋里,或者让人明显感觉到声音是从音箱中传出来的。另外需要特别注意的是当声音从听着的身后传出,会极大地破坏声场的真实和自然。所以,理想状态下,我们希望得到一个具有高度、深度、广度,层次分明并且是在听者的正前方成型的声场环境。

应该如何得到这样的好声场呢?最重要的就是扬声器的位置和方向!在这里我们首先需要明确一点:由于声音的方向性主要取决于高频部分,所以高音扬声器的安装也就显得至关重要了。比较理想的位置是:汽车仪表盘上方左右两侧。当高音扬声器安装在这里时,能够有效地将声场提高,而且能够很轻松地将声场成型于听者的前方。但这样安装的难度很大,如何在仪表盘上方找到合适的安装位置,如何将扬声器固定等等问题都需要更好的安装工艺支持。另外,当高音扬声器被安装到仪表盘之后,必然会和中频扬声器分开较远的距离,这是很不利于声场的准确性的。所以要尽量合理安排,高音扬声器和中音扬声器相距不要超过30厘米。而且,高音扬声器和中音扬声器的方向要尽量都指向听者的位置。

如何让声场呈现在听者的前方?通常在改装汽车音响时,会在后门或者后挡板位置安装补声扬声器,另后座的听者也拥有享受音乐的权利。但如果对后面的这些扬声器调整不当,往往会导致前排座的听者感觉声音从脑袋后面传出。避免这种情况的产生有两种方法可以参考。第一种最简单,只需要将后声场扬声器的增益稍稍减小一点就可以了,但后座的声压会相应变小。第二种复杂一点,需要将后声场扬声器的设置为带通(就是低通和高通组合运用,阿尔派mrv-f540具有该功能),例如:将高通设置为80hz,低通设置为3khz,这样一来只有80——3khz的声音从后声场传出,即保证不会产生低频失真又避免了高频声音把声场―拉‖到后面,同时后座听者也感觉到音量足够大。最后要考虑的就是全车的低频部分。超低音扬声器通常安装在汽车的后备箱中。虽然理论上超低音是没有方向性的,但如果超低音扬声器的频段和后声场扬声器的频段有过多的重叠部分,则会让人感到后声场扬声器的低音部分是超低音扬声器低音的一部分,整个超低音声场被―锁定‖在了后面。所以切记后声场扬声器的高通频率设置不要太低。当前声场扬声器和超低音扬声器的频率衔接得合适时,音乐中的鼓点声的基频由超低音扬声器发出,而鼓点的高次谐波部分(仍然属于低频段声音)则由前声场扬声器发出。这样一来,听起来会让人感觉鼓声是从前声场发出的!还有一个重要的问题没有提到。没有一种安装方法是永远正确的定律。因为车型不同、设备性能不同,甚至不同人的欣赏习惯不同,所以一个优秀的声场环境是需要在理论的基础上进行实验,自己的耳朵和感觉才是评判的标准。实践是检验真理的唯一条件,在汽车音响安装过程中也不例外。低通滤波器和高能滤波器的应用 低通滤波器(lpf)该功能包括一个打开低通滤波器的开关和一个用于选择频率点的旋钮。如果旋钮调在80hz处,并把低通功能打开,功放的输出信号中所有高于80hz的声音都会被切除,只有低于80hz的声音信号能够传送到扬声器并进行输出。

应用实例:每个扬声器都有自己合适的工作范围。如果把中高频信号输送给10寸的低音,那将会听到非常含混难听的效果。要想让10寸的低音工作得更―专心‖,就应该打开功放上的低通滤波器,并把频率点调在80hz的位置。这样就只有20hz——80hz的低频信号从功放传送到低音扬声器中。高通滤波器(hpf):

该功能包括一个打开高通滤波器的开关和一个用于选择频率点的旋钮。如果旋钮调在80hz处,并把高通功能打开,和低通相反,功放的输出信号中所有低于80hz的声音都会被切除,只有高于80hz的声音信号能够传送到扬声器并进行输出。

应用实例:由于车门扬声器尺寸比较小,车门门板薄、密封性差,所以安装在车门上的扬声器的低音效果不好,甚至根本就发不出很低的频率。我们就把播放低音的―工作‖让给10寸的低音扬声器,车门扬声器专职负责除了低音以外的―工作‖。这就应该打开功放上的高通滤波器,并把频率点调在80hz的位置。这样就只有80hz——20khz的信号从功放传送到车门扬声器中。

组合运用―高通‖、―低通‖,实现―带通‖功能。

当一个全频带(20hz——20khz)信号经过一个设置频点为80hz的高通滤波后,能通过的信号就只剩下了80hz——20khz了。

如果将这个经过了高通滤波后的信号在经过一个设置频点为400hz的低通滤波器,将是什么样的结果呢?80hz——20khz的信号经过400hz低通滤波,最后剩下的就只是80hz——400hz的信号了。这样全频带(20hz——20khz)信号经过80hz高通滤波以后又经过一个400hz低通滤波(先后顺序可颠倒,可以先经过400hz低通滤波再经过80hz),就从中保留了一个80hz——400hz的频带信号。这种组合使用高通滤波和低通滤波的方法就产生了带通滤波的功能。

应用实例1 富康车一台,前门原扬声器安装尺寸为5英寸。如果直接用阿尔派spr-136a扬声器替换原车扬声器,由于振膜尺寸较小,中低频段声音和车后安装的超低音扬声器衔接不完美。如果能用一只6.5寸的中低音单元负责中低频的声音,5英寸负责中音部分,超低音扬声器负责超低音部分,就能在频响范围内获得一个流畅的理想曲线。实现方法就需要用到带通滤波功能。

选用设备:阿尔派mrv-f540功放(4声道功放,支持同时使用高通和低通功能),spr-176a扬声器低音单元,spr-136a分体式扬声器一套(带分频器)。低音功放mrd-m300,超低音扬声器sws-1041d 连接方法:spr-136a一套(带分频器)连接mrv-f540功放的1/2声道;spr-176a扬声器低音单元连接mrv-f540功放的3/4声道;sws-1041d连接mrd-m300功放。

调节方法:mrv-f540功放1/2声道高通打开,频点400hz,低通关闭;mrv-f540公放3/4声道高通打开,频点80hz,低通打开,频点400hz。mrd-m300功放低通打开,频点80hz,超低音滤波打开,频点30hz。

应用实例2 任何车型,安装有超低音一只,前门一对扬声器,后隔板一对6x9寸扬声器(注意位置:一定是后隔板而不是后门)。由于装在后隔板的6x9寸扬声器发出的高频声音对全车的声场定位有糟糕的影响,特别另后座的听者感到声音几乎完全是从后脑勺的位置发出,听感极度不舒适。

解决原理是杜绝高频声音从6x9寸扬声器发出。可以把这对6x9寸扬声器连接在mrv-f540功放上,高通80hz,低通800hz。这样一来6x9寸扬声器就不会在对前声场的定位造成不良的干扰,也不会把低音往后拖后腿。同时又起到了良好的补充声场,增强声音根基的作用。

易犯错误:上面所说的是全频带信号通过80hz高通滤波和400hz低通滤波的共同作用,产生80hz——400hz的带通滤波。如果分频点设置反了是什么样呢?全频带信号通过400hz的高通滤波,保留的信号范围是400hz——20hz。这个信号在经过80hz低通滤波,我们发现在80hz以下根本不存在信号,所以输出结果是——什么信号都没有。

如何让汽车内的音响环境更接近于音乐厅

众所周知,世界上最好的音响环境是位于奥地利维也纳的―金色大厅‖。众多音响专家和学者对金色大厅出色的音响环境进行了研究,发现它的混响时间在2秒左右,这最适合交响乐的现场演奏,因而全世界的音乐盛会——新年音乐会每年都在―金色大厅‖中举行。

混响时间在学术上的定义是―当一个声源发声达到稳定声场后停止发生,声压级下降60分贝所用的时间‖。抛开晦涩的定义,简单解释就是我们通常所说的―余音‖。因为在一个空间内,声音总会因为碰到四周的墙壁或障碍物而反射回来。当一个声音停止后,仍然会有很多声波在这个空间内被反射来反射去,同时能量不断衰减。所以听上去就会存在―余音绕梁‖的感觉。这种余音能够持续时间的长短决定了音乐的浑厚、丰满程度。2秒左右的混响时间能令现场演奏厅的声音饱满、圆润。由于一般情况下的cd盘片在录制音乐时,已经包括了一部分―余音‖,所以用音响设备欣赏时,音乐厅的听音环境的混响时间在0.3-0.5秒就已经足够了。混响时间是受听音环境的形状、结构等很多因素影响的。经过工程师的实地测量,汽车内的混响时间仅仅连0.1秒都不到。所以在车内欣赏音乐时往往感受不到―音乐厅‖的特殊氛围。

如何让顾客坐在汽车内也能感觉自己坐在音乐厅内欣赏音乐呢?还是要从―混响时间‖入手。有些主机提供―声场模拟‖的功能,可以通过改变音乐信号,―制造‖出不同的―余音‖效果。由于这样的主机需要一块专用的dsp运算芯片,所以往往成本比较高。有些机器由于dsp算法的偏差,会对音质产生非常不利的影响。原本解析力很高的音乐经过声场模拟后,变得含混、不清晰。

其实有一种简单易行、不需要很高成本又能保证纯正音质的解决方法。您只需在后门加装一对扬声器,或者在后挡板加装一对6‖x9‖的扬声器。使用带有―时间校正‖功能的主机,把安装在车内后部的扬声器加一定的延时。具体设定延时的时间可以根据实际听音效果进行确定。这种方法的原理其实是利用加装的扬声器发出类似在音乐厅中出现的―余音‖。所以需要注意装在汽车后部的扬声器在设定延时的同时,还要把功率放大器上连接这对扬声器的增益适当减小。否则余音过强会出现喧宾夺主的效果。经过精心的调整,您也可以把―金色大厅‖搬到车中。尽情享受自然、悠扬、饱满的音乐吧。如何确定主机参数均衡的分频点

部分中高档主机都具有参数均衡这一功能,但是很多用户对于如何去设置那几个参数均衡点而感到头疼,今天我们来讲一下声音频点的区分。为了让形容的文字更精确,我们将人耳所能听到的20hz-20khz这部分频段分为极低频、低频、中低频、中频、中高频、极高频等7个频段。

一、极低频:20-40hz这个频段称为极低频。这个频段内的乐器很少,大概只有低音提琴、管风琴、钢琴等乐器能够到达那么低的音域。由于这段低频并不是乐器中最能表现音质的音域,因此作曲家们也很少将音域写得那么低。除非是流行音乐以电子合成器可以安排,否则极低频对于音响迷而言用处不大。所以,我们在调音的时候都会把这一个频段做出相应的衰减。

二、低频:40-80hz这个频段称为低频。这个频段内有什么乐器呢?有大鼓、低音提琴、大提琴、低音巴松管、巴松管、低音伸缩号、低音单簧管、法国号等。这个频段对于构成浑厚的低频基础有着举足轻重的作用。一般人会将这个频段误认为是极低频,因为听起来它的频段已经很低了。如果这个频段的量感太少,一定会没有丰润浑厚的感觉,而且会导致中高频、高频的突出,使得声音失去平衡感,不经久耐用。

三、中低频:80-160hz之间的这个频段称为中低频。这个频段是令音响迷最头疼的一段,因为它是造成耳朵轰轰然的元凶。为什么这个频段特别容易有峰值呢?这与听音环境的尺寸和共振有关。大部分人为了去处这段恼人的峰值,费尽心力吸收这个频段的声波,可惜,当耳朵听起来不致轰轰然时,低频和中频之间的声频谱都随着中低频的被吸收而呈现凹陷的状态,使得声音变瘦,缺乏丰润感。这个频段的乐器包括了刚才在低频段中所提及的乐器。

四、中频:160-1280hz这个频段之间横跨的幅度是最宽的,几乎把所有的乐器及人声都包含进去了,所以是最重要的频段。很多人对乐器音域的最大误解也发生在此处。例如小提琴的大半音域都在这个频谱,但一般人却误认为它的音域很高。另外,不要以为女高音的音域很高,一般而言,她的最高音域也才在中频的上限而已。

五、中高频:1280-2560hz这个频段称为中高频。这个频段有什么乐器呢?小提琴约有1/4的较高音域在此,中提琴的上限、长笛、单簧管、双簧管的高音域、短笛的1/2较低音域、钹、三角铁等。其实中高频很容易辨认,弦乐群的高音域都是中高频。这个频段很多人都会误认为是高频,因此请大家特别留意。

六、高频:2560-5120hz这个频段,称之为高频。这段频域对于乐器演奏而言,已经是很少有机会涉及了,因为除了小提琴音域的上限、钢琴、短笛的高音域以外,其余乐器大多不会出现在这个频段中。从扬声器的分频点中,我们可以发现到这段频域全部出现在高音扬声器中。将耳朵靠近高音单元时,所听到的不是乐器的声音,而是一片―嘶嘶‖声。

七、极高频:5120-20000hz这么宽的频段,称之为极高频。可以从高频就已经很少有乐器出现的事 实中,了解到极高频所容纳的尽是乐器与人声的泛音。一般乐器的泛音大多是越高处能量越小,换句话说,高音扬声器要制造的很敏锐,能够清楚的再生非常细微的声音。这里就发生了一件困扰扬声器单元的事情,一个高音扬声器为清楚再生所有细微的泛音,不顾一切的设计成为很小的电流就能推动振膜,那么同样由这个高音单元所负责的大能量高频时就有可能会时常处于失真的状态,因为高频段的能量要比极高频大多了。这也是目前市场上很多扬声器极高频很清晰,却很容易流于刺耳的原因之一。

以上我们划分频段的数字就是一般在调节参数均衡的时候所经常选取的点,当然这也不是绝对的,调音的时候还是要根据实际情况去选取参数均衡点,但是对于刚刚入门的人来说,利用以上的分频点去调节无疑是一种最简便的方法。

数字时间校正 是否具有数字时间校正功能,可以说,是专业的汽车音响主机和普通主机之间的最大差别!什么是数字时间校正?数字时间校正有什么作用?

从下面的图中可以明显地看到,驾驶者位于车辆的左前侧,车门上安装的4个扬声器和驾驶者耳朵之间的距离就会各不相同。如图所示,距离最近的是左前侧的扬声器,距离大约为0.5米(精确数据需要用尺子实地测量耳朵和扬声器的实际距离得出)。最远的扬声器为右后方的那只,距离人耳大约2.25米。除此之外,右前方、左后方的扬声器到人耳的距离也各不相同。这就是汽车环境和家庭听音环境的明显差别。驾驶者不可能坐在车辆正中,和各个扬声器距离相等的那个―黄金听音位‖。

这样的扬声器到人耳距离差会对声音产生影响。打个比方,4个扬声器的音响系统就好像是一个和谐的4人合唱队。大家步调一致地同时演唱才能表现出最强的气势,唱出最优美的乐曲。如果4人合唱的步调无法协调,只能让聆听者感到凌乱,整体感不强。他的影响还不止如此,根据哈斯效应对立体声的定义,人耳有―先入为主‖的现象,所以会感觉声音的声像偏向于先发声的那只扬声器。同时由于右后方扬声器到人耳的距离大约为左前方扬声器到人耳距离的4倍,右后方扬声器发出声音到人耳的声压比左前方的低12db左右(使用相同扬声器、功放增益相同的条件下)。哈斯效应的第二点,人耳会感觉声像偏向于音量大的扬声器。所以驾驶者通常会感觉到声像定位混乱,好像所有声音都来自于左前方。

数字时间校正就是为解决这样的问题提供的优秀方案。数字时间校正功能可以在主机上对每一个扬声器设定一个延时的数值。就相当于让先发出声音的扬声器等一段时间才开始发声。通过精心计算和调节,可以让车内的扬声器到达人耳的时间保持一致!如下图右侧显示,给那些先发出声音的扬声器设置延时后,等于虚拟地将扬声器退后了一段距离,最终形成了以驾驶位为圆心,扬声器落在了圆圈的边上的虚拟扬声器位置感。

数字时间校正的数值计算方法:

以最远的扬声器为调整的基准,右后扬声器距离最远,则只需要对左前、左后、右前三个扬声器进行分别计算和调整。

计算公式:

1、测量聆听位置(驾驶座等„)与各喇叭之间的距离。

2、计算最远的喇叭距离与各喇叭的距离差值 l=最远喇叭距离–其它喇叭距离

3、将所计算出的各喇叭距离除以声音的速度343m/s(20°c时),得出的数值就是不同喇叭的时间校正值。

设聆听位在驾驶座位,则左前扬声器,距离人耳0.5米,右后(最远的扬声器)距离人耳2.25米,它们之间的距离差为:2.25-0.5-1.75米。用距离差除以声速,可以得出需要对左前扬声器设置的时间校正数值为:1.75/343=0.0051秒=5.1毫秒(注:常温下声速为343米/秒)

再用同样的方法计算右前、左后扬声器需要调整的时间校正数值(单位为毫秒ms)。

然后就可以在主机上进行操作,对三个扬声器进行调整,用以达到和最远的扬声器同时到达人耳的效果。再通过对左前扬声器进行适量的音量衰减,就能在驾驶者眼前展示出一个真正准确的声像!篇二:用altium protel dxp设计制作单面印制电路板(tda2030功放)、心得体会

用altium protel dxp设计制作单面印制

电路板(tda2030功放)

这是网上别人卖成品功放tda2030电路板的样子

电源部分电路:(变压器没画)

功放电路部分:(其实音频输出端还有个耳机插孔的,没画)这是我用dxp根据上图画出来的电路原理图:

这是我画的部分元件的封装:

用dxp画封装的时候,要特别注意实际元器件的封装的大小,特别是引脚间距,间距不对的话到时板子刻出来可能会导致元件插不进去,孔径的大小也同样的重要的哦。

这是我的pcb排版的图,实话说,布得不好看,覆铜了。

吼吼,拿电路板雕刻机去雕刻电路就好了。

这个是我用实验室的电路板雕刻机雕刻出来的: 我觉得我覆的那些铜都是直角,看看去有点丑丑的„..实训的心得及体会: 经过本次实训,使我基本的了解了印制电路板的制作流程,记得在实训前,我们只是在计算机上学习些理论知识,例如画画电路图、做做封装,说实话,我觉得这未免有点脱离实践了,所以说,实训是很有必要的,当我们为之前的理论知识付之于实践的时候,出现了这样的那样的问题,这些实践中存在的实际的问题,我们不得不去考虑的,是不能忽视的,只

有实践才会懂得其中的一些问题,理论知识和实践相结合是教学环节中相当重要的一个环节,只有这样才能提高自己的实际操作能力,并且从中培养自己的独立思考、勇于克服困难、团队协作的精神。其中出现了很多问题,例如元器件的封装问题,引脚的间距和孔径的大小等问题,我们之前没重视过认真考虑过这些问题,结果刻出来的电路板元器件就插不进去了,虽然这些都是些小问题,但就是这些小问题就会影响到制作电路板成功与否。对于我们,最具挑战的就是pcb排版的问题,需要我们的耐心和毅力,我们还需努力,这门课的知识对于我们的专业来说很重要,所以我必须进一步学好它,提升自己的专业技术水平。

感谢这一周以来老师的细心指导,由衷的向您说一声:老师,您辛苦了!篇三:功放制作与调试

《otl功率放大器的制作与调试》

设计人:学 校:江苏省六合职教中心日 期: 项 目 教 学 设 计 方 案

李 家 墅 2008年5月8日

《otl功率放大器的制作与调试》

项 目 教 学 设 计 方 案

一、项目教学设计所体现的教育教学理念 1.突出能力本位 将德育渗透于专业课程的教学过程中,将职业技能与职业知识有机

结合,在增强学生专业能力的基础上,着力培养学生职业情感、职业态度与团队协作精神,促进良好职业素养的形成,通过对自举电路的研究性实验,激发和提高学生开展研究性学习的动机与能力,从而提高学生专业能力、方法能力和社会能力等综合职业能力与就业创业能力。

2.体现实践主线 课程实施紧紧围绕项目和任务来开展,充分体现任务引领、行为导

向的项目化课程的思想。以常用电子仪器仪表、典型电子线路为载体,按电子工艺要求展开教学,让学生在掌握电路装接与调试技能的同时,引出相关专业理论知识,使学生在技能训练过程中加深对专业知识与专业技能的理解和应用。3.彰显以人为本 教学目标的确立将学生学习基础和课程标准有机结合;课程实施的过程符合中职学生形象思维能力强的特点,突出以教师为主导、学生为主体的教育教学理念,贯彻“做中学、练中学和干中学”的主导思想;教学效果的评价体现过程性、特质性和发展性等多元评价思想。

二、制定项目教学设计的依据 1.《国务院关于大力发展职业教育的决定》中提出:“职业教育要坚持以就业为导向,深化职业教育改革。” 2.《江苏省职业教育课程改革行动计划》的文件精神。3.以江苏省教育科学研究院职业教育与终身教育研究所开发的《职业教育课程开发及项目课程设计》为技术指导。

三、项目教学设计的背景分析

《otl功率放大器的制作与调试》项目教学设计方案是依据《新编电子技术项目教程》中的项目二任务五编写的。在学习该内容之前,学生已经掌握了函数信号发生器、直流稳压电源、示波器、万用表、直流毫安表等仪器仪表的使用方法及在面包板上装接电子电路的工艺。同时,学生对电压放大器的组成与工作原理也有一定的了解。1 课堂教学的课时为4节,以连堂形式进行。

四、项目教学实施的设计 2 3 4 篇四:电路实验心得体会

电路实验心得体会 经过了一个学期的电路实验课的学习,学到了很多的新东西,发现了自己在电路理论知识上面的不足,让自己能够真正的把点亮学通学透。

电路实验,作为一门实实在在的实验学科,是电路知识的基础和依据。它可以帮助我们进一步理解巩固电路学的知识,激发我们对电路的学习兴趣。

首先,在对所学的电路理论课而言,实验给了我们一个很好的把理论应用到实践的平台,让我们能够很好的把书本知识转化到实际能力,提高了对于理论知识的理解,认识和掌握。

其次,对于个人能力而言,实验很好的解决了我们实践能力不足且得不到很好锻炼机会的矛盾,通过实验,提高了自身的实践能力和思考能力,并且能够通过实验很好解决自己对于理论的学习中存在的一些知识盲点。

对于团队协作与待人处事方面,实验让我们懂得了团队协作的重要性,教导我们以谦虚严谨的态度对待生活中的人与事,以认真负责的态度对待队友,提高了班级的凝聚力和战斗力,通过实验的积极的讨论,理性的争辩,可以让我们更加接近真理。

实验中应注意的有几点。

一,一定要先弄清楚原理,这样在做实验,才能做到心中有数,从而把实验做好做细。一开始,实验比较简单,可能会不注重此方面,但当实验到后期,需要思考和理解的东西增多,个人能力拓展的方面占一定比重时,如果还是没有很好的做好预习和远离学习工作,那么实验大部分会做的很不尽人意。

二,在养成习惯方面,一定要真正的做好实验前的准备工作,把预习报告真正的学习研究过,并进行初步的实验数据的估计和实验步骤的演练,这样才能在真正实验中手到擒来,做到了然于心。

不过说实话,在做试验之前,我以为不会难做,就像以前做的实验一样,操作应该不会很难,做完实验之后两下子就将实验报告写完,直到做完几次电路实验后,我才知道其实并不容易做。它真的不像我想象中的那么简单,天真的以为自己把平时的理论课学好就可以很顺利的完成实验,事实证明我错了。

在最后的综合实验中,我更是受益匪浅。我和同组同学做的是甲乙类功率放大电路,因为次放大电路主要是模拟电子技术的范畴,而自己选修专业与此有很大的联系,所以在做综合实验设计的时候,本着实践性,创新性,可行性和有一 意义性的原则,选择了这个实验。实验本身的原理并不是很复杂,但那只针对有过相关学习的同学,对于我这样的初学者,对于实验原理的掌握本身就是一个挑战。通过翻阅有关书籍和查阅相关的资源,加深自己对功放的理解,通过ewb软件的仿真,比较实验数值与理论值之间的误差,最终输出正确而准确的波形和实验数据。

总结:电路实验最后给我留下的是:严谨以及求实。能做好的事就要把它做到最好,把生活工作学习当成是在雕刻一件艺术品,真正把心投入其中,最终命运会为你证明你的努力不会白费。篇五:音频功率放大器报告

学 院:

专 业:

组 员:

指导老师: 设计报告 ——音频功率放大器 机械与电子工程学院 电子科学与技术 2013.11.29 电子设计实践课程

一、设计要求和设计目的音频功率放大器具体要求:

1、恒流驱动 2、8欧扬声器

3、输出功率5w以上

4、音量数字控制(可以用拨动开关设置)

5、音源为mp3 最后要算出功耗、输出功率和频率响应曲线。

根据设计要求,完成对音频功率放大器的设计。

进一步加强对模拟电子技术知识的理解和对multisim软件的应用。

了解集成功率放大器内部电路工作原理,掌握其外围电路的设计与主要性能参数的测试方法。

学习音频功率放大器的设计方法与小型电子线路系统的安装调试方法。

二、设计总体方案 2.1设计思路

音频功率放大器的作用是将声音源输入的信号进行放大,然后输出驱动扬声器。声音源的种类有很多种,故输出信号的电压差别很大,从零点几毫伏到几百毫伏。一般动率放大器的输入灵敏度是一定的,这些不同的声音源信号如果直接输入到功率放大器的话,对于输入信号过低的,功率放大器功率输出不足,不能充分发挥功放的作用;加入输入信号的幅值过大,功率放大器的输出信号将严重过载失真。这样就失去了音频放大的意义了,所以一个实用音频功率放大系统必须设置放大器,同时弄个反馈电路来保持恒定电流。以便使放大器适应不同的输入信号,或放大,或衰减,或进行阻抗变换,使其与功率放大器的输入灵敏度相匹配。最后音频放大器由功率放大器和反馈电路两部分组成。

本次设计是大于5瓦音频放大器,由于时间有限,上网找了一些电路图,下幅电路图稍微修改后是最合适的。由于电路采用,使电路不用那么复杂。

放大器由3554am芯片实现和3288rt反馈,并通过电阻控制,最后采用功率放大电路。最后负载用扬声器。

三、选择器件及参数计算 3.1运放3554am介绍 35554am 是前置放大运放,与很多标准运放相似,它具有较好的噪声性能,优良的输出驱动能力及相当高的小信号与电源带宽。3.2运放3288rt介绍 3288rt 是反馈运放,与很多标准运放相似,它具有较好的噪声性能。3.3其他零件: r1___________1kω r2___________1kω r3__________0.3ω r4_________1600ω r5_________200kω r6____________8ω

r7___________1kω c1_________0.47uf电容器

c2___________1μf电容器 d1______________1dh62 二极管 d2______________1dh62 二极管 vin_________1v.40-4mhz信号源

电阻 电阻 电阻 电阻 电阻 电阻 电阻 3.4功率的计算

计算输出功率po输出功率用输出电压有效值v0和输出电流i0的乘积来表示。设 vom,则 因为输出电压的幅值为iom=vom/rl,所以.当输入信号足够大,使vim=vom= vcem= vcc-vces ≈vcc和iom=icm时,可获得最大的输出功率 o cc 由上述对p的讨论可知,要提供放大器的输出功率,可以增大电源电压v或降低负

载阻抗r。

第四篇:数字功放简介

数字功率放大器简介

班级:JS001104学号:2011300077姓名:李卫华

一. 数字放大器的定义及工作原理

功率放大器通常根据其工作状态分为五类。即A类、AB类、B类、C类、D类。在音频功放领域中,前四类均可直接采用模拟音频信号直接输入,放大后将此信号用以推动扬声器发声。D类放大器比较特殊,它只有两种状态,不是通就是断。因此,它不能直接输入模拟音频信号,而是需要某种变换后再放大。人们把此种具有“开关”方式的放大,称为“数字放大器”。

二. 数字功法与传统功放比较

数字功放由于工作方式与传统模拟功放完全不同,因此克服了模拟功放固有的一些缺点,并且具备了一些独有的特点。

1.过载能力与功率储备

数字功放电路的过载能力远远高于模拟功放。模拟功放电路分为A类、B类或AB类功率放大电路,正常工作时功放管工作在线性区;当过载后,功放管工作在饱和区,出现谐波失真,失真程度呈指数级增加,音质迅速变坏。而数字功放在功率放大时一直处于饱和区和截止区,只要功放管不损坏,失真度不会迅速增加。由于数字功放采用开关放大电路,效率极高,可达75%~90%(模拟功放效率仅为30%~50%),在工作时基本不发热。因此它没有模拟功放的静态电流消耗,所有能量几乎都是为音频输出而储备,加之前后无模拟放大、无负反馈的牵制,故具有更好的“动力”特

性,瞬态响应好,“爆棚感”极强。

2.交越失真和失配失真

模拟B类功放在过零失真,这是由于晶体管在小电流时的非线性特性而引起的在输出波形正负交叉处的失真(小信号时晶体管会工作在截止区,无电流通过,导致输出严重失真)。而数字功放只工作在开关状态,不会产生交越失真。

模拟功放存在推挽对管特性不一致而造成输出波形上下不对称的失配失真,因此在设计推挽放大电路时,对功放管的要求非常严格。而数字功放对开关管的配对无特殊要求,基本上不需要严格的挑选即可使用。

3.功放和扬声器的匹配

由于模拟功放中的功放管内阻较大,所以在匹配不同阻值的扬声器时,模拟功放电路的工作状态会受到负载(扬声器)大小的影响。而数字功放内阻不超过0.2Ω(开关管的内阻加滤波器内阻),相对于负载(扬声器)的阻值(4~8Ω)完全可以忽略不计,因此不存在与扬声器的匹配问题。

4.瞬态互调失真

模拟功放几乎全部采用负反馈电路,以保证其电声指标,在负反馈电路中,为了抑制寄生振荡,采用相位补偿电路,从而会产生瞬态互调失真。数字功放在功率转换上没有采用任何模拟放大反馈电路,从而避免了瞬态互调失真。

5.声像定位

对模拟功放来说,输出信号和输入信号之间一般都存在着相位差,而且在输出功率不同时,相位失真亦不同。而数字功放采用数字信号放大,使输出信号与输入信号相位完全一致,相移为零,因此声像定位准确。

6.升级换代

数字功放通过简单地更换开关放大模块即可获得大功率。大功率开关放大模块成本较低,在专业领域发展前景广阔。

7.生产调试

模拟功放存在着各级工作点的调试问题,不利于大批量生产。而数字功放大部分为数字电路,一般不需调试即可正常工作,特别适合于大规模生产。

三.DPA功放的工作原理

DPA--即数字脉冲功率转换器,是采用数字处理、量化、编码等手段,以时钟倍数的脉冲宽度来描述音频信号,实现数字化的功率转换。

四.数字功放的现状

以前,由于价格和技术上的原因,这种放大电路只是在实验室或高价位的测试仪器中应用。这几年的技术发展使数字功放的元件集成到一两块芯片中,价格也在不断下降。理论证明,D类放大器的效率可达到100%。然而,迄今还没有找到理想的开关元件,难免会产生一部分功率损耗,如果使用的器件不良,损耗就会更大些。但是不管怎样,它的放大效率还是达到90%以上。

由于功耗和体积的优势,数字功放首先在能源有限的汽车音响和要求较高的重低音有源音箱中得到应用。随着DVD家庭影院、迷你音响系统、机顶盒、个人电脑、LCD电视、平板显示器和移动电话等消费类产品日新月异的发展,尤其是SACD、DVDAudio等一些高采样频率的新音源规格的出现,以及音响系统从立体声到多声道环绕系统的进化,都加速了数字功放的发展。近年来,数字功放的价格呈不断下降的趋势,有关这方面的专利也层出不穷。

国外在数字音频功率放大器领域进行了二、三十年的研究,六十年代中期,日本研制出8bit数字音频功率放大器。1983年,M.B.Sandler等学者提出D类(数字)PCM功率放大器的基本结构。主要是围绕如何将PCM信号转化为PWM信号。把信号的幅度信号用不同的脉冲宽度来表示。此后,研究的焦点是降低其时钟频率,提高音质。随着数字信号处理(DSP)技术和新型功率器件及应用的发展,开发实用化的16位数字音频功放成为可能。

一个音响系统必须具备音源、功放和音箱三大部分。音源部分目前已数字化了,如CD、VCD、DVD、DAB和数字电视等。但 的功放和音箱仍然是模拟统治的天下。在人们进入数字化、信息化的开发过程中自然想到了功放的数字化这一问题。

模拟功放始终无法解决效率、成本、音质这三者之间的矛盾。国内市场开始出现AV数码功放,但所谓的数字功放实质上仅仅是指音频处理部分采用了数字处理,其功率放大器 则仍然采用模拟放大,这与真正意义的数字功放相差甚远。

音响产品的数字化是必然趋势。由于数字功放有很多优点,如体积小、功率大、高、与数字音源的无缝结合、能有效降低信号间传递干扰、实现高保真等。在数字音源已经大量普及的时代,数字功放将会取代现有的模拟功放。

五.数字功放的发展展望

21世纪将是数字化、信息化的时代,全新的技术体制将会引发全新的技术产业革命。目前最新提出的SACD格式更是层出不穷,从MPEG-1到MPEG-2,从数字杜比(AC-3)到DTS等。数字功放更是国际上各大厂商关注的焦点。据了解,全球最大的视听设备制造商SONY公司最近准备推出它的数字功放产品,就连非常著名的汽车音响制造商(Alpine)也将推出数字功放(这两家均采用美国Tripath的芯片)。在数字信号处理方面极具实力的德州器公司(TI),2000年3月16日宣布成立自己的数字功放事业部,致力发展采用数字技术把高保真音质带入各种类型的音频设备中。因此,数字功放的春天即将到来,而且,在这场数字功放技术竞争中,唯有不断创新才能保持技术的领先地位。

数字音频功放不仅仅能应用在家庭影院系统、高保真重放系统,同时也可将该技术应用到特别需要省电、体积小的地方,如数字电视、汽车音响功放、便携听音设备,甚至是移动电话等设备。应该说该项技术的应用十分广泛,既可用来做上千瓦功率输出的专业功放,也可以是用来做几十毫瓦的便携机。数字音频功放是全新一代的音频功放,是模拟功放发展的必然趋势和取代者。作为一种全新的技术,其

市场的推广需要一段培育过程。以下这几个方面是该数字音频技术的关键技术和突破口:

◆ 数字音频功放技术的体制和标准。它的制定在一定程度上起到了保护民族工业的兴起,保护国内市场的占有率,保证自己的专利技术。◆ 数字音频功放(DPA)技术及ASIC技术,特别是ASIC,如果不能开发自己的专用芯片(通用芯片除外),就不能有自己的专利技术和产业基础。

◆ 技术本身可在不同的领域内使用。

特别需要省电的便携设备使用;

应用范围极为广泛的电视、收音机等一般音频重放设备使用。Hi-Fi和家庭影院等要求高的场合使用。

◆ 高效、音质好、成本低是数字功放发展的方向。

◆ 模块化的功放单元开发,是决定数字功放命运的关键(质量、成本因素)

◆ 开发适合于DVD-Audio和SACD指标的数字功放。

第五篇:乙烯原料泵最小流量控制回路噪音产生分析及消除

乙烯原料泵最小流量控制回路噪音产生分析及消除

乙烯原料泵最小流量控制回路操作现状

在80万吨/年乙烯装置中,由于乙烯原料泵流量大,扬程高,因而需要设置最小流量保护回路(见图1)。在生产操作过程中,当最小流量控制阀开启至22~25%,流量至200~250m3/h时,最小流量控制回路就会发出刺耳的噪音,接近110db(A),不仅影响职工的日常工作,同时其伴生的振动也会给安全生产带来隐患。当前工艺条件及初步分析[1]

乙烯原料泵输送物料主要为凝析油,操作条件下温度T为30.8℃,比重G为0.73,粘度Vis为0.43cP,饱和蒸汽压PV:0.653bar。乙烯原料泵在最小流量操作下扬程为280m,即20.053bar。由于最小流量保护回路流程短,无其他附属设施(见图1),回路中的阻力降主要集中在控制阀和限流孔板上,因而在控制阀或限流孔板的缩径附近非常容易发生空化现象,产生噪音及振动。

图1 乙烯原料泵最小流量控制回路流程图

根据机械能守恒原理(见式1,Bernoulli方程式),当流体经过缩口(调节阀或限流孔板)时,流束会变细收缩,并在缩口下游形成缩流断面。在此缩流断面处流体流速最大,压力最小,当此时流体压力PVC小于介质的饱和蒸汽压PV时,流体将会沸腾,产生气泡,PVC压力越低,气泡越多。流体通过缩流断面后,流速降低,压力升高。流体流速最终稳定于u2,由于缩口前后管道直径相同,因而u1等于u2;压力最终稳定于P2,但由于缩口消耗了流体的能量,即ΔPo,因而下游压力P2无法完全恢复到P1。经以上分析,式1可简化为P1=P2+ΔPo。如果P2大于PV,流体在缩口处产生的气泡在高压下将迅速破裂,即发生空化现象。此时管道会发出刺耳的噪音并伴有振动,长期作用下会造成管路损坏。如果P2仍然小于PV,气泡将继续逸出,在管道中形成汽液混合相,即发生闪蒸现象。(见图2)

图2 工艺介质通过孔板时压力变化曲线

Bernoulli方程式:

(式1)

式中:

ρ——介质密度;

u1——缩口前流速;

P1——缩口前压力;

u2——缩口后流速;

P2——缩口后压力;

ΔPo——缩口阻力降。空化现象计算及判断[1]

为了判断是否发生空化现象,需要对阻塞流压差进行计算。当缩口两端压差(ΔPo= P1-P2)增加,即缩口前压力P1不变,缩口后压力P2减小。此时,缩流断面处压力PVC将减小,直至下降到流体饱和蒸汽压PV以下,流体发生汽化,通过缩口的流体流量不再随压差增加而增加,即形成阻塞流现象。此时,缩口两端的压差即是阻塞流压差ΔPchocked。当缩口实际压差ΔPo小于其对应的阻塞流压差ΔPchocked时,无空化现象发生,反之则有空化现象发生。

(式2)

(式3)

式中:

ΔPchocked——阻塞流压差;

FL——液体压力恢复系数; FF——液体临界压力比值系数;

PV——液体的蒸汽呀;

PC——液体临界压力。

经计算,操作条件下:

调节阀前压力P1调节阀为21.103bar,压差ΔPo调节阀 为13.735bar,阻塞流压差ΔPchocked调节阀为16.608bar,ΔPo调节阀小于ΔPchocked调节阀,因而在调节阀处无空化现象发生;

限流孔板孔径DO为60mm,孔板前压力P1限流孔板为7.368bar,压差ΔPo限流孔板 为6.200bar,阻塞流压差ΔPchocked限流孔板为5.483bar,ΔPo限流孔板大于ΔPchocked限流孔板,因而在限流孔板处有空化现象发生,引起了回路的噪音及振动。

详见表1,乙烯原料泵最小流量控制回路压力平衡表。整改方案

整改措施是通过采用双限流孔板,降低单个孔板上的压差,从而避免空化现象发生,消除噪音。整个回路其它部分保持不变。整改后空化现象计算如下:

调节阀前压力P1调节阀为21.103bar,压差ΔPo调节阀 为13.506bar,阻塞流压差ΔPchocked调节阀为16.608bar,ΔPo调节阀小于ΔPchocked调节阀,因而在调节阀处无空化现象发生;

限流孔板孔径DOA为65mm,孔板前压力P1限流孔板A为7.597bar,压差ΔPo限流孔板A 为4.487bar,阻塞流压差ΔPchocked限流孔板A为5.668bar,ΔPo限流孔板A大于ΔPchocked限流孔板A,因而在限流孔板A处无空化现象发生;

限流孔板孔径DOB为80mm,孔板前压力P1限流孔板B为3.110bar,压差ΔPo限流孔板B为1.942bar,阻塞流压差ΔPchocked限流孔板B为2.034bar,ΔPo限流孔板B大于ΔPchocked限流孔板B,因而在限流孔板B处无空化现象发生;

由以上结论可知,整改方案简单可行,可以避免空化现象发生,消除噪音其伴生的振动给安全生产带来隐患。

详见表1,乙烯原料泵最小流量控制回路压力平衡表。

表1,乙烯原料泵最小流量控制回路压力平衡表

乙烯原料泵吸入端 乙烯原料泵排放端

项目 整改前/后 单位 项目 整改前 整改后 单位

乙烯原料罐操作压力 0.002 barg 乙烯原料罐操作压力 0.002 0.002 barg 管道阻力降 0.02 bar 管道阻力降 0.051 0.051 bar 过滤器阻力降 0.009论文联盟http://www.xiexiebang.com bar ROA压差 6.200① 4.487 bar

静压头 0.115 bar ROB压差 1.942 bar

吸入端净压力 0.088 barg 流量计压差 0.037 0.037 bar

静压头 0.115 0.115 bar

乙烯原料泵压头 20.052 bar 调节阀压差 13.735 13.506 bar

① 整改前单个限流孔板压差 结论

在生产过程中,装置上微小的异常都应引起相应的重视,从理论上分析其产生的原因及其可能造成的危害。往往通过简单的整改即可消除隐患,保证整个装置系统长期稳定的运行。

http://shop.sosoas.com/viea

下载功放噪音消除经验word格式文档
下载功放噪音消除经验.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    关于噪音5则范文

    关于噪音 在工程机械检测领域,噪声测量已列为国家强制性标准检测项目,即噪声达不到国家标准规定的要求,则判为整机不合格。如果说以前各工程机械生产企业对噪声控制还不太重视......

    噪音治理

    武汉市宏森环保技术工程有限责任公司 姚子明、金勇摘要:冶金行业噪声的综合治理,必须根据现场的实际情况,设计出高效、节能的消声器隔声罩、吸声或减振措施,既要改善劳动环境,又......

    噪音倡议书

    噪音倡议书 噪音倡议书1 由于较强的噪声对人的生理与心理会产生不良影响。在日常工作和生活环境中,噪声主要造成听力损失,干扰谈话、思考、休息和睡眠。根据国际标准化组织(ISO......

    主流功放芯片介绍专题

    低档运放JRC4558。这种运放是低档机器使用得最多的。现在被认为超级烂,因为它的声音过于明亮,毛刺感强,所以比起其他的音响用运放来说是最差劲的一种。不过它在我国暂时应用得......

    功放芯片与效果器芯片简介

    几款功放芯片与效果器芯片简介 2010-11-27 14:46 http://更多优惠天成批发商城 TDA1521/TDA1514A TDA1521/TDA1514A是荷兰飞利浦公司专门为数字音响在播放时的低掉真度及高......

    教学移频功放说明书

    DSP-AP2100数字教学功放说明书 特点: 无需佩戴领夹。 无需安装电池。 讲台安装4只界面话筒,即可实现在讲台全面拾音。 DSP-AP2100教学数字移频功放是本公司结合中国国情和学校......

    车载超短波电台功放技术指标

    车载超短波电台 功放技术指标 主要技术要求 2.1 主要功能  完成激励信号放大;  具有正反向功率检测功能;  具有驻波比检测功能;  具有温度检测功能;  具有自检功能。 2.2 指标......

    煤矿噪音控制措施

    煤矿噪音控制措施 强烈的噪音能使人的听觉器官受到损害,降低听力,甚至使人的精神受到伤害,诱发精神性疾病。因此,对产生噪音的地点需进行有效的控制及预防,给职工一个舒适安全的......