第一篇:石油化工管道管廊宽度规定
1)管廊的宽度主要由管道的数量和管径的大小确定。并考虑一定的预留的宽度,一般主管廊管架应留有10%-20%的余量,并考虑其荷重。同时要考虑管廊下设备和通道以及管廊上空冷设备等结构的影响。如果要求敷设仪表电缆槽架和电力电缆槽架,还应考虑其所需的宽度。管廊上管道可以布置成单层或双层,必要时也可布置三层。管廊的宽度一般不宜大于10m;
2)管廊上布置空冷器时,支柱跨距宜与空冷器的间距尺寸相同,以使管廊立柱与空冷器支柱中心线对齐;
3)管廊下布置泵时,应考虑泵的布置及其所需操作和检修通道的宽度。如果泵的驱动机用电缆为地下敷设时,还应考虑电缆沟所需宽度。此外,还要考虑泵用冷却水管道和排水管道的干管所需宽度;
4)由于整个管廊的管道布置密度并不相同,通常在首尾段管廊的管道数量较少。因此,在必要时可以减小首尾段管廊的宽度或将双层管廊变单层管廊。
一、沟槽开挖
沟槽开挖施工一般包括施工准备工作、沟槽开挖、沟槽制成、施工排水、管道基础、管道铺设、砌筑检查井及雨水口、质量检查与验收、沟槽回填、竣工验收等部分。
一、沟槽开挖
1、人工开挖每层不超过2m。
2、人工挖土,堆土高度不超过1.5m。
3、吊车下管时,可在一侧堆土,另一侧为行驶路线,不得堆土。
4、机械挖槽时,应在设计槽底高程以上保留一定余量(一般为200mm),避免超挖,余量由人工开挖。
6、挖土机械应距离高压线有一定的安全距离,距电缆1.0m处,严禁机械开挖。
二、沟槽支撑与拆除
(一)支撑类型及适用范围 支撑类型有横撑、竖撑、板桩撑
1、横撑与竖撑、开挖较窄的沟槽及基槽多用横撑式及竖撑式支撑
2、板桩支撑
板桩是一种支护结构,可用它来抵挡土和水所产生的水平压力,既挡土又挡水。
(二)施工要求
钢板桩支撑,可根据具体情况设计为悬臂、单锚或多层横撑得方式; 支撑的拆除应与回填土的填筑高度配合进行,且在拆除后及时回填夯实; 多层支撑的沟槽,应待下层回填完成后再拆除上层的支撑; 在回填达到规定要求后,方可拔除钢板桩。
三、施工排水、降水
施工排水、降水的目的:一是防止沟槽开挖过程中地面水流入沟槽中,造成槽壁塌方;二是开挖沟槽前,使地下水降低至沟槽以下。
(一)基坑(槽)内明沟排水
排水沟底要始终保持比土基面低不小于0.3m。排水沟应与3%~5%的坡度坡向集水井。
(二)人工降低地下水位
1、轻型井点系统组成
2、轻型井点系统布置
一般情况下,当降水深度小于5m,基坑宽度小于6m时,井点布置采用单排线状;基坑宽度大于6m时,或土质不良,渗透系数大时,井点布置宜采用的双排线状布置;当基坑面积较大时,可将井点管延基坑周边布置成封闭环状。
四、管道基础
(一)管道地基应符合的规定
(二)管道基础施工要求
(三)浇筑混凝土管座的规定
五、管道安装
管道安装有四项工序:下管、稳管、接口施工、质量检查。安装时宜自下游开始,承口朝向施工方向前进。
合槽施工时,应先埋设较深的管道,当回填土高程与邻近管道基础高程相同时,在安装相邻管道。
六、闭水试验
1、应在管道填土前进行
2、应在管道灌满水24h后再进行
3、水位应为试验段上游管道内顶以上2m,如上游管道内顶至检查口的高度小于2m,闭水试验水位可至井口为止。
4、渗水量的测定时间不少于30min。
七、沟槽回填
1、沟槽回填的要求
2、回填土或其他材料不得损伤管道及其接口
管道两侧和管顶以上500mm范围内的回填材料,应由管道两侧对称运入槽中,不得直接扔在管道上。回填其他部位时应均匀运入槽内,不得集中推入。
3、回填土或其他材料的压实。
管道两侧和管顶以上500mm范围内,应采用轻夯压实,管道两侧压实面的高差不得超过300mm。采用轮是压路机或者振动压路机等压实机械时,其行驶速度不得超过2km/h。2k315012掌握管道交叉处理方法
①混凝土或钢筋混凝土排水圆管在下,铸铁管、钢管在上。上面管道已建,进行下面排水圆管施工时,采用在槽底砌砖墩的处理方法。上下管道同时施工时,且当钢管或铸铁管道的内径不大于400mm时,宜在混凝土管道两侧砌筑砖墩支承。(两者一回事)
②排水圆管(直径≤600mm)在下,铸铁管、钢管在上,高程有冲突,必须压低下面排水圆管断面时:将下面排水圆管改为双排铸铁管、加固管或方沟。(加宽流水断面)
③混合结构或钢筋混凝土矩形管渠与其上方钢管道或铸铁管道交叉,当顶板至其下方管道底部的净空在70mm及以上时,可在侧墙上砌筑砖墩支承管道。当顶板至其下方管道底部的净空小于70mm时,可在顶板与管道之间采用低强度等级的水泥砂浆或细石混凝土填实,其荷载不应超过顶板的允许承载力,且其支承角不应小于90°。
④圆形或矩形排水管道在上,铸铁管、钢管在下,上下管道同时施工时:在铸铁管、钢管外加套管或管廊。
⑤排水管道在上,铸铁管、钢管在下,埋深较大挖到槽底有困难,进行上面排水管道施工时:上面排水管道基础在跨越下面管道的原开槽断面处加强。
⑥当排水管道与其上方电缆管块交叉时,宜在电缆管块基础以下的沟槽中回填低强度等级的混凝土、石灰土或砌砖。排水管道与电缆管块同时施工时,可在回填材料上铺一层中砂或粗砂。电缆管块已建时,回填至电缆管块基础底部的材料为低强度等级的混凝土,回填材料与电缆管块基础间不得有空隙。⑦排水管道在下,另一排水管道或热力管沟在上,上下管道同时施工(或上面已建,进行下面排水管道施工)时下面排水管道增强,满槽砌砖回填或C8混凝土、填砂。
⑧排水方沟在下,另一排水管道或热力方沟在上,高程冲突,上下管道同时施工时增强上面管道基础,作为下面排水方沟的顶板或根据情况,压扁下面排水方沟,但不要减小过水断面。
⑨预应力混凝土管与已建热力管沟高程冲突,必须从下面穿过施工时,先用钢或钢筋混凝土套管过热力沟,再穿钢管代替预应力混凝土管。
⑩预应力混凝土管在上,其他管道在下,上面管道已建,进行下面管道施工时,一般在下面槽底或方沟盖板上砌支墩。
(一)圆形排水管道与上方给水管道交叉且同时施工,若上方钢管或铸铁管内径不大于400mm时,宜在混凝土管两侧砌筑砖墩支撑。
(二)矩形排水管道与上方给水管道交叉
1、净空不小于70mm时,可在侧墙上砌筑砖墩支撑管道
2、净空小于70mm时可在顶板与管道之间采用低强度等级的水泥砂浆或细石混凝土填实,其支撑角不应小于90°。
(三)排水管道与下方的给水管道交叉 宜对下方的管道加设套管或管廊。
1、套管、管廊的内径不小于被套管道外径300mm。
2、套管或管廊长度不宜小于上方排水管道基础宽度加管道交叉高差的3倍,且不小于基础宽度加1m。
3、套管可采用钢管、铸铁管或钢筋混凝土管;管廊可采用砖砌或其他材料砌筑的混合结构。
4、套管与管廊两端与管道之间的间隙应封堵严密。
(四)排水管道与交叉管道高程一致时的处理 要主动和有关单位联系,取得对方的配合、协商处理。
1、软埋电缆线让刚性管道;
2、压力流管道让重力流管道;
3、小口径管道让大口径管道;
4、后敷设管道让已敷设管道。
第二篇:综合管廊(本站推荐)
综合管廊
建于城市地下用于容纳两类及以上城市工程管线的构筑物及附属设施。综合管廊(日本称“共同沟”、台湾称“共同管道”),就是地下城市管道综合走廊。即在城市地下建造一个隧道空间,将电力、通讯,燃气、供热、给排水等各种工程管线集于一体,设有专门的检修口、吊装口和监测系统,实施统一规划、统一设计、统一建设和管理,是保障城市运行的重要基础设施和“生命线”。它是实施统一规划、设计、施工和维护,建于城市地下用于敷设市政公用管线的市政公用设施。
发展历史
国外发展
在发达国家,共同沟已经存在了一个多世纪,在系统日趋完善的同时其规模也有越来越大的趋势。
法国
早在1833年,巴黎为了解决地下管线的敷设问题和提高环境质量,开始兴建地下管线共同沟。如今巴黎已经建成总长度约100 公里、系统较为完善的共同沟网络。
此后,英国的伦敦、德国的汉堡等欧洲城市也相继建设地下共同沟。日本
1926年,日本开始建设地下共同沟,到1992年,日本已经拥有共同沟长度约310 公里,而且在不断增长过程中。
建设供排水、热力、燃气、电力、通信、广电等市政管线集中铺设的地下综合管廊系统(日本称“共同沟”),已成为日本城市发展现代化、科学化的标准之一。
早在上世纪二十年代,日本首都东京市政机构就在市中心九段地区的干线道路下,将电力、电话、供水和煤气等管线集中铺设,形成了东京第一条地下综合管廊。此后,1963年制定的《关于建设共同沟的特别措施法》,从法律层面规定了日本相关部门需在交通量大及未来可能拥堵的主要干道地下建设“共同沟”。国土交通省下属的东京国道事务所负责东京地区主干线地下综合管廊的建设和管理,次干线的地下综合管廊则由东京都建设局负责。
如今已投入使用的日比谷、麻布和青山地下综合管廊是东京最重要的地下管廊系统。采用盾构法施工的日比谷地下管廊建于地表以下30多米处,全长约1550米,直径约7.5米,如同一条双向车道的地下高速公路。由于日本许多政府部门集中于日比谷地区,须时刻确保电力、通信、供排水等公共服务,因此日比谷地下综合管廊的现代化程度非常高,它承担了该地区几乎所有的市政公共服务功能。
于上世纪八十年代开始修建的麻布和青山地下综合管廊系统同样修建在东京核心区域地下30余米深处,其直径约为5米。这两条地下管廊系统内电力电缆、通信电缆、天然气管道和供排水管道排列有序,并且每月进行检修。其中的通信电缆全部用防火帆布包裹,以防出现火灾造成通信中断;天然气管道旁的照明用灯则由玻璃罩保护,防止出现电火花导致天然气爆炸等意外事故。这两条地下综合管廊已相互连接,形成了一条长度超过4公里的地下综合管廊网络系统。
在东京的主城区还有日本桥、银座、上北泽、三田等地下综合管廊,经过了多年的共同开发建设,很多地下综合管廊已经联成网络。东京国道事务所公布的数据显示,在东京市区1100公里的干线道路下已修建了总长度约为126公里的地下综合管廊。在东京主城区内还有162公里的地下综合管廊正在规划修建。
俄罗斯
1933年,前苏联在莫斯科、列宁格勒、基辅等地修建了地下共同沟。西班牙
1953年西班牙在马德里修建地下共同沟。
其它如斯德哥尔摩、巴塞罗那、纽约、多伦多、蒙特利尔、里昂、奥斯陆等城市,都建有较完备的地下共同沟系统。
国内发展
中国仅有北京、上海、深圳、苏州、沈阳等少数几个城市建有综合管廊,据不完全统计,全国建设里程约800公里,综合管廊未能大面积推广的原因不是资金问题,也不是技术问题,而是意识、法律以及利益纠葛造成的。
综合管廊建设的一次性投资常常高于管线独立铺设的成本。据统计,日本、台北、上海的综合管廊平均造价(按人民币计算)分别是50万元/米、13万元/米和10万元/米,较之普通的管线方式的确要高出很多。但综合节省出的道路地下空间、每次的开挖成本、对道路通行效率的影响以及环境的破坏,综合管廊的成本效益比显然不能只看投入多少。台湾曾以信义线6.5公里的综合管廊为例进行过测算,建综合管廊比不建只需多投资五亿元新台币,但75年后产生的效益却有2337亿元新台币。
其实北京早在1958年就在天安门广场下铺设了1000多米的综合管廊。2006年在中关村西区建成了我国大陆地区第二条现代化的综合管廊。该综合管廊主线长2公里,支线长1公里,包括水、电、冷、热、燃气、通讯等市政管线。1994年,上海市政府规划建设了大陆第一条规模最大、距离最长的综合管廊——浦东新区张杨路综合管廊。该综合管廊全长11.125公里,收容了给水、电力、信息与煤气等四种城市管线。上海还建成了松江新城示范性地下综合管廊工程(一期)和“一环加一线”总长约6公里的嘉定区安亭新镇综合管廊系统。中国与新加坡联合开发的苏州工业园基础设施建设,经过10年的开发,地下管线走廊也已初具规模。
住建部会同财政部开展中央财政支持地下综合管廊试点工作,确定包头等10个城市为试点城市,计划到2018年建设地下综合管廊389公里(2015年开工190公里),总投资351亿元。根据测算,未来地下综合管廊需建8000公里,若按每公里1.2亿元测算,投资规模将达1万亿。
国务院高度重视推进城市地下综合管廊建设,2013年以来先后印发了《国务院关于加强城市基础设施建设的意见》、《国务院办公厅关于加强城市地下管线建设管理的指导意见》,部署开展城市地下综合管廊建设试点工作。
除了住建部之外,包括发改委、财政部等相关部门都已经下发有关文件,支持地下管廊建设。2015年1月份,住建部等五部门联合发出通知,要求在全国范围内开展地下管线普查,此后决定开展中央财政支持地下综合管廊试点工作,并对试点城市给予专项资金补助。
试点的10个城市总投资351亿元,其中中央财政投入102亿元,地方政府投入56亿元,拉动社会投资约193亿元。“我们的思路是以试点示范带动全国建设地下综合管廊的积极性。全国共有69个城市在建地下综合管廊约1000公里,总投资约880亿元。
分类
综合管廊宜分为干线综合管廊、支线综合管廊及缆线管廊。
干线综合管廊:用于容纳城市主干工程管线采用独立分舱方式建设的综合管廊。
支线综合管廊:用于容纳城市配给工程管线采用单舱或双舱方式建设的综合管廊。
缆线管廊: 采用浅埋沟道方式建设,设有可开启盖板但其内部空间不能满足人员正常通行要求,用于容纳电力电缆和通信线缆的管廊。
法律规定
国外法律
西欧国家在管道规划、施工、共用管廊建设等方面都有着严格的法律规定。如德国、英国因管线维护更新而开挖道路,就有严格法律规定和审批手续,规定每次开挖不得超过25米或30米,且不得扰民。日本也在1963年颁布了《共同管沟实施法》,解决了共同管沟建设中的资金分摊与回收、建设技术等关键问题,并随着城市建设的发展多次修订完善。
俄罗斯对综合管廊设置的规定:
在拥有大量现状或规划地下管线的干道下面; 在改建地下工程设施很发达的城市干道下面;
需要同时埋设给水管线、供热管线及大量电力电缆情况下; 在没有余地专供埋设管线,特别是铺设在刚性基础的干道下面时; 在干道同铁路的交叉处。日本对综合管廊设置的规定:
在交通显著拥挤的道路上,地下管线施工将对道路交通产生严重干扰时,由建设部门指定建设综合管廊;
综合管廊建设可结合道路改造或地下铁路建设,城市高速等大规模工程建设同时进行。
国内法律
2015年6月1日起实施的《城市综合管廊工程技术规范》(GB50838-2015),对2012年版本的《城市综合管廊工程技术规范》进行了较大的修改和完善,对我国综合管廊建设的推动起到了积极的作用,本版规范强调原则上所有管线必须入廊,但也扩充了综合管廊的分类,新增了缆线管廊。
根据《城市工程管线综合规划规范》(GB50289-98)第2.3节有关规定,当遇到下列情况之一时,工程管线宜采用综合管廊集中敷设:
交通运输繁忙或工程管线设施较多的机动车道、城市主干道以及配合兴建地下铁道、立体交叉等工程地段;
不宜开挖路面的路段; 广场或主要道路的交叉处;
需同时敷设两种以上工程管线及多回路电缆的道路; 道路与铁路或河流的交叉处。
道路宽度难以满足直埋敷设多种管线的路段。
根据《电力工程电缆设计规范》(GB50217-94)第5.2节有关规定,当遇到下列情况时,电力电缆应采用电缆隧道或公用性隧道敷设:
同一通道的地下电缆数量众多,电缆沟不足以容纳时应采用隧道; 同一通道的地下电缆数量较多,且位于有腐蚀性液体或经常有地面水流溢的场所,或含有35KV以上高压电缆,或穿越公路、铁路等地段,宜用隧道; 受城镇地下通道条件限制或交通流量较大的道路,与较多电缆沿同一路径有非高温的水、气和通讯电缆管道共同配置时,可在公用性隧道中敷设电缆。福建、江苏等地出台了综合管廊建设指南,厦门市还出台了厦门市综合管廊管理办法。
建设意义
地下综合管廊系统不仅解决城市交通拥堵问题,还极大方便了电力、通信、燃气、供排水等市政设施的维护和检修。此外,该系统还具有一定的防震减灾作用。如1995年日本阪神大地震期间,神户市内大量房屋倒塌、道路被毁,但当地的地下综合管廊却大多完好无损,这大大减轻了震后救灾和重建工作的难度。
地下综合管廊对满足民生基本需求和提高城市综合承载力发挥着重要作用。共同沟建设避免由于敷设和维修地下管线频繁挖掘道路而对交通和居民出行造成影响和干扰,保持路容完整和美观。
降低了路面多次翻修的费用和工程管线的维修费用。保持了路面的完整性和各类管线的耐久性。
便于各种管线的敷设、增减、维修和日常管理。
由于共同沟内管线布置紧凑合理,有效利用了道路下的空间,节约了城市用地。
由于减少了道路的杆柱及各种管线的检查井、室等,优美了城市的景观。由于架空管线一起入地,减少架空线与绿化的矛盾。
科研成果
“十一五”国家科技支撑计划《城市市政工程综合管廊技术研究和开发》 《城市综合管廊工程技术规范》(报批稿)5项专利 指导意见
国务院办公厅关于推进城市地下综合管廊建设的指导意见(国办发〔2015〕61号)于2015年8月10日公布。工作目标是到2020年,建成一批具有国际先进水平的地下综合管廊并投入运营,反复开挖地面的“马路拉链”问题明显改善,管线安全水平和防灾抗灾能力明显提升,逐步消除主要街道蜘蛛网式架空线,城市地面景观明显好转
第三篇:石油化工工艺蒸汽管道配管设计要点论文
摘要:本文介绍了石油化工装置的基本概念,并就蒸汽管道的设计模式予以深入分析,得出在蒸汽管道配管设计过程中,需要警惕的设计要点,旨在提高我国石油化工工艺装置中蒸汽管道配管设计的技术水平。
关键词:石油化工工艺;蒸汽管道配管;设计要点
作者简介:陈瑞娣(1987-),女,汉,广东茂名,2010年毕业于广东石油化工学院,化学工程与工艺专业,学士,现职于茂名瑞派石化工程有限公司,助理工程师,研究方向:石油化工设计
在我国石油化工领域中,石油化工装置主要以石油为原料,并利用化学原理,实现化工产品的生产,其中,蒸汽管道在石油生产中有着极为重要的作用和意义,蒸汽管道的质量好坏直接关系着石油生产是否能够正常进行。因此,在石油化工生产中,相关施工人员需要对蒸汽管道配管设计进行全面分析和研究,明确装置位置,通过模拟的方式,对管道模型进行测试,以此来实现装置安装的安全性和可行性,从根本上保证了相关工作人员的人身安全。
1蒸汽管道中的设计模式
1.1蒸汽管道中的配管装置
为了确保蒸汽管道的安装符合国家施工标准,施工单位需要对配管装置的应用范围做出说明。通常情况下,施工单位利用塑料材质对管道进行配置,在施工操作之前,需要对施工周边环境进行全面仔细的勘察,使各个装置角落具有一致性,确保施工环境符合操作标准。在装置被广泛认可后,市面上出现了不同形式的装置,主要特点如下:第一种是压力较大的蒸汽;第二种是高超压力蒸汽;第三种是中等压力蒸汽;第四种是低级压力蒸汽。在具体蒸汽管道施工中,需要将具备以上特点的压力蒸汽管道分散于施工场地的各个角落,以此来确保管道配置操作的有效性和便捷性。由于在管道施工过程中,管道内部温度远远高于外界,因此,需要利用小型补偿设备,对管道内部膨胀性能进行消耗。需要注意的是,要将小型补偿设备与管道之间的的距离进行精确计算,以此来确保吸收效果的增强。一般情况下,设备与仪表线路处于相同位置,这就需要利用温度的变化对管道安装中的出现的情况进行分析和处理,将压力蒸汽管道之间的距离差异进行深入分析和研究,以此来确保整个蒸汽管道的正常运转,避免不必要的安全事故,在工业发展领域有着极为广阔的发展前景。
1.2装置压力蒸汽管道的排液设施设计
在装置运行中,压力蒸汽管道可能会产生排液体,因此,这就需要在压力蒸汽管道安装过程中,选用配置较低的管道设备,也就是小型的补偿设备,并将其放置于蒸汽管道配管的最低点,在此基础上,设置好相关的管道排液设施。针对型号超高压力蒸汽管道来说,排液体的处理要根据排液设施进行分析,主要是为了实现以下功能:一是由于与主要管道距离较近,需要对根部阀采取准确有效的控制,实现良好的排液设计;二是将排液设备与根部阀的距离拉近,确保液体不会外泄。处于低级压力蒸汽管道中,由于其特殊性,在正常运输中,不可能出现排液的可能。由此可见,当蒸汽管道处于低压位置时,在装置输送中就不会有排液现象的出现。
1.3关于布置压力蒸汽管道
一般来说,压力蒸汽管道的布置中,该管道与配管之间处于同一范围内,在蒸汽管道的装配中,在排液体之上安装一个小型补偿设备,为了防止水锤现象的出现,将其与补偿设备装在统一水平线上,或者配合科学合理的角度实现管道的高效利用。之后,施工人员需要对压力蒸汽管道进行全面观察和分析,并对装置疏水阀渗漏的液体予以检测,确保排液体自动回收于蒸汽管道之中,再停止相关操作。此外,还需要注意的是,在排液体回收时,设备之间的回收要应用法兰方式进行连接,并将其安装于接入口之内,确保管道形状的合理和正常。当排液体回收时,出现高温状况,施工人员需要利用多种方式进行疏水,并在其后方辅以止回阀,确保排液体的合理回收。一般情况下,水平方向进行的管道连接,与止回阀进行接触时,要采取法兰形式,实现排液体的回收。
2蒸汽管道配管设计要点
在蒸汽管道配置中,需要将管道的直径予以合理设置,严格按照施工标准和要求采取相关措施,达到蒸汽管道直径的基本要求。一般来说,当直径范围较大时,施工成本在无形中增加,热量也会有所消耗,冷凝水的回收质量也会削弱;当直径范围较小时,蒸汽在管道中的流速变大,蒸汽压降还会不断增大,可能会导致提供蒸汽的一端出现缺压现象。一旦出现水锤现象,在蒸汽管道的安装中,管道直径的选择不宜过大,也不宜过小,管道直径适中即可。在管道安装过程中,需要根据压力的具体需求进行蒸汽管道设计,避免蒸汽管道不必要的损坏。针对小型补偿设备而言,其推力设备的固定位置需要符合安装标准,将设备连接口与集箱压管道进行连接,以此来提高压力蒸汽管道的高效设计,有利于施工质量和效率的提升,最大限度的防止水锤现象的发生。为了避免水锤现象的出现,在连接分管道时,利用主管道最顶端的蒸汽管,以此来实现石油化工工艺装置蒸汽管道配管的设计,从根本上实现石油化工产品生产的质量和水平。
3结语
总的来说,由于在石油化工工艺装置中,排液体的温度处于流动状态,温度较高。因此,在压力蒸汽管道的设计中,需要考虑管道设备的外观和形状,各项施工操作要符合相关的管道施工标准,通过科学精确的计算和分析,利用模型进行测试,以此来确保整个压力蒸汽管道设备的安全性和实用性,进一步促进我国石油化工领域的蓬勃发展。
参考文献:
[1]刘尧祥.探究石油化工工艺装置蒸汽管道配管的设计[J].中国石油和化工标准与质量,2013(09).
第四篇:厂区管廊分区管理规定
关于加强厂区公共管廊分区管理的通知
所属公共管廊按现有专业厂所属区域划分,实行按属地管理。具体要求如下:
1、各专业厂根据公司要求明确所属区域内管廊的范围,制定本专业厂的管理办法。
2、3、各专业厂负责属地范围内的内管架、管廊的检查、维修管理。按属地划分各专业厂要定期对所属区域内的管架、管廊进行检查,专业厂至少每季检查一次,车间每月检查一次,并形成记录。
4、各专业厂、车间检查时发现管廊支架有变形、裂纹、破损等情况应及时上报、并制定具体整改措施,及计划并尽快实施。
5、各专业厂负责所属区域内管廊地面的卫生清理、场地平整及管架、管排上杂物的清理。管线泄漏所致的由管线所属单位进行处理。
6、各专业厂检查时如发现所属区域内管廊上有不属于自己的管线保温破损、泄露、吊架、变形等异常现象应及时通知相关单位,如无法确定管线所属单位应及时上报机动设备处,机动设备处对管线所属单位进行考核,如不上报对属地单位和所属单位同时考核。
7、为维护管廊的安全运行,防止管廊、管线安全受到危害,对可能危害管廊安全的有关活动,规定应事先向主管部门报告,提供管廊管理单位认可的施工保护方案,并在施工中按照该方案采取保护措施。
8、各专业厂管廊划分图见附件1:(各专业厂如对所分管廊有异议请于3日内提交到机动设备处联系人处,管廊有不完善处请补充完善)
第五篇:管廊功能介绍
1、安全厂用水供水管廊(GA)
GA管廊是重要厂用水(SEC,重要厂用水系统)供水管廊,连接联合泵房(PX)和电气厂房(LX)。SEC系统是为核岛设备冷却水系统(RRI)提供冷却水的直流系统,并且通过GA管廊向常规岛和核岛提供消防水。另一个作用是将电气厂房(LX)的应急电源分四个系列送至联合泵房(PX),在GA沟中,一侧布置工艺管道,另一侧布置电缆桥架,中间至少有0.8m的人行通道,以保证桥架安装、电缆敷设和在役检查时人员和器具的顺利通过。除这些外,GA管廊内还布置有仪控设备,每两台机组四条GA管廊内共设置四个集水坑,每个集水坑内设一个浮球液位控制器,高液位报警信号送至KIC系统。
GA管廊属于抗震I类构筑物,采用极限安全地震震动(SL-2)进行抗震设计。GA廊道通常采用地下现浇钢筋混凝土结构,举例来说,红沿河GA廊道断面尺寸:高×宽=2.7m×2.8m,顶板、底板和侧壁的厚度均为0.6m。伸缩缝宽50mm,伸缩缝间距约20m。底板内底标高为-6.5m~-8.85m。混凝土强度等级为C40,抗渗等级W10。钢筋采用HRB400级和HRB335级。(具体可见附图中“红沿河GA管廊布置图”)
2、安全厂用水排水管廊(GS)
重要厂用水系统(SEC)的排水部分称之为GS管道。GS管道的功能是排放经过RRI/SEC热交换器后的SEC系统的冷却水(RRI系统是设备冷却水系统)。要求保证在所有工况下排出SEC冷却水。GS管道的起点在核辅助厂房(NX)的溢流井的排水槽,此溢流井是与安全相关的构筑物。通常情况下,GS管道不承担安全方面的功能,红沿河是特殊情况。
岭奥二期的GS管廊设置情况介绍:岭澳核电站二期GS管道排水管从核辅助厂房(NX)NEF区外的溢流井后的排水槽开始,通过检修闸门井,由重力流将SEC的热水排入CC虹吸井。与循环水系统(CRF)在井内掺混后排入大海。溢流井是与安全有关的钢筋混凝土结构。
每个反应堆有1根GS管道。两个反应堆的排水槽之间用排水渠连接。在正常排水时,两个GS管道单独排放各个反应堆的SEC排水。在其中一根GS管道由于某种原因不能过水时,两个反应堆的SEC排水通过排水渠由剩余的GS管道排放。在两根GS管道全部失去排水功能时,SEC排水从排水槽和排水渠溢出至厂区,最终通过厂区雨水系统(SEO)排除。
GS排水溢流井和连接井采用现浇钢筋混凝土结构。混凝土强度等级为C30,抗渗等级W10。钢筋采用HRB400级和HRB335级。
GS管道可采用PCCP预应力钢筒混凝土压力管道,直径1.80m。
3、技术管廊和管沟(GB)
GB的功能是向厂区大多数建(构)筑物提供所需管道和电缆的敷设场所。同时,要求所敷设的管道和电缆检修和检查方便。
GB技术管廊所涉及的管道系统: JPD-消防水分配系统 JPU-厂区消防水分配系统 SAR-仪表用压缩空气分配系统 SAT-检修用压缩空气分配系统 SAP-压缩空气生产系统 SDA-除盐水生产系统 SES-热水生产与分配系统 SED-核岛除盐水分配系统 SEK-常规岛废液收集系统 SEP-饮用水系统
SER-常规岛除盐水分配系统 SHY-氢气生产与分配系统 SRE-放射性废水回收系统 SRI-常规岛闭路冷却水系统 SVA-辅助蒸汽分配系统 SGZ-厂用气体贮存和分配系统 ASG—蒸发器辅助给水系统 APG—蒸发器排污系统 SIR—化学试剂添加系统 CVI—冷凝器真空系统 SEO-电站污水系统
还有一些常规岛之间和核岛之间借助于GB沟连通的管道。
它们输送多种介质,如生产水、生活水、消防水、除盐水、冷却水、废水、蒸汽、压缩空气、氢气等,还有排除GB技术管廊内集水坑的污水至电站污水系统SEO。
GB技术管廊与下列子项有关:
· NI:核岛; · CI:常规岛; · YA/YB:除盐水厂房; · AC:热机修间和仓库; · ZC:空气压缩机房; · ZB:制氢站; · AL:厂区实验楼; · AG/EL:汽车库及洗衣房; · HX:制氯站; · PX:联合泵站; · VA:辅助锅炉房 · QA/QB:废液储存罐;
· QS/QT:废物辅助厂房/固化桶贮存库;
· AA/AF/XL:非放射性机修、仓库及性能实验室;
· AB/AO/AQ/EF:冷机修仓库、材料棚、龙门吊及环吊小车仓库钢材库; · AX:危险品库; · FC:油脂库; ·UG:保安楼; ·UD:保护区大门 ·BX:生产办公楼等。
GB廊道结构采用钢筋混凝土结构,属于通行管廊。
4、循环水进出水管廊(GD)循环水管沟分为循环水进水管和排水管。
循环水进水管沟是从联合泵房出口至常规岛汽机房凝汽器的循环水压力管道, 用于连接循环水泵和凝汽器,采用圆形断面, 其直径为3.4m。进水管道出循环水泵房后,由汽机房A排与B排之间进入汽机房。进水管道采用钢筋混凝土现场浇筑而成,使用精制模板保证管道内表面光洁。采用3.4m直径的进水管道主要是保持设计工况下管道内的流速不小于3m/s,以防止海生物和贝类在管道内壁吸附滋长。
循环水排水管沟是从常规岛汽机房出口至虹吸井的排水管道,用于连接凝汽器、虹吸井和排水明渠,将经过凝汽器换热后的冷却水排入大海。排水沟道采用正方形断面,断面尺寸3.2m×3.2m,流速2.7m/s。排水管道布置在汽机房A排东侧。
排水沟道也采用钢筋混凝土现场浇筑而成,使用精制模板以保证沟道内表面光洁。由于采用的是方形断面,承压能力相对较差,所以在混凝土浇筑完成后,会进行水压试验。
5、超高压管廊(DG)
DG超高压管廊是连接主变压器(TA)与500千伏开关站(TB)之间的廊道,DG管廊内安装六氟化硫气体绝缘的高压母线。从主变压器平台TA开始,经常规岛西侧到达主开关站TB。
DG沟采用深沟加盖板形式,过路段采用地下钢筋混凝土箱涵结构,C20素砼垫层,内部侧面和顶面施工防水砂浆抹面,底部设有找坡垫层。局部设置集水坑以便抽取沟内积水。(见附图)
6、废液排放管沟(核安全有关部分)(GC)
《轻水堆核电厂放射性废水排放系统技术规定》中规定:经过放射性废液处理系统处理的废水,必须采用槽式排放,对于放射性浓度不超过排放管理限值不需处理的低、弱放废水也应采用槽式排放。因此,需设立QA/QB厂房,分别布置有三个核岛放射性废液贮罐和常规岛废液贮罐,核岛内需要排放的废液通过QA厂房(TER系统)监测排放,常规岛废液通过QB厂房(SEL系统)监测排放。GC廊道是位于核辅助厂房和QA厂房之间的室外混凝土管沟,沟内敷设两构筑物间的低放射性废液输送管道。
GC廊道主要具有下述功能:
输送经TEU系统(位于核辅助厂房)处理后去TER系统(位于QA厂房)暂存及进行槽式排放的核岛废液;
输送RPE系统(位于核岛主厂房群)收集的去TER系统暂存及进行槽式排放的废液(如洗澡水、实验室排水等);
输送APG系统(位于核岛主厂房群)不回收部分的蒸汽发生器排污水去SEL系统暂存及进行槽式排放;
输送被收集在SRE贮槽(位于电气厂房)中、经检测判定为符合排放管理限值的去TER系统暂存及进行槽式排放的废液(热更衣室和热实验室疏水);
输送核岛废液排放系统(TER,liquid waste discharge)和常规岛废液排放系统(SEL)不符合排放标准返回TEU系统重新处理的废液。
安全功能:
GC廊道不直接影响反应堆安全,但与辐射防护有关,内部敷设的管道内输送的是可以向环境排放的轻微污染废液或不符合排放标准返回TEU系统重新处理的废液。
管廊布置:
GC廊道位于核辅助厂房和QA/QB厂房之间,为不通行的混凝土管沟,管沟盖有混凝土盖板,盖板上表面与所在地面同平。管沟QA/QB厂房一侧端头设有集水坑,以便收集管道意外泄漏的放射性废液。为去污方便,沟内壁要求抹面光滑并涂漆。GC廊道内只布置有管材为不锈钢的管道和阀门,没有其它设备。
结构方案:
采用现浇钢筋混凝土管沟的结构型式。
7、废液排放管沟(非核安全有关部分)(GR或TER)
GR廊道和GC廊道相似,是位于QB厂房和排水终端构筑物CC虹吸井之间的室外混凝土管沟,沟内敷设低放射性废液排放管道。
GR廊道的主要功能就是输送经TER/SEL系统贮罐暂存、取样检测达标可以排放的核岛/常规岛废液到排水终端构筑物CC虹吸井进行排放。
GR廊道不直接影响反应堆安全,但与辐射防护有关,GR廊道内部敷设的管道输送的废液是可以向环境排放的轻微污染废液。
从安全角度考虑,GR廊道为抗震物项,钢筋混凝土管沟的设计能承受地震应力,地震工况下不允许有裂缝及渗漏。
GR廊道是浅沟,沟底按一定坡度坡向排水终端构筑物CC虹吸井,保证正常情况下没有存水;排放管道进入CC虹吸井后继续延伸并伸入虹吸井液面以下。
管沟需盖有混凝土盖板,并要求防水;沟内管道设计应满足检修要求,设置隔离阀。
GR廊道位于QB厂房和排水终端构筑物CC虹吸井之间,为不通行的混凝土管沟,管沟盖有混凝土盖板,出口处(QB厂房)盖板上表面与所在地面同平。
采用现浇钢筋混凝土管沟的结构型式,混凝土强度等级为C40。