第一篇:土壤原位多相抽提技术
土壤原位多相抽提技术
1技术适用性
1.1适用的介质:污染土壤和地下水。
1.2可处理的污染物类型:适用于易挥发的污染气体和易流动的非水相污染液体(NAPL,如汽油、柴油、有机溶剂等)。密度小于水的称为LNAPL(Light NAPL),也称为轻质油,通常为石油产品,如柴油、苯、二甲苯等;密度大于水的称为DNAPL(Density LNAPL),也成为重油,通常为含卤素的有机溶剂(如PCE,PCB)和农药(DDT),还有焦化产物,如煤焦油。
1.3应用限制条件:不宜用于渗透性差或者地下水水位变动较大的场地。
2技术介绍
2.1原理:通过真空提取手段,抽取地下污染区域的土壤气体、地下水和浮油层到地面进行相分离及处理,以控制和修复土壤与地下水中的有机污染物。
2.2系统构成和主要设备:该系统主要由中央控制系统、多相抽提系统、多相分离系统、污染物处理系统四个主要部分构成。系统主要设备包括PLC控制设备、真空泵、气液分离器、油水分离器、气体处理设备、污水处理设备等。
多相抽提是指同时抽取污染区域的气体和液体(包括土壤气体、地下水和NAPL),把气态、水溶态以及非水溶性液态污染物从地下抽吸到地面上的处理系统中。多相分离是指对抽出物进行的气-液及油-水分离过程。油水分离可利用重力沉降原理除去浮油层,分离出含油量低的水。污染物处理是指经过多相分离后,含有污染物的流体被分为气相、液相和有机相等形态,结合常规的环境工程处理方法进行相应的处理处置。气相中污染物的处理方法目前主要有热氧化法、催化氧化法、吸附法、浓缩法、生物过滤及膜法过滤等。液相污染物处理目前主要采用膜法(反渗透和超滤)、生化法(活性污泥)和物化法等技术,并根据相应的排放标准选择配套的水处理设备。2.3关键技术参数或指标
2.3.1技术适用性的关键技术参数,主要分为水文地质条件和污染物条件两个方面:
2.3.2工艺运行一般关键技术参数:(1)抽提井采用UPVC材质,井径25mm,井深3.5m,影响半径约6.0m,其中筛管位于地下1m 至地下3m 的位置。(2)多相抽提中试系统的运行以单个抽提井逐一轮流抽提方式进行,总共运行25天。(3)单个抽提井每天的抽提时间在0.5小时内,25天的累积抽提时间共约8小时。(4)抽提时系统真空度控制在-0.065 MPa,抽提井井头真空度控制在-0.03MPa,平均气体抽提流量为80~100 升/分钟(L/min)。
3技术应用基础和前期准备
在技术应用前,需开展可行性测试,以对其适用性和效果进行评价和提供设计参数。参数包括:土壤性质(渗透性、孔隙率、有机质等)、土壤气压、地下水水位、污染物在土、水、气相中的浓度、生物降解参数(微生物种类、氮磷浓度、O2、CO2、CH4 等)、地下水水文地球化学参数(氧化还原电位、pH、电导率、溶解氧、无机离子浓度等)、NAPL厚度和污染面积、气/液抽提流量、井头真空度、NAPL回收量、污染物回收量、真空影响半径等。
4主要实施过程
(1)建立地下水抽提井,井与井间距应在水力影响半径范围内。抽提井中的NAPL和受污染的地下水首先会通过泵被抽出地面;在抽提井附近区域的NAPL会随着地下水对井的补给一起进入抽提井内而被抽出。对于有DNAPL存在的场地,抽提井的深度应达到隔水层顶部。(2)整个抽提管路应保持良好的密闭性,包括井口、管路、接口等。抽提开始后,根据观测流量,调节真空度及抽提管位置,使系统稳定运行。
(3)被水气两用泵抽出的土壤气体、地下水以及NAPL会在气水分离器内进行气水分离。分离出的气相部分通过真空泵排入气体处置装置;分离出的液相部分则进入油水分离器内。(4)液相在油水分离器内通过重力分离,得到的上层LNAPL和下层DNAPL污染物作为危险废物处置;受污染的地下水则通过污水泵送至现场污水处理站处理后达标排放。(5)工艺流程图。
5运行维护和监测
运行维护包括NAPL收集、抽提井真空度调节、泵流量调节、沉积物清理、仪表和电路及管路检修和校正等。同时,为有效地评估土壤原位多相抽提系统对地下环境的影响,需在运行过程中持续监测系统的物理及机械参数(抽提井和监测井内的真空度、抽提井内的地下水降深、抽提地下水体积、单井流量、风机进口流量、抽提井附近地下水位变化等)、化学指标(气相污染物浓度、气/水排放口污染物浓度、抽提地下水污染物浓度、NAPL组成变化等),以及生物相关指标(溶解性气体、氮和磷浓度、BOD、pH值、氧化还原电位、微生物数量等)。此外,为避免二次污染,应对废水和尾气处理设施的效果进行定期监测,以便及时采取应对措施。
6修复周期及参考成本
土壤原位多相抽提技术的处理周期与场地水文地质条件和污染物性质密切相关,一般需通过场地中试确定。通常应用该技术清理污染源区的速度相对较快,一般需要1-24个月的时间。其处理成本与污染物浓度和工程规模等因素相关,具体成本包括建设施工投资、设备投资、运行管理费用等支出。根据国内中试工程案例,每处理1千克NAPL的成本约385 元。
7国外应用情况
MPE 技术在国外已被广泛应用,技术相对比较成熟,国外部分应用案例信息如表14-2所示。同时,美国陆军工程部等机构已制定并发布了本技术的工程设计手册。
第二篇:RNA抽提知识
RNA抽提
1:RNA抽提原理
简单地讲,RNA抽提包含样品的裂解和纯化两大步骤。裂解是使样品中的RNA游离在裂解体系中的过程,纯化则是使RNA与裂解体系中的其它成分,如DNA、蛋白质、盐及其它杂质彻底分离的过程。Trizol试剂的出现基本能解决绝大部分样品RNA抽提,该方法已经成为了 RNA 抽提的主流。
2:了解你的实验样品
如果你研究某个实验样品,并且要抽提它的RNA,以下的信息一定要先行收集:该样品的RNA含量、酶含量、特殊杂质含量。如果你对样品的特点一无所知,当样品稍微有一点复杂时,抽提RNA的实验就会碰到许多问题。以血液为例,如果你不知道鸟的血液中有核细胞的含量是人血的千倍左右,而使用人血一样的起始量去抽提鸟血的基因组 DNA,怎么可能成功?失败了又怎么知道原因所在?同时,只有对实验样品有所了解,才能正确选择抽提方法。但同时提醒的是:没有信息是可怕的,更可怕的是将错误的信息当真的了。
3:实验样品量的取用
样品与Trizol的比例。这个问题非常重要,应该获得足够的重视。Trizol的Protocol,提供了一个简单的比例,1ml 裂解液可以用于 50-100mg 组织或5-10X106个细胞;我的建议是,样品量绝对要小于资料所提供的。起始样品用多大,并没有具体的说法。如果不是样品量有限,则以能抽提出满足数次成功实验所需的RNA,作为决定样品起始量的基础,会比较合理的。不要因为 1ml 裂解液可以抽提 100mg 样品,就一定使用 100mg 样品。裂解液的用量,表面上与抽提的结果(纯度及得率)没有关系,然而,在实际操作中,对结果是有比较大的影响的。裂解液的用量原则是:确保能彻底裂解样品,同时使裂解体系中核酸的浓度适中。浓度过低,将导致沉淀效率低,影响得率;浓度过高,去除杂质的过程复杂且不彻底,导致纯度下降。不同得样品其RNA含量差别很大。高丰度(2-4ug/mg)的如肝脏,胰腺,心脏,中丰度(0.05-2ug/mg)的如脑,胚胎,肾脏,肺,胸腺,卵巢,低丰度(<0.05ug/mg)的如膀胱,骨,脂肪。考虑后续实验,一般情况下,高丰度的样品取用量大概是10-20mg/ml Trizol,中丰度样品50mg/ml Trizol,低丰度样品我们可以根据客户提供的实验样品量酌情取用。重申一下,不是越多越好,在考虑样品在1ml Trizol里能充分裂解的同时,还得考虑大量的样品可能也会带来大量的杂质!利用Trizol试剂抽提血清样品时,Trizol /血清比值不要小于7/3。石蜡样品由于RNA降解严重,含量大打折扣,所以取样时应该按低丰度样品原则取用。
3:裂解方法
裂解的目的就是破坏细胞的结构,释放出里面的RNA,使其溶解于裂解液中。绝大部分样品的裂解,比如冻存的细胞,心、肝、脾、肺、肾等,利用Trizol试剂,普通的匀浆方法就可以达到满意的效果!但是如果碰到比较特殊的样品,我们可能要附加一些其他的辅助手段。1)骨骼。骨骼组织质地坚硬,普通的匀浆器根本无法使其破碎,以致RNA不能完全释放溶解在TRIZOL试剂中,碰到这种类型的样品,我们必须先利用液氮把样品破碎成粉末状,Trizol悬浮混匀再利用Minibeadbeater匀浆5分钟。取上清, 2000g 4℃离心5min再取上清 去沉淀。2)细菌 Trizol虽然对细胞的裂解效果出众,但是对细菌坚韧的细胞壁还是无可奈何,这时我们可以利用超声来辅助破壁。将细菌重悬于300ul的Trizol中,置于Bioruptor冰水浴中,M 档 30s “on”、30“off”超声处理1—2 min.取出用Trizol将体积补至1ml。3)酵母 酵母细胞跟细菌一样,还是因为细胞壁的原因,不能充分裂解。Zymolyase在37℃ 40分钟可以很好的消化掉酵母细胞壁,这里需要提醒的是消化缓冲液不能有外源性RNA酶污染,最好附加使用RNA酶抑制剂,做好了这点就不用担心这步有RNA降解的问题。4)石蜡包埋样品 石蜡包埋的组织样品在加Trizol裂解前必须先脱蜡,脱蜡的效果直接影响后续实验,所以我们为使脱蜡充分,选用高温脱蜡与二甲苯脱蜡相结合的两步脱蜡法。脱蜡后加入Trizol匀浆。5)脂肪 脂肪组织可以直接用Trizol 匀浆,这里需要提醒的是脂肪组织匀浆后,需室温静置5min,再室温7500g 离心5分钟,去除上面的脂肪层再继续后续实验!
4:分相
Trizol里含有的物质之一“酚”去除蛋白质是有一定的饱和度的。超过了该饱和度,裂解体系中的蛋白质不会被一次去除,裂解匀浆后的样品,按1ml Trizol 加200ul 的氯仿,震荡离心,绝大部分样品在这一步是不需要用特殊方法对待的,但对于蛋白含量比较高的组织样品必须要二次抽提,甚至多次抽提方可彻底去除。这里要着重提到的是血清样品!离心分相后,取上清这一步是分相实验的操作难点,一定要谨慎,万不可混入有机相污染,原则是宁缺勿滥!
5:异丙醇的沉淀
异丙醇的沉淀,目的是使RNA从裂解体系中沉淀下来,从而实现RNA与其它杂质 – 主要是盐 – 的分离。实际操作中,有的杂质也会与RNA一起被醇沉淀下来,尤其是当其它杂质的浓度也比较高的时候。异丙醇的沉淀并不是非常特异性的,有机大分子及一些盐,当浓度达到一定水平后,都可能同步被沉淀下来。在不影响后续实验的情况下,我们是可以忽略这些盐污染。有些实验样品,由于前期用药物或某种方法处理过,导致会残留有一些特殊的杂质,之所以残留,往往是因为这些杂质与RNA有一些相似性:你沉淀我沉淀,你吸附我吸附。这些特点决定了它们往往是非常强的酶抑制剂,对后续实验影响非常大。这里介绍有几种方法除去这些杂质:1)TRIzol 提供的一个沉淀方案:一半异丙醇加一半高盐溶液替代纯粹的异丙醇,可以大大降低多糖残留。2)介质纯化:遇到一些与RNA共同沉淀下来且影响后续实验的一些杂质,可以利用BioMag公司提供的连有 Oligo dT的磁珠纯化出总RNA中的mRNA,这个方法优点是基本能解决绝大多数有杂质污染的总RNA(目前没有遇到这种方法处理不了的),缺点是成本比较高。对与RNA含量少的样品,直接异丙醇沉淀得率会很低,而且基本看不见沉淀物,这也会给后续的操作带来很大的麻烦,进一步损失RNA。遇到这种情况我们可以使用一种媒介(Golycogen)跟RNA共同沉淀下来,这种媒介物质既能很好的跟RNA共同沉淀下来,又不会影响后续实验。不要迷信试剂说明书里的标准方法;有时,使用标准方法碰到问题在标准方法中是找不到答案的,要具体问题具体分析。
6:洗涤
洗涤注意四点:首先一定要将沉淀悬浮起来;第二就是要有一定的时间,尤其是当RNA沉淀比较大时 ;第三是少量多次;第四则是去上清要彻底。在异丙醇沉淀后,绝大多数时是能看见管底的白色沉淀,但还是有时候是看不见的,即使是加过Golycogen的。遇到这种情况不要慌,没看见不等于没有,遇到这种情况可以先用移液器小心的吸去上清,注意枪头不要碰到管壁。加入75%乙醇,上下颠倒几次,短暂离心后用移液器吸去上清,同时仔细观察管壁是否有挂液。如果有,那没问题,可以确定沉淀都附在管壁上了。
7:RNA的溶解和保存
纯化后的RNA溶解以水为主,用无Rnase酶的水溶解的RNA基本上还算稳定,其稳定与温度成反比,与浓度成正比。所以抽提好的RNA应尽快保存在-70℃,避免反复冻融,同时注意不要把浓度稀释的太低,大概保持在1000ng/ul。如果温度合适,保存中RNA发生降解或者消失,其原因应该是酶残留导致的酶解。
8:RNA质量的检测问题
将抽提好的RNA直接用于后续的实验,是唯一可靠的检测方法;除此之外的检测方法,都是相对的,不可全信。目前实验室用于正式实验前检测RNA质量的方法,一是电泳,二是NANO-Drop。电泳检测的主要是RNA的完整性和大小,该方法还是比较可信的;同时电泳还可以用于估计核酸的浓度,其准确度与经验有关;另外,电泳也可能提供某些杂质污染的信息,但是同样与经验有关。NANO-Drop检测的是纯度和核酸含量。然而,由于NANO-Drop不能确保非常准确,所以,提供的结果并不十分可信。一般讲,同时进行NANO-Drop检测和电泳检测,综合二者的结果,可以做出一个更合理的判断。但由于这两个方法都有缺陷,所以,即使出现坏的结果能用于后续实验而好的结果却不能用于后续实验,也不用大惊小怪。(A260/A280 比值低 – 蛋白质残留但更可能是苯酚残留。A260 值提示的含量与电泳检测时提示的含量有可见的误差可初步判断是苯酚残留。)
第三篇:酵母抽提物生产流程
酵母提取物
前处理和自溶:
废酵母→清水洗涤→过滤→酵母泥→加水调至含干酵母10%~15%→调pH至4.5→夹层热保温45℃~55℃→自溶24小时。
自溶期间每隔1小时开动搅拌2~5分钟,搅拌有利于酶类和酵母内大分子物质充分接触,提高单位接触面底物的浓度,从而加快细胞内酶的反应速度。
为了加速细胞的自溶,还可添加2%~3%的氯化钠,其对提高抽提物得率和上清液氨基氮含量有一定促进作用。
酶解:
自溶结束后,在自溶酵母液中加入0.2%复合酶,调整物料pH为7.0,在50℃条件下酶解24小时。酶解结束后,经纳米对撞机在150MP~200MP下进行破碎。其作用原理是:物料形成150MP以上的高压射流,经分流装置被分成两股,然后,两股高压射流体在一个腔体内发生对撞,产生瞬时高压使振荡片振荡,形成频率高达20000赫兹以上的超声波,酵母细胞在对撞和超声波的强大压力的共同作用下发生纳米级破碎。经纳米对撞机处理后,用显微镜检测,混合物料中大多数为空腔细胞和大量碎片,酵母细胞壁的破碎率可达97.9%,抽提物得率为91.8%。破碎液经进一步纯化、浓缩后可制得淡黄色的胶木抽提物制品。
采用上述方法制得的酵母抽提物,肌苷酸(I)含量为1.27g/100g,鸟苷酸(G)含量为1.498g/100g牞(I+G)为2.76g/100g。与日本日研公司同类产品相比,指标分别提高294.4%、626.82%、413.96%。具体工艺:废酵母预处理【120目过筛→脱苦→调整母液浓度(10%~15%)→加促进剂(2%Nacl)→自溶(温度50℃,pH5.2~6.0,24h)】→酶解(0.2%,pH7.0,50℃,24h)→纳米对撞机破碎(150MP~200MP,循环2~4次)→加麦芽根酶解酶(70℃,3~4h)→加热灭酶(95℃,10分钟)→离心分离→酵母上清液浓缩→酵母抽提物产品。
以上所述啤酒酵母抽提物的提取技术,其关键点是将传统的自溶、酶解方法与先进的纳米破碎技术相结合,利用高压撞击作用破碎酵母细胞壁,从而使其内容物最大限度溶出,提高制品中氨基酸含量。
第四篇:血液标本抽提DNA
抗凝全血中提取DNA
准备: 配制80%异丙醇和70%乙醇各1ml备用。选择2ml的 离心管。血液的体积为2ml。先向2ml的离心管中加入1ml的血液。后加入1ml的buffer MG-A,剧烈摇晃20次;10000xg 离心30s,缓慢倒掉上清。再加入1ml的血液,再加入1ml的buffer MG-A,剧烈摇晃20次;10000xg 离心30s,缓慢倒掉上清。注意: 使用底部带有棱角的离心管,以防倒上清时,沉淀滑出离心管。
如果血液体积超过1/2离心管的体积,可分两次进行处理。目的:buffer MG-A的作用是快速裂解细胞,并且促使DNA形成容易沉淀的凝聚物。加入1ml的buffer MG-A。Vortex充分震荡,10000xg 离心 30s,缓慢倒掉上清。加入1ml的buffer MGS, Vortex充分震荡,10000xg 离心30s,缓慢倒掉上清。将离心管倒扣在吸水上2min;或者简短离心,仔细吸除残留的上清。
目的: 洗涤去除DNA凝聚物中的蛋白。加入1ml buffer MGL和10ul Proteinase K,Vortex震荡悬浮沉淀。6 65℃水浴30min(或者更长时间,可过夜),间断摇晃混合。目的:降解蛋白,释放DNA 10000xg 离心 30s,将上清缓慢倒入一个干净的2ml的离心管,加入800ul 80%异丙醇;缓慢翻转离心管20次(出现丝状或簇装DNA凝聚物),再剧烈摇晃20次使DNA凝聚物变得更紧密。10000xg 30s,缓慢倒掉上清。
注意: 在出现丝状或簇状DNA凝聚物后,需剧烈摇晃去除可能包裹在DNA凝胶中的溶液,不然最后DNA溶解困难,或DNA中有盐残留。
在出现DNA凝聚物之前,DNA为溶解状态,需要缓慢翻转离心管。目的:异丙醇能够沉淀DNA 加入1000ul 70% 乙醇,剧烈摇晃20次;10000xg 离心 30s,缓慢倒掉上清。
目的:洗涤去除盐成分。将离心管倒置在干净的吸水纸上至少5min,或者简短离心,仔细吸除残留的乙醇(勿吸除沉淀)。室温放置10min或者37℃ 放置5min挥发乙醇,干燥至DNA沉淀为半湿润状态,无酒精味,效果最佳。目的:干燥挥发乙醇。加入至少200ulTE,提速Vortex 震荡5s或者剧烈摇晃10次,65℃水浴10-60min 溶解DNA,水浴5min后轻弹离心管底部打散DNA凝聚物(一般继续水浴10min 后即可完全溶解);或者65℃水浴过夜。
注意:水浴后,DNA为溶解状态,应避免剧烈操作。目的:溶解DNA。
第五篇:血液总RNA抽提
血液总RNA抽提
1.取250ul血清加入750ul Trizol LS(用于液体中RNA的抽提)中,剧烈震荡,静置。2.加入200ul 三氯甲烷,剧烈震荡,静置10min。3.4度,12000g 离心15min。4.吸上清至新的EP管,加入500ul(与所吸出的上清比列为1:1)异丙醇,并加入1ul的糖原,轻轻上下颠倒混匀,-20度冰箱沉淀过夜。5.4度,12000g 离心15min。留沉淀(RNA),将上清倒掉,加入1ml 75%的乙醇(DEPC水配),上下颠倒,洗涤RNA沉淀。6.4度7500g离心10min。去上清,将沉淀晾干(不能太干)加入10ul左右的Rnase free 的水溶解即可。