采用CHEMCAD进行精馏塔模拟和设计

时间:2019-05-14 04:53:48下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《采用CHEMCAD进行精馏塔模拟和设计》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《采用CHEMCAD进行精馏塔模拟和设计》。

第一篇:采用CHEMCAD进行精馏塔模拟和设计

任务1 精馏设计与严格模拟

知识目标:理解轻、重关键组分的概念,理解回流比的概念,理解严格精馏的操作条件的合理组合,理解灵敏度分析的概念,理解精馏从简捷设计到严格模拟,再到尺寸设计的过程。

技能目标:掌握简捷精馏设计中对轻、重关键组分的设定,掌握严格精馏的操作条件的设定,使用灵敏度分析来优化严格精馏的设计,能使用CHEMCAD进行精馏的简捷设计、严格模拟和尺寸设计。

一、采用ChemCAD进行精馏塔简捷设计计算

精馏设计采用芬斯克-恩特伍德-吉利兰-Kirkbride公式(Fenske-Underwood-Gillila-nd-Kirkbride),芬斯克公式求解精馏塔的最少理论塔板数;恩特伍德公式求解最小回流比;吉利兰计算实际回流比及其对应的塔板数;Kirkbride公式计算适宜的进料板位置,芬斯克公式也可以求解适宜的进料板位置。

例5-1-1 使用简捷法设计一个脱乙烷塔,从含有6个轻烃的混合物中回收乙烷,进料组成mol%:甲烷 5,乙烷 35,丙烯 15,丙烷 20,异丁烷 10,正丁烷 15;进料状态为饱和液相,压力为2.736MPa。对产物分离要求见设计条件表。①求该塔的最小回流比,所需最少理论板数;②当实际回流比为最小回流比的1.25倍即R/Rm=1.25时,该塔的实际塔板数和进料位置。

表5-1-1 脱乙烷塔的设计条件

设计的分离要求 馏出液中C2H6的回收率 馏出液中C3H6的回收率

0.915 0.063 解题步骤:

步骤1:新建文件名“简捷设计”; 步骤2:建立流程图,精馏塔用简捷精馏塔(shortcut column)的图标;流程如图5-1-1。步骤3:选择流程的单位:点击“格式及单位制”菜单按钮,在其下拉菜单中选择“工程单位…”命令,以国际单位制为主,选择符合题意的单位(mol,K,MPa)。

步骤4:点击菜单按纽“热力学及物化性质”,在其下拉菜单中点击“选择组分…”命令,然后依次将组分甲烷(Methane或CH4)选中加入,将组分乙烷(Ethane或C2H6)选中加入,将组分丙烯(propene 或C3H6)丙烷(Propane和C3H8)选中加入,将组分异丁烷(i-butane或i-C4H10)选中加入,将组分正丁烷(n-butane或n-C4H10)选中加入。“OK”,软件弹出建议的K值与H值的方法(K=SRK,H=SRK),就采用系统提示的K值方法;

步骤5:双击“物料 1”,在弹出的编辑物料信息窗口(如图5-1-2所示)的“压力 MPa”文本框中填入压力值2.736,在“气相分率”文本框填入数值0;各组分摩尔流量按题意填入即可,点击该窗口左上方的按钮“闪蒸”,软件算出温度和焓,点击“确定”;

121简捷精馏塔3

图5-1-1 简捷精馏塔流程图

图5-1-

2进料信息编辑窗口

步骤6:双击流程图中单元设备精馏塔的图标或设备号①,弹出简捷精馏塔输入信息框;根据题目要求填写和选择如图5-1-3所示。

图5-1-3 简捷精馏塔的信息编辑窗口

步骤7:点击“R”按钮,运行流程的模拟计算。

步骤8:查看设备1——简捷精馏塔的计算结果和相关信息。如图5-1-4所示,点击菜单命令“结果报表/单元设备/选择单元设备…”,弹出“选择单元设备”窗口,用鼠标点击设备1或在窗口中输入数字1,“OK”;

图5-1-4 设备结果信息查看的菜单命令

部分结果如下:

塔板数 最少塔板数 进料板位置

冷凝器换热量

MJ/h 再沸器换热量

MJ/h 最小回流比Rmin 回流比计算值

17.756 8.4369 9.8332-1.112 1.4334 1.4583 1.8229

二、精馏过程严格计算

精馏塔的简捷设计常用于精馏塔的初步设计和经验估算,适用于非极性和弱极性的物质体系。这样的的结果往往比较粗糙,还需要用精馏塔的严格模型进行校验,结合灵敏度分析工具,优化精馏的操作条件,如进料板的最佳位置,最佳回流比,塔板数等。

ChemCAD中精馏的严格模型按照塔板上的MESH方程联立,模型塔的示意如图5-1-5所示。

图5-1-5 精馏塔的模型结构

该模型塔有N块理论板,包括一个塔顶冷凝器和一个再沸器。理论板的顺序是从塔顶向塔釜数,冷凝器为第一块板,再沸器为第N块板,除冷凝器与再沸器外每一块板都有一个进料F;气相侧线出料G;液相侧线出料S和热量输入或输出,若计算的塔不包括其中的某些项目,则设该参数为零,并假定每块板为一块理论板。数学模型—MESH方程组

在平衡级的严格计算中,必须同时满足MESH方程,它描述多级分离过程每一级达汽液平衡时的数学模型。

①物料平衡式(每一级有C个,共NC个,其中C为组分数),即M方程;

Lj1xi,j1(VjGj)yij(LjUj)xijVj1yi,j1Fjzij

②相平衡关系式(每一级有C个,共NC个),即E方程;

yijkijxij

(5-1-1)

③摩尔分率加和式(每一级有一个,共有N个),即S方程;

xij1或yij1

(5-1-2)

④热量平衡式(每一级有一个,共有N个),即H方程;

Lj1hj1(VjGj)Hj(LjUj)hjVj1Hj1FjHFjQj(5-1-3)除MESH模型方程组外,平衡常数和焓的关联式必须知道

kijkij(Tj,pj,xij,yij)

hjhj(Tj,pj,xij)

HjHj(Tj,pj,yij)

NC个 N个 N个

(5-1-4)(5-1-5)(5-1-6)

将上述N个平衡级按逆流方式串联起来,有Ncu=N(2C+3)个方程和Nvu=[N(3C+9)–1]个变量。

设计变量总数Niu=NC+6N–1个,固定N(C+3),可调3N–1 如:1)各级Fij,zij,TFj,pFj,N(C+2)个

2)各级pj,N个

3)各级Gj(j=2,„,N)和Sj(j=1,„,N–1),2(N–1)个 4)各级Qj,N个 5)各级N,1个

在N(2C3)个MESH方程中,未知数为xij,yij,Lj,Vj,Tj,其总数也是N(2C3)个,故联立方程组的解是唯一的。

精馏的MESH方程是一个庞大的方程组,求解方法比较复杂。根据求解方法,ChemCAD提供两类严格的精馏求解模型:内-外环法(inside-out)和联立校正法(simultaneous)。

本节介绍如何应用ChemCAD中精馏塔的严格模型SCDS,对精馏过程进行物料衡算和精馏塔温度分布计算。

例5-1-

2已知塔的进料条件和操作要求如图5-1-6所示,求塔的温度分布和物料的各组分分布。

图5-1-6 例5-1-2的进料条件和操作要求

本题思路:普通精馏塔的流程是一进两出,需要知道进料信息和塔的操作信息。塔的操作信息主要有:①塔板总数,在CHEMCAD中不把冷凝器和再沸器纳入塔板数,那么本题的塔板总数是11;②进料板的位置应为7-1=6;③塔的操作压力或压力降,本题的塔压是2.76MPa;④如果精馏塔有一个冷凝器,就至少再需要一个有关馏出液(汽)的操作条件,本题给出了两个,只需要用其中一个即可;⑤如果精馏塔有一个再沸器,就至少再需要一个有关釜液的操作条件,本题给出了两个,只需要用其中一个即可;

解题步骤:

步骤1:建新文件名为“精馏”;

步骤2:建立流程图如图5-1-6所示,精馏塔使用SCDS图标; 步骤3:选择流程的单位:点击菜单“格式及单位制”“工程单位...”,选择符合题意的单位(mol,K,MPa)。

步骤4.点击菜单按纽“热力学及物化性质” “选择组分...”,依次将组分甲烷(Methane或CH4)选中加入,将组分乙烷(Ethane或C2H6)选中加入,丙烷(Propane和C3H8)选中加入,将组分正丁烷(n-butane或n-C4H10)选中加入,将组分正戊烷(n-pentane或n-C5H12)选中加入。“OK”,弹出软件建议的K值与H值的方法(K=SRK,H=SRK),就采用系统提示的K值方法;

步骤5.双击“物料1”,弹出“编辑物料信息”窗口,如图5-1-7所示,在“温度 K”文本框中键入温度值313.7; 在“压力 MPa”文本框中键入压力值2.76,各组分摩尔流量按题意填入即可,点击该窗口左上方的按钮“闪蒸”,点击“确定”;

步骤6.双击流程图中单元设备精馏塔的图标或设备号①,弹出精馏塔输入信息框;根据题目要求,“精馏概况”页面填写如图5-1-8。

图5-1-7 例5-1-2的进料信息编辑窗口

图5-1-8 CHEMCAD中精馏塔的设备信息

步骤7.点击精馏塔输入信息窗口的“Specifications”活页,选择和填写如图5-1-9所示:

图5-1-9 例5-1-2的精馏塔的分离要求组合1

根据题目要求也可以用C2、C3回收率来确定两个条件代替,如图5-1-10所示:

图5-1-10 例5-1-2的精馏塔的分离要求组合2

当然根据已知条件还有多种选择。

步骤8.点击菜单“运行”,如图5-1-11所示,点击其下拉菜单中的“收敛…”,在弹出的“-收敛参数-”窗口左下方选上“显示跟踪窗口”,表示显示计算收敛过程,“OK”如图5-1-12所示;

运行按钮

图5-1-11 流程的运行命令菜单

图5-1-12 流程的运行命令菜单

步骤9:点击工具栏中的运行按钮“R”,(在图5-1-11中已经标出),弹出消息窗口,显示CHEMCAD对程序的检查结果,“CHEMCAD Message Box”窗口中显示该题输入数据的错误为零,随后点击窗口下方的按钮“Yes”。

步骤10:点击“CHEMCAD Trace Window -”窗口中的 “Go”按钮,执行运算,计算完成后,“CHEMCAD Trace Window -”窗口显示收敛完成,运行结束。

步骤11:关闭上述窗口。然后我们再产生一个这次流程模拟的结果文件:点击“结果报表”命令菜单,在弹出的下拉菜单中选择最下方的“统一完整的报表…”菜单命令,弹出“统一完整的报表”命令按钮窗口,点击第二个按纽“计算并给出结果”,CHEMCAD弹出结果文件,包含了所有物料和设备的信息。

步骤12:绘制温度分布图:点击“绘图”菜单命令,选择“单元设备信息绘图” “精馏塔信息随塔板分布图”子命令;

图5-1-13 绘图的运行命令菜单

步骤13:弹出“选择单元设备”窗口,让用户用鼠标选择设备。

步骤14:弹出绘制塔内各种变量分布图的选择窗口,选择如图5-1-14所示:

图5-1-14 绘图信息选择窗口

步骤15.点击图5-1-14中窗口中 “OK”按纽,弹出塔板温度分布图如图5-1-15所示:

图5-1-15 塔板温度分布图

步骤16.同理绘制的塔板上汽相分布图和液相组分分布图如图5-1-16和图5-1-17所示:

图5-1-16 塔板上汽相分布图

图5-1-17 塔板上液相分布图

采用灵敏度分析对该塔的进料板位置进行确定。在不改变分离质量的情况下,合适的进料板位置对应的回流比最小,能耗也最低。因此进料板位置可以通过分析回流比随进料板位置的变化,找出最小点,确定进料板位置。

步骤1.点击“运行”菜单按钮,选择子菜单命令灵敏度分析 > 新建灵敏度分析,如图5-1-18所示,弹出“新的灵敏度分析”消息窗口,如图5-1-19所示;

图5-1-18 “运行”菜单按钮下的命令“新建灵敏度分析”

图5-1-19 为新建灵敏度分析命名的消息窗口

步骤2.在图5-1-19输入名称,如在文本框中输入“确定进料板位置”,表明本次灵敏度分析的作用,点击“OK”按钮,此时子菜单命令“编辑灵敏度分析”激活,如图5-1-20所示;

图5-1-20 “编辑灵敏度分析”的菜单命令

步骤3.点击“编辑灵敏度分析”命令,弹出变量编辑窗口,确定变量类型和变化范围,如图5-1-21A和图5-1-21B所示;

图5-21A 自变量编辑窗口

图5-1-21B 因变量编辑窗口

步骤4.点击“灵敏度分析”菜单下的运行 > 运行所有,如图5-1-22所示,运行灵敏度分析。

图5-1-22 灵敏度分析菜单下的“运行全部”命令

步骤5.点击灵敏度作图命令“绘制结果图”,如图5-1-23所示;

图5-1-23 灵敏度分析菜单下的绘图命令

步骤6.在弹出的“Sensitivity Plot”窗口,如图5-1-24所示,对作图的X轴和Y轴进行选择,输入Y轴的标题名。点击“OK”,弹出回流比随进料板位置的变化图,如图5-1-25所示;通过该图,合适的进料板位置是5。

图5-1-24 绘图选项窗口

图5-1-25 回流比与塔板数的灵敏度分析结果图

三、精馏设备的设计

精馏塔设备结构主要有两大类:填料塔和板式塔。本节主要介绍使用ChemCAD进行无规整填料(如拉西环,鲍尔环等)精馏塔的尺寸设计。

步骤1.对于任意一个已经完成的SCDS精馏模拟的题目,点击“尺寸设计”菜单按钮,选择子菜单“精馏” “填料…”命令,如图5-1-26所示。

图5-1-26 精馏塔设备尺寸设计命令

步骤2.弹出的“填料”窗口,输入段数“1”,选择“用于无规填料的Sherwood-Eckert法”,如图5-1-27所示。

图5-1-27 填料设计的相关选项

步骤3.弹出的填料参数窗口,如图5-1-28所示。大部分参数软件已经给好,主要做如下选择和输入:本题选择确定压力降;之后输入压力降的设计值,本题给出压力降的最大值是0.2MPa;最后给出理论板当量高度,本题给的值是0.3m;设计压力设定值是2.76MPa。

图5-1-28 无规填料塔的设计选项窗口

步骤4:点击“OK”,软件给出设计结果,如塔径,壁厚等。

第二篇:精馏塔设计心得体会

3、设计心得

通过本次设计,让自己进一步对精馏塔的认识加深,体会到课程设计是我们所学专业课程知识的综合应用的实践训练,也深深感受到做一件事,要做好是那么的不容易。

在本次设计中,我结合书本与网上的一些知识来完成了自己的课程设计。其中的设计评述、塔板结构与选型参考课本上的模板。在此次设计中虽然自己做了近两周时间,深深体会到计算时的繁锁。首先是对塔的操作压强认识不足,在老师的帮助下自己很快的解决了。其次是再计算时有许多是根据老师指定数据来算的如:塔板间距、上液层高度、加热蒸汽压强,质量流量等,这些对于我们这些只学了一些简单的理论知识的学生来说简直是难上加难,以至于自己再算到这些时,算了一次又一次,才满足了工艺要求。再次,虽然,自己经过很长时间来完成自己的设计内容的计算,一遍又遍,但还是觉得不算苦,必定有一句“千里之行,始于足下”。再完成设计内容后那就是选择工艺流程图,然而自己对工艺流程图的绘制却不知无从下手。最后,工艺流程是自己在结合书本上和老师给的参考图形,根据我们的设计要求选择了这个工艺流程。在确定此次工艺流程图之后,自己也用CAD画一遍花了一天的时间把工艺流程图画完。也感觉到自己CAD的不行,以后要花时间来练习。

短短的几周课程设计,使我发现了自己所掌握的知识是真正如此的缺乏,自己综合应用所学的专业知识能力是如此的不足,几年来的学习了那么多的课程,今天才知道自己并不会灵活综合应用,在今后一定要不断加强。并庆幸自己能有此次的工程设计训练,虽然是有点苦,但让我学习到了很多知识,也进一步的强化了自己所学的专业知识。相信此次课程设计训练对自己的今后工作都会有一定的帮助。最后,也感谢老师给我们的帮助,给予我们这次锻炼的宝贵机会。

4.参考文献

1.夏清, 陈常贵.化工原理(上,下)[M], 天津大学出版社, 2005

2.申迎华, 郝晓刚.化工原理课程设计[M], 化学工业出版社, 2009

3.贾绍义, 柴诚敬.化工原理课程设计[M], 天津大学出版社, 2002

4.王红林, 陈砺.化工设计[M], 华南理工大学出版社, 2001

第三篇:精馏塔设计心得体会

精馏塔设计心得体会

041140404 谢恒

通过本门课程设计,以下能力得到了较大的提高:

1、了解了筛板精馏塔的分离原理原理,以及筛板精馏塔的使用的注意事项。

2、培养具有综合应用相关知识来解决测试问题的基础理论;

3、培养在实践中研究问题,分析问题和解决问题的能力; 我们必须坚持理论联系实际的思想,以实践证实理论,从实践中加深对理论知识的理解和掌握。实验是我们快速认识和掌握理论知识的一条重要途径。

我们认为,在这学期的实验中,在收获知识的同时,还收获了阅历,收获了成熟,在此过程中,我们通过查找大量资料,请教老师,以及不懈的努力,不仅培养了独立思考、动手操作的能力,在各种其它能力上也都有了提高。更重要的是,在实验课上,我们学会了很多学习的方法。而这是日后最实用的,真的是受益匪浅。要面对社会的挑战,只有不断的学习、实践,再学习、再实践。

在本次设计中,我结合书本与网上的一些知识来完成了自己的课程设计。其中的设计评述、塔板结构与选型参考课本上的模板。在此次设计中虽然自己做了近两周时间,深深体会到计算时的繁锁。首先是对塔的操作压强认识不足,在老师的帮助下自己很快的解决了。其次是再计算时有许多是根据老师指定数据来算的如:塔板间距、上液层高度、加热蒸汽压

强,质量流量等,这些对于我们这些只学了一些简单的理论知识的学生来说简直是难上加难,以至于自己再算到这些时,算了一次又一次,才满足了工艺要求。

虽然,自己经过很长时间来完成自己的设计内容的计算,一遍又遍,但还是觉得不算苦,必定有一句“千里之行,始于足下”。再完成设计内容后那就是选择工艺流程图,然而自己对工艺流程图的绘制却不知无从下手。最后,工艺流程是自己在结合书本上和老师给的参考图形,根据我们的设计要求选择了这个工艺流程。在确定此次工艺流程图之后,自己也用CAD画一遍花了一天的时间把工艺流程图画完。也感觉到自己CAD的不行,以后要花时间来练习。

第四篇:使用PROII模拟精馏塔设计流程--图文

脱轻塔模拟 shortcut

运行结果

可以看出最小回流比为5.58,最小理论板数75 因为利旧塔板数为106,塔板效率按70%算,操作塔板数为74.2,塔板数不满足,更改分离要求,塔顶正己烷含量提高至6%。运行结果如图

由图可知,综合考虑塔板数和回流比,选择理论板数74,进料位置22.49,回流比选择最小回流比的两倍8.84。

塔顶关键组分3MP塔底关键组分HEXANE 计算两纯组分在0.04MPag下的泡点(露点温度)分别为74和79℃,又两者在45摄氏度下均为液体,说明塔顶压力设置在0.04MPag是可行的。塔板压降和塔顶压力主要看塔顶和塔顶的温度。通过不断更改塔顶压力和塔板压降达到所需温度。塔底再沸器设计因为塔底气相返回设置为20%,塔底物流经过再沸器的温度变化不大,故再沸器设计时选用固定再沸器热负荷的模式。

第五篇:精馏塔设计流程图

a管口方位示意图elj3A、B类焊缝1:2技术要求

1、本设备按GB150-1998《钢制压力容器》和HG20652-95《钢制化工容器制造技术要求》进行制造、试验和验收,并接受劳动部颁发《压力容器安全技术监察规程》的监督;

2、焊条采用电弧焊,焊条牌号E4301;

3、焊接接头型式及尺寸,除图中标明外,按HG20583-1998规定,角焊缝的焊接尺寸按较薄板厚度,法兰焊接按相应法兰中的规定;gh21222019cb2324di1825m1-7j4bcdj2n4、容器上A、B类焊缝采用探伤检查,探伤长度20%;

5、设备制造完毕后,卧立以0.2MPa进行水压试验;

6、塔体直线允许度误差是H/1000,每米不得超过3mm,塔体安装垂直度允差是最大30mm;

7、裙座螺栓孔中心圆直径允差以及相邻两孔或任意两弦长允差为2mm;

8、塔盘制造安装按JB1205《塔盘技术条件》进行;

9、管口及支座方位见接管方位图。Ⅵ技术特性表序号项 目设计压力 MPa设计温度 ℃工作压力 MPa工作温度 ℃工作介质主要受压元件许用应力 MPa焊缝接头系数腐蚀裕量 mm全容积 m3容器类别筒体、封头、法兰1700.58157.9327指 标0.11500.027102afkj11232617m727284整体示意图Ⅵ1:25678951e101150m7515049平台一管口表Ⅴ1:5符号公称尺寸bcdefgh***2020402045040连接尺寸标准HG20594-97HG20594-97HG20594-97HG20594-97HG20594-97HG20594-97HG20594-97HG20594-97HG20594-97HG20594-97HG20594-97HG21515-95HG20594-97紧密面型式用途或名称凹凹凹凹凹凹凹凹凹凹凹凹凹温度计口气相出口压力计口回流口进料口液面计口液面计口温度计口排气管口至再沸器口出料口人孔再沸器返回口***333161532m5293042m6414039383736ij1-4klⅣ1:5B向Bm1-7nⅤf3***m5313029平台二A41A向4039383736JB/ZQ4363-86HG20652-1998JB4710-92JB4710-92GB/T3092-93HG20594-97HJ97403224-7JB/T4734-95HG20594-97GB/T3092-93HJ97403224-3HG21515-95JB/T4736-95HG20594-97GB/T3092-93GB/T3092-93GB704-88HG20594-97GB/T3092-93HG20594-97HG8162-87HG20594-97GB/T3092-93JB/T4737-95HG5-1373-80HG20594-97GB/T3092-93JB4710-92地脚螺栓M42×4.5排净孔检查孔引出孔 φ133×4引出管 DN20法兰 PN1.0,DN20裙座筒体下封头DN1600×16法兰 PN1.0,DN20接管 DN20,L=250塔盘人孔 DN450补强圈 DN450×8法兰 PN1.0,DN45回流管 DN45气体出口挡板扁钢 8×16法兰 PN1.0,DN20接管 DN20,L=250法兰 PN1.0,DN600出气管 DN600法兰 PN1.0,DN20接管 DN20,L=250上封头DN1600×16吊柱法兰 PN1.0,DN32进料管 DN32筒体 φ1600×16塔釜隔板液封盘HG20594-97GB/T3092-93JB4710-92HG20594-97GB/T3092-93JB4710-92法兰 PN1.0,DN20接管 DN20,L=250排气管 φ80法兰 PN1.0,DN40引出管 DN40引出孔 φ159×4.5静电接地板垫板盖板筋板基础环图号或标准号名称2421111111******1112424481数量Q235-AQ235-AQ235-AQ235-AQ235-A16MnRQ235-AQ235-A组合件Q235-AQ235-AQ235-AQ235-AQ235-A〃F45Q235-AQ235-AQ235-AQ235-AQ235-AQ235-A16MnR组合件Q235-AQ235-A16MnRQ235-A〃FQ235-A〃FQ235-AQ235-AQ235-AQ235-AQ235-AQ235-AQ235-AQ235-AQ235-AQ235-AQ235-A材料Q235-A总质量:27685 Kg***2542.542.242.611.033802370.71.030.41572901424m42322Ⅲ1:5353433323***2532120191844.3310.116.9118.32.360.9674.150.61.81.030.4148.182.321.030.41370.73802.020.691812137621.91.030.411.174.672.365.382.97δ=81321716m3121Ⅳg3233***091110Ⅱ1:5242322212019***3in9h834m2765435Ⅲ876j1321m1j3Ⅱlk363738Ⅰ1:***4340214154321件号1.5574.193.9394.236.72322.7140.6单件总重重量(Kg)备注Ⅰ∠1∶10职务设计制图校核审核审定批准姓名日期设计项目设计阶段毕业设计施工图精馏塔比例1∶20图幅A1版次

LMCWE-103代 号PTTTF图 例名 称低压蒸汽冷却水(入)冷却水(出)冷凝水截止阀调节阀疏水器名 称放空压力温度流量液位产品釜液LMCWE-105FPTFLDLWLCWRSCA-106

二、生产工艺流程简图示例PTF取样口C-101疏水器E-101A106C-101E-105E-104E-103E-102E-101P-103P-102P-101V-103V-102V-101序 号P-101P-102P-103分配器精馏塔冷却器冷却器全凝器再沸器原料预热器产品泵釜液泵原料泵产品贮罐釜液贮罐原料贮罐名 称规 格1111111111111数 量PTPE-101FTTFE-102FLLLV-101V-102V-103备 注DLWLCWRSC下水道江苏工业学院 系 专业化工原理课程设计职责设计制图审核签 名日期年处理×××浮阀精馏塔工艺流程图

下载采用CHEMCAD进行精馏塔模拟和设计word格式文档
下载采用CHEMCAD进行精馏塔模拟和设计.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    板式精馏塔设计软件说明书

    板式精馏塔设计软件说明书 板式精馏塔的设计是高等院校化工类专业在进行课程设计时的一项必要的、综合的技能训练内容,是培养学生综合运用有关课程的理论和专业知识解决实际......

    采用多种方法进行爱国主义教育

    采用多种方法进行爱国主义教育 我们在搞好小学思想品德课教学中,深入贯彻“深”、“厚”精神的同时,还反复体会“宽”的蕴义,努力拓宽思想品德课的教育空间,加强横向联系,把单纯......

    采用哪些方式进行历史课堂的导语设计

    采用哪些方式进行历史课堂的导语设计? “兴趣是最好的老师。”学生在新课伊始,接受了一个令人振奋,令人兴趣盎然的导入,那么对于这节课的教学过程来说是不言而喻的,那么在这种教......

    如何采用顶层设计的方法进行电子政务规划(推荐5篇)

    如何采用顶层设计的方法进行电子政务规划 传统模式规划之惑 通过明确目标、原则,提出任务和措施,传统模式下的电子政务规划作为一个庞大的工作计划,基本上是比较完整的。但对......

    采用一问一答的方式进行面试

    采用一问一答的方式进行面试 已经过去,在出成绩的这段时间,考生们进入了漫长的等待期,在等待期中有的同学无所事事,而有的同学开始进行了面试的准备。总的来说国家公务员面试早......

    板式精馏塔的设计原则与步骤

    板式精馏塔的设计原则与步骤 1 设计原则 总的原则是尽可能多地采用先进的技术,使生产达到技术先进、经济合理的要求,符合优质、高产、安全、低能耗的原则,具体考虑以下几点。......

    采用多种方法对学生进行评价

    采取多元评价体系促进学生全面发展 我教的学生中历年都有王浩这样的情况。像上一届就有一个叫赵振飞的学生,他学习积极,每每通过预习就能提前完成下一单元的学习任务。他的......

    怎样进行模拟讲课

    怎样进行模拟讲课 模拟课堂教学的概念 模拟课堂教学又叫试讲,是在有限的时间内,教师通过口语、形体语言和各种教学技能与组织形式的展示而进行的一种教学形式。考查的是教师......