七年级数学上册第四章一元一次方程4.3用一元一次方程解决问题点击一次方程应用中的分配问题素材苏科版讲解

时间:2019-05-14 04:50:18下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《七年级数学上册第四章一元一次方程4.3用一元一次方程解决问题点击一次方程应用中的分配问题素材苏科版讲解》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《七年级数学上册第四章一元一次方程4.3用一元一次方程解决问题点击一次方程应用中的分配问题素材苏科版讲解》。

第一篇:七年级数学上册第四章一元一次方程4.3用一元一次方程解决问题点击一次方程应用中的分配问题素材苏科版讲解

点击一次方程应用中的分配问题

列方程解应用题是初中数学的中点内容。在各类考试中,出现了一类通过列方程求解的分配型应用题,这类试题与生活密切相关,考查大家分析问题能力的同时,也考查了同学们的日常生活知识。现撷取几例加以剖析,希望能对同学们的学习有所帮助.例1:儿童三轮车厂有95名工人,每人每天能生产车身9个或车轮30个。要使每天生产的车身和车轮恰好配套(一个车身配三个车轮),应安排生产车身和车轮各所少人?

分析:“一个车身配三个车轮”是解决本题的关键。抓住这个关键进一步分 析可知,当每天生产的车轮数是车身数的3倍时,可使每天生产的车身和车轮恰 好配套,由此可得到等量关系,进而列出方程.解:设每天应安排x人生产车身,则生产车轮的人数是(95x)人,由题意 可得9x330(95x),27x285030x,57x2850,解得x50,故每天 应安排50人生产车身,45人生产车轮,可使每天生产的车身和车轮恰好配套.例2:一张方桌由一个桌面和四条桌腿组成,用1m木材可制作50个方桌

桌面或300条桌腿。现有5m木材,若做成的桌腿和桌面恰好配套,能做成方桌多少张?

分析:由题意可知,制作的桌腿数应是桌面数的4倍,才可使桌腿和桌面恰好配套,因此本题可依次列方程求解.解:设用xm的木材制作桌面,则制作桌腿的木材是(1x)m,依题意可得方程3

333450x300(1x),200x300300x,500x300,解得x0.6,故制作桌面的木材是0.6 m,制作桌腿的是0.4 m.于是能做成方桌0.650150张.例3:北京和上海都有某种仪器可供外地使用.其中北京可提供10台,上海可提供4台.已知重庆需要8台,武汉需要6台,从北京、上海将仪器运往重庆、武汉的费用如表所示:

33终点起点北京

武汉400300重庆800500 上海 有关部门计划用7600元运送这些仪器,请你设计一种分配方案,使重庆、武汉能得到所需的仪器,而且运费正好够用.1 分析:可设北京提供x台给武汉,则余下的(10x)台提供给重庆;武汉从北京得到了x台,那么从上海应该得到(6x)台.因此上海提供给重庆的应是4(6x)台,按照以上的设想分配,总运费应等于7600元,由此可列方程求解.解:设北京供给武汉x台,则给重庆(10x)台;上海供给武汉(6x)台,则给重庆4(6x)台,依题意可列方程

400x800(10x)300(6x)5004(6x)7600 整理得200x88007600 解得x6

故北京提供6台给武汉,提供4台给重庆;上海的4台全部提供给重庆即可.2

第二篇:七年级数学上册用一元一次方程解决问题一元一次方程应用题解题方法论初探素材

一元一次方程应用题解题方法论初探

方程的应用问题的教学可以说贯穿了整个小学高年级学段和初中学段,在学生的数学学习活动中占有相当重要的地位(整个初中段方程及其应用题的教学学时为41学时,约占整个初中数学学时的11.5%),而一元一次方程应用题的教学,又是所有方程应用题教学中最基础的起始部分,因此,这一部分内容的教学成功,对后续包括二元一次方程组的应用、一元二次方程的应用的教学有着至关重要的作用。但由于初中一年级这一阶段学生的机械记忆力较强,分析能力却相对仍然较弱,因此,要提高初一年级数学应用题教学效果,除了要逐步提高学生的数学分析能力,及时地给学生以解题方法论的指导,也是每一位数学教师必须考虑和认真探索的问题。

显然,列方程解应用题的关键在于由题目中隐含的等量关系列出相应的方程。笔者通过多年的教学实践,认为初中数学应用题的教学基本可有如下几种方法:

一、直列法。即由题中的“和”、“少”、“倍”等表示数量关系的字眼,直接列出相关的方程。

例1 在甲处劳动的有27人,在乙处劳动的有19人,现在另调20人去支援,使在甲处人数为在乙处的人数的2倍,应调往甲、乙两处各多少人? 分析:显然,人员调动完成后,甲处人数=2×乙处人数。解:设调x人到甲处,则调(20-x)人到乙处,由题意得: 27+x=2(19+20-x),解之得x=17 ∴20-x=20-17=3(人)答:应调往甲处17人,乙处3人。

二、公式法。学生熟识的公式诸如“路程=速度×时间”、“工作总量=工作效率×工作时间”、“利润=售价-进价”、“利润率=利润/进价”等都是解答相关方程应用题的工具。例2 商品进价1800元,原价2250元,要求以利润率不低于5%的售价打折出售,则此商品最低可打几折出售?

分析:根据利润率公式,列出方程即可。

解:设最低可打x折。据题意有: 5%=(2250x-1800)/1800,解之得x=0.84 答:最低可打8.4折。

三、总分法。即根据总量等于各分量之和来列出方程,用此法要注意分量不可有所遗漏。例3 “过路的人!这儿埋葬着丢番图。请计算下列题目,便可知他一生经过了多少寒暑。他一生的六分之一是幸福的童年,十二分之一是无忧无虑的少年。再过去七分之一的年程,他建立了幸福的家庭。五年后儿子出生,不料儿子竟先其父四年而终,只活到父亲岁数的一半。晚年丧子老人真可怜,悲痛之中度过了风烛残年。请你算一算,丢番图活到多大,才和死神见面?”

分析:本题即是著名的丢番图的“墓志铭”,题中巧妙地把丢番图的总年龄划分为了几个部分,解题时只需运用其总年龄=各部分年龄的和即可得出解答。解:设丢番图活了x年。据题意可得: x=x/6+x/12+x/7+5+x/2+4 解之得x=84 答:丢番图共活了84岁。

由此题的解答,我们还可知道古希腊的这位大数学家丢番图33岁结婚,38岁得子,80岁死了儿子,儿子活了42岁等。

四、同一法。这类题目的解题原理是:如果同一个量能用两个不同的代数式表达,则这两个代数式必然相等。

例4 一队学生从学校出发去部队军训,行进速度是5千米/时,走了4.5千米时,一名通讯员按原路返回学校报信,然后他随即追赶队伍,通讯员的速度是14千米/时,他在距离部队6千米处追上队伍,问学校到部队的距离是多少?(报信时间忽略不计)

分析:该题的解答关键在于,通讯员从返回学校到追上队伍所用时间与队伍走了4.5千米到距离部队6千米这段路程所用时间是相等的(同一段时间)。解:设学校到部队的距离是x千米。据题意得:(x-4.5-6)/5=(x+4.5-6)/14,解之得:x=15.5 答:学校到部队的距离是15.5千米。

当然,以上四种方法不是孤立使用的,如例4的解答必然要用到公式:“路程=速度×时间”。并且一个题目的解法往往也不是唯一的,如例1的解答也可以用总分法:

解:设人员分配后乙处人数为x人,甲处为2x人。分配后的总人数为27+19+20=66人,据

题意有: x+2x=27+19+20,解之得x=22,∴2x=44,故44-27=17(人),22-19=39(人)答:应调往甲处17人,乙处3人。

可见,方程应用题方法论的训练,不仅使大多数学生在解答相关问题时能“按图索骥”,而且对于培养学生思维的发散性和多元性也有着重要意义,使一题多解成为可能。

第三篇:七年级数学上册 4.2 用一元一次方程解决问题教学案(学生版)

【学习目标】

1.通过对劳力调配问题不同情况的探索,提高学生分析思维能力,将实际问题转化为教学问题 2.借助表格形式表达分析题意,体会一元一次方程是反映数量相等关系的一个有效数学模型。【学习重点、难点】

教学重点:寻找劳力调配问题中的已知数与未知数的相等关系,构建方程解题。

教学难点:由劳力调配问题的多种情况分析变与不变关系,抓等量列方程。【学习过程】

一、课前准备

1. 一个三角形的三条边分别为a、b、c,已知a:b:c=3:4:5,且三角形的周长是36cm则a=____cm,b=____cm,c=____cm 2. 甲、乙、丙三个粮仓共存粮80吨,已知甲、乙两仓存粮之比为1:2,乙、丙两仓存粮之比是1:2.5,则甲存粮____吨,乙存粮____吨,丙存粮_吨。3.月历某列3个数的和为54,这3个数是几?和能为56吗?

4.用直径为4厘米的圆钢,铸造三个直径为2厘米,高为16厘米的圆柱形零件,问需要截取多长的圆钢?

5.一个直径为1.2米高为1.5米的圆柱形水桶,已装满水,向一个底面边长为1米的正方形铁盒倒水,当铁盒装满水时,水桶中的水高度下降了多少米。

二、合作探究 活动一

1.甲组有15人,乙组有20人,丙组有13人。现在把丙组拆成二部分,分别去甲、乙两组。问应向丙组分别抽多少人去甲、乙两组,才能使甲组人数与乙组人数相等?

2.甲队原有人数是乙队原有人数的2倍,从甲队调12人到乙队,这时甲队人数比乙队人数的一半多3人,求甲队原有多少人?

活动二 由白铁皮做罐头盒,每张铁皮可制盒身16个或盒底43个,一个盒身与二个盒底配成一个罐头盒,现有150张白铁皮,应用多少张制盒身,多少张制盒底才能使盒身、盒底配成套?

活动三 某班同学参加运土劳动,女同学抬土,每两人抬一筐;男同学挑土,每一人挑两筐。已知全班共用59只箩筐,36根扁担,问该班男、女同学各有多少人参加这次劳动?

想一想:若设女同学有y人,用扁担数列方程,得_________________

三、当堂反馈 1.甲组有31人,乙组有20人。现又调来18人,要使甲组人数是乙组人数的2倍,若应往甲组调入x人,则应往乙组调______人,根据题意列方程为_______________或列方程为________________.2.某车间有工人80名,一个工人平均每天加工机轴15根或轴承10只,(1)怎样分配人数,能使加工出的机轴与轴承一对一配套?(2)怎样分配人数,能使加工出的一根机轴与2只轴承配套?

3.青年志愿服务队,甲队有40人,乙队有186人,因任务需要加强甲队人力,现从预备队调去甲队2人,再从乙队调去多少人,能使甲队人数是乙队人数的一半?

4.有甲、乙两个仓库,如果从甲仓库中取出24吨货物放入乙仓库,这时两个仓库的货物相等;如果从乙仓库中取出24吨货物放入甲仓库,那么甲仓库货物重量是乙仓库的2倍。求甲、乙两个仓库的货物各为多少吨?

四、课堂心得

第四篇:19七年级数学上册 4.2一元一次方程的解法教案苏科版

4.2 解一元一次方程(4)

一、教材分析: 1.学习目标:

知识与技能:知道解一元一次方程的一般步骤,能灵活运用去分母、去括号、移项、合并同类项、系数化为1等五大步骤解一元一次方程.过程与方法:巩固方程解法,经历求解过程,能体会到解法应根据具体方程本身特点而定.情感、态度与价值观:体会化归思想——把复杂变简单,将未知变已知的作用,体会数学的应用价值.2.重、难点:利用“去分母”将方程作变形处理.二、教材处理: 1.情景创设:

毕达哥拉斯是古希腊著名的数学家,有一次有位数学家问他:“尊敬的毕达哥拉斯,请告诉我,有多少名学生在你的学校里听你讲课?” 毕达哥拉斯回答说:“我的学生,现在有12在学习数学,14在学习音乐,17沉默无言,此外,还有三名妇女.”算一算:毕达哥拉斯的学生有多少名?

2.学生活动、意义建构、数学理论:

由情景问题入手,引导学生审清题意,根据等量关系:学生总数的学生总数的1712+学生总数的14++3=学生总数列出方程.即设毕达哥拉斯的学生有x名,由题意得x/2+x/4+x/7+3=x.学生独立思考问题,尝试解方程,交流自己的解法,相互加以比较.(生:①先移项再合并同类项;②先合并同类项后移项;③两边同时乘以28,56,84„„)学生比较上述方法,判断选择,引入——去分母.3.数学运用:

结合情景问题的解法,师生互动处理课本P123例

7、例8.反馈矫正学生出现的问题,让学生展开讨论,发现解答时出错之处.去分母时须注意:(1)确定各分母的最小公倍数;(2)不要漏乘没有分母的项;(3)分数线有括号作用,去掉分母后,若分子是多项式,要加括号,视多项式为一整体.建议进行专项训练,如x-32,-

x-32乘以6,8„„

用心

爱心

专心

概括解一元一次方程一般步骤,强调变形时各步易出现错误的内容.习题练习:见课本P124练一练1,2,3 思维拓展:见课本P124议一议

x-20.2-

x10.5=3;又如

0.1x0.03-

0.9-0.2x0.7=1(提示:分子、分母是小数、分数的可以首先利用分数的基本性质将其化为整数系数,然后再解方程.)4.回顾反思:

(1)回顾去分母注意事项,见上面数学运用.(2)本课时蕴涵的数学思想方法主要是化归思想.解方程的过程就是通过去分母、去括号、移项、合并同类项、(未知数)系数化为1等步骤,把一个一元一次方程逐步转化为x=a的形式.这是一个等量变形的过程,也是一个化归的过程.(3)具体解方程时,可根据具体情况,有些步骤可能用不上;有些步骤可以前后顺序颠倒;有时还可以省略一些步骤,以使运算简化.用心

爱心

专心 2

第五篇:七年级数学上册第四章一元一次方程章综合与测试《建立一元一次方程模型》典型例题素材苏科版讲解

《建立一元一次方程模型》典型例题

例1 把下面式子中的一元一次方程找出来,写在下面的括号里. 2+3=5,2x51,x30,2x3,2x0 4一元一次方程:{ } 例2 根据下列条件列方程:(l)某数的3倍比7大2;(2)某数的1比这个数小1; 3(3)某数与3的和是这个数平方的2倍;(4)某数的2倍加上9是这个数的3倍;(5)某数的4倍与3的差比这个数多1.

例3 据2001年中国环境状况公报,我国水蚀和风蚀造成的水土流失面积达356万平方公里,其中风蚀造成的水土流失面积比水蚀造成的水土流失面积多26万平方公里,问水蚀与风蚀造成的水土流失面积各是多少平方公里?请列出解决这个问题的方程.

例4 判断下列各式是不是方程,如果是指出已知数和未知数;如果不是,说明为什么?(1)3x20;(2)xy10;(3)2534;(4)xy1;(5)3x2x1;(6)x13x2.例5 己知x2是方程3x12xm的解,求m的值. 例6 根据下列条件列出方程

(1)某数的平方比它的5倍小-3,求这个数;(2)某数的223与15的差的一半比这个数大20%,求这个数; 5(3)一根铁丝,第一次用去了它的一半,第二次用了剩下的一半多1米,结果还剩2.5米,求这根铁丝的长;

(4)有两个运输队,第一队32人,第二队有28人,现因任务需要,要求第一队人数是第二队人数的2倍,需林第二队抽调多少人到第一队?

例7 某工程队每天安排120人修建水库,平均每天每人能挖去5m或运土3m,为了使挖出的土及时运走,问应如何安排挖土和运土的人数?

1 例8 若x2是关于x的方程xkxk50的一个解,则常数k____.2

参考答案

例1 分析 判断是否是一元一次方程应注意以下几个方面:(1)必须是等式;

(2)等式中必须含有一个未知数,且未知数的指数是1. 解 一元一次方程:2x51,x30,2x0 4说明:2+3=5和2x3,都不是一元一次方程,因为前者无未知数,后者不是等式. 例2 分析 要列方程,首先要认真审题,明确未知数,并设未知数,然后根据题中的条件,找出相等关系,列出方程,解(1)设某数为x,则有:3x72;或 3x72;或3x27;

(2)设某数为x,则有:

111x1x;或 xx1;或xx1;333222(3)设某数为x,则有:x32x;或x2x3;或x2x3;

(4)设某数为x,则有:2x93x;或 2x3x9;或 3x2x9;

(5)设某数为x,则有 4x3x1;或 4x31x;或 4xx13 说明:此题条件中的大(小)、多(少)、和(差)、倍等实际上说的是相等关系:

大数-小数=差; 小数十差=大数; 大数一差=小数.

例3 分析 根据已知条件,我们可以知道,我国水蚀与风蚀造成水土流失的总面积,又知道,风蚀造成的水土流失面积比水位造成的水土流失面积多,那么即使我们没学过本节知识,利用小学学过的关于和差问题的公式,我们仍然能够计算出本题的正确答案.

风蚀造成的水土流失面积=(风蚀、水蚀造成的水土流失之和+风蚀、水性造成的水土流失之差)+2 水蚀造成的水土流失面积=(风蚀、水蚀造成的水土流失之和-风蚀、水蚀造成的水土流失之差)÷2

但是,和差公式需要死记硬背。

如果利用这一节学过的知识来解本题,要简便很多.

(1)水蚀与风蚀造成的水土流失总面积为356万平方公里,即水蚀造成的水土流失面积+风蚀造成的水土流失面积=356万平方公里.(2)可以设水蚀造成的水土流失面积为x平方公里,又知“风蚀造成的水土流失面积比水蚀造成的水土流失面积多26万平方公里”,所以风蚀造成的水土流失面积为(x26)万平方公里.

(3)把x与(x26)代入①中的等式并省略不参与计算的单位名称,就得到方程。解 设水蚀造成的水土流失面积为x平方公里,则有

x(x26)356

说明:(1)这个方程并不难解,同学们在学习下一节之后,将会有更深的体会。(2)对题目中出现的表示同一种量的数(在本题中是表示水土流失面积的数)要注意分清哪个数大、哪个数小,要仔细分析列式时该用加号、还是该用减号。初学者要尽量避免在这些地方发生错误。

例4 分析 判断一个式子是不是方程,主要根据方程的概念;一是等式,二是含有未知数,二者缺一不可。

解(1)是。3,-2,0是已知数,x是未知数。(2)是:-1,0是已知数,x、y是未知数。(3)不是。因为它不含未知数。

(4)是。-1,0是已知数,x、y是未知数。(5)不是。因为它不是等式。

(6)是。-1,3,2是已知数,x是未知数。

说明: 未知数的系数如果是1,这个省略是1也可看作已知数,但可以不说,已知数应该包括它的符号在内。

例5 分析 欲求m的值,由己知条件x2是方程3x12xm的解,也就是将x2代入方程后左、右两边的值相等,即左边321,右边22m。

∵ 左边=右边,∴32122m,即可求出m. 解 ∵x2是方程3x12xm的解,∴ 将x2代入方程得:

32122m

∴ m1.例6 解(1)设某数为x,根据题意,得5xx3.2(2)设某数为x,根据题意,得13(x15)x20%x.25(3)设这根铁丝的长为x,根据题意,得 x111xxx12.5.222(4)设需从第二队抽调x人到第一队. 根据题意,得32x2(28x).说明:本题要求根据条件列方程,解题关键在于找到数量之间的有关运算和等量关系.列式时要根据不同的问题,适时添加括号以体现运算的顺序.对没有给出未知数的问题,列方程前先要正确设出未知数.

例7 解 设安排x人挖土,则运土人数为(120x)人,依题意得

5x3(120x).解得x45,则120x75.答:应安排45人挖土,75人运土.

说明:本题中有一句重要的话体现了等量关系,即“使挖出的土及时运走”,这就是说挖土与运土的总数应相等.本例中人数分配的目的是使挖土与运土的体积相同,实际上隐含的是人数分配中挖土人数:运土人数=3:5,依据这个等量关系也可以列出方程来.

2例8

因为x2是关于x的方程xkxk50的一个解,所以222kk50,即9k0,故k9,填9.

说明:本题解法中利用了“方程的解”的概念求解.

下载七年级数学上册第四章一元一次方程4.3用一元一次方程解决问题点击一次方程应用中的分配问题素材苏科版讲解word格式文档
下载七年级数学上册第四章一元一次方程4.3用一元一次方程解决问题点击一次方程应用中的分配问题素材苏科版讲解.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐