四年级奥数期中测试卷

时间:2019-05-14 06:58:50下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《四年级奥数期中测试卷》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《四年级奥数期中测试卷》。

第一篇:四年级奥数期中测试卷

2011年春季四年级奥数班期中测试题

姓名:_________ 得分:_________

一、我能填得对。(每空3分,共24分)

1、根据下图中的排列规律,请你算一算第16个图形应是什么? ○□※○□※„„

◎□○※◎□○※„„

○○□□○○□□„„

2、计算1+2+3+„„+17+18=。

3、计算2+4+6+8+„„+22+24+26=。

4、自然数中所有的两位数有 个,分别写出最大的和最小的。最大的,最小的。

二、我能选得对。(每题3分,共9分)

1、我是最棒的我是最棒的„„依次排列,第2011年字是什么字?()A、我 B、是 C、棒 D、的

2、数列2、6、10„„194、198的公差是()。A、3 B、7 C、4 D、2

3、今天是星期二,16天后是星期()45天后是星期()。

A、四、六 B、四、五 C、五、五 D、五、四

三、解决问题。(77分)

1、有一列数:1、2、3、4、1、2、3、4„„(10分)(1)第2002个数是多少?(3分)

(2)这2002个数相加的和是多少?(7分)

2、已知2010年3月3日是星期三。(15分)(1)2010年3月15日是星期几?(4分)(2)2010年5月1日是星期几?(5分)(3)2010年9月14日是星期几?(6分)

3、计算周长。(6分)10厘米

14厘米

希望让你坚持,坚持让你胜利!

4、用3种方法计算右图的面积。(单位:厘米)(18分)法一:

法二:

法三:

5、求出下列各数列的和。(18分)

(1)21+22+23+24+25+26+27+28+29;(4分)(2)2+4+6+8+10+12+14+16+18+20;(4分)(3)1+3+5+„„49+51;(5分)

(4)求自然数中所有两位数的和。(5分)

6、50把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,至多要试多少次?(5分)

7、在“育苗杯”小学生足球比赛中,共有20支足球队参赛。如果这20支队进行循环赛,需要比赛多少场?(5分)

希望让你坚持,坚持让你胜利!2

第二篇:四年级奥数

一个木器厂要生产一批课桌,原计划每天生产60张,实际每天比原计划多生产4张,结果提前一天完成任务。原计划要生产多少张课桌?

(1)电视机厂接到一批生产任务,计划每天生产90太,可以按期完成。实际每天多生产5台,结果提前一天完成任务。这批电视机共有多少台?

(2)小明看一本故事书,计划每天看12页,实际每天多看8页,结果提前两天看完。这本故事书有多少页?

(3)修一条公路,计划每天修60米,实际每天比计划多修15米,结果提前4天完成。一共修了多少米?

有两盒图钉,甲盒有72只,乙盒有48只,从甲盒中拿出多少只放入乙盒,才使两盒中的图钉树相等?

(1)有2袋面粉,第一袋面粉有24千克,第二代面粉有18千克。从第一袋中取出几千克放入第二袋,才能使两袋中的面粉质量相等?

(2)有两盒图钉,甲盒有72只,乙盒有48只,每次从甲盒中拿4只放入乙盒,拿几次后才能使两盒图钉数目相等?

(3)有两袋糖,一袋68粒,另一袋28粒。每次从多的一袋中拿出6粒放入少的一袋里,粒几次才使两袋糖的数目同样多?

第三篇:五年级奥数综合测试卷

五年级奥数综合测试卷

(一)一、填空题

1、计算:100-98+96-94+92-90+……+4-

2、计算:44×555+55×

3、两数相除得商24,余数15,又知被除数、除数、商、余数的和是629,则被除数是,除数是。

4、所有不能被9整除的两位奇数的和是。

5、把一根长为8米的绳子对折,再对折,然后从中间剪开,绳子被翦成()段,最长的一段长为()米。

6、某年的8月份有5个星期一,4个星期二。则这年的8月8日是星期()。

7、如果10个数的平均数是789,其中8个数的平均数是678,那么其余2个数的平均数是()。

8、如果用F(x)表示数x的约数的个数,G(x)表示数x的所有约数的乘积,那F(24)=,G(24)=.9、在2、5、7、9这四个数中,选出三个数,组成被3除,恰好余2的三位数,这样的三位数有()个。

10、如图,用丝带捆扎一种长为40厘米,宽为30厘米,高为20厘米的礼盒,结头处长30厘米,要捆扎这种礼盒需准备()分米的丝带比较合适。

11、图1中的对称轴有()条。

图2中的对称轴有()条。

12、把25个苹果最多分给()个小朋友,才能保证至少有一个小朋友分得7个苹果。

13、某班有10名同学,上午去长城的有32人,下午去故宫的有24人,两个地方都去的有20人。则两个地方都没有去的有()人;去长城而没有去故宫的有()人;去故宫而没有去长城的有()人。

14、梅河小学开运动会,彩旗队96名学生站成长方形队列,每横排6人,每两个人之间的距离是1米,则15、1234112341……12341除以7,得到的商的各位数字的和是()。

16、一座桥有9个桥洞,从第一个桥洞到第九个桥洞全长190米,相邻两桥洞间隔8米,则平均每个桥洞长()米。

二、解答题

1、某场足球赛赛前售出甲乙丙类门票共400张,甲类票50元/张,乙类票40元/张,丙类票30元/张,共收入15500元,其中乙、丙类门票张数相同.则这一天甲类、乙类、丙类门票分别售出()张。

2、甲、乙、丙三人共有人民币168元,开始,甲拿出与乙相同的钱给乙;然后,乙拿出与丙相同的钱数给丙;最后,丙拿出与这时甲相同的钱数给甲。这样,甲、乙、丙三人的钱数相等。原来甲比乙多()元。

3、两根铁丝,第一根的长度是第二根的3倍,如果两根各用去了6米,第一根剩下的长度是第二根剩下长度的5倍,那么第二根原来有()米?

4、甲列车第秒行20米,乙列车第秒行14米,若两列车齐头并进,则甲车行40秒超过乙车;若两列车齐尾并进,则甲车行30秒超过乙车。甲列车和乙列车各长是()米。

5、龟、兔进行1000米比赛。兔每分钟走40米,龟每分钟爬8米,兔每走5分钟歇25分钟,问:谁先到达终点?

第四篇:四年级奥数题精选200题

四年级奥数精选200题

一、算式谜

1.在下面的数中间填上“+”、“-”,使计算结果为100。

123456789=100

2.ABCD+ACD+CD=1989,求A、B、C、D。

3.□4□□-3□89=3839。

4.1ABCDE×3=ABCDE1,求A、B、C、D、E。

二、找规律

5.找找规律填数

76,2,75,3,74,4,(),();

2,3,4,5,8,7,(),();

2,1,4,1,8,1,(),()。

6.在()内填入适当的数

1,1,2,3,5,8,(),();

1,1,1,3,5,9,(),();

0,1,2,3,6,11,(),();

7.找规律在()内填上合适的数

(1)0,1,3,8,21,55,();

(2)2,6,12,20,30,42,();

(3)1,2,4,7,11,16,()。

(1)1,6,7,12,13,18,19,(); 8.选择

一个锐角三角形的一个内角是44度,其余两个角可能是()36度和100度

90度和46度 75度和61度

18度和96度 9.简便计算 12×102-24

69×56+32×56-56

13×94+13×10-13×4

10.解决问题

一个三角形的三个内角分别为∠1,∠2和∠3,∠2=2∠1,∠3=∠2,求∠1=?

三、排列组合

11.小华、小花、小马三个好朋友要在一起站成一排拍一张照片。三个人争着要站在排头,无法拍照了。后来照相师傅想了一个办法,说:“我给你们每人站在不同位置都拍一张,好不好?”这下大家同意了。那么,照相师傅一共要给他们拍几张照片呢?

12.二(1)班的小平、小宁、小刚、小超4人排了一个小块板,准备“

六、一”演出。在演出过程中,队形不断变化。(都站成一排)算算看,他们在演出小快板过程中,一共有多少种队形变化形式?

13.“69”顺倒过来看还是“69”,我们把这两个顺倒一样的数,称为一对数。你能在“0,1,6,9,8”这五个数中任意选出3个,可以组成几对顺倒相同的数?

14.有五种颜色的小旗,任意取出三面排成一行表示各种信号。问:共可以表示多少种不同的信号?

15.用数码0、1、2、3、4可以组成多少个没有重复数字的三位数?

四、简单推理

16.红、黄、蓝三个盒子,两个盒子是空的,一个盒子放了乒乓球,每个盒子盖上都写入一句话:红盒上写着“乒乓球不在这里”;黄盒上写着“乒乓球不在这里”;蓝盒上写着“乒乓球在红盒里”;不过,其中只有一句话是真的,想一想:乒乓球究竟在哪个盒子里?

17.甲、乙、丙、丁四个人比赛乒乓球,每两个人都要赛一场,结果甲胜了丁,并且甲、乙、丙三人胜的场数相同,问丁胜了几场?

18.A、B、C、D、E五人参加乒乓球单打比赛,每两人都要赛一盘,并且只赛一盘,规定胜者得2分,负者得0分,现在知道比赛结果是:A和B并列第一名,C是第三名,D和E并列第四名,那么C得多少分?

19.二年级举行数学竞赛,马林、王强和李伟取得了前三名,已知马林不是第一名,李伟不是第一名也不是第二名,()是第一名,()是第二名,()是第三名。

20.四个小朋友称体重,甲比乙重;乙比丙轻;丙比甲重;丁最重。这四个小朋友体重按从轻到重的顺序是怎样的?

五、图形计数

六、巧算简算

27。计算

(1)9999+999+99+9

(2)1797-(797-215)

(3)999×999+2999

七、平均问题

28。期中考试小明3科的平均成绩是95分,数学得了99分,英语得90分,语文得了多少分?

29。小李参加了5科的期末考试,数学成绩没有公布,其他4科的平均成绩是90分,如果将数学成绩加进去,小李5科的平均成绩是92分。小李的数学成绩是多少?

30。小明从家到学校的路程是540米,小明上学要走9分,回家只用6分,那么小明往返一次平均每分走多少米?

31。一位登山运动员以每小时6千米的速度从山脚登上山顶,又以每小时4千米的速度立即从山顶按原路返回山脚。在一个上下的过程内平均速度是多少?

32。一次数学考试中,小明和小王的成绩之和是196分,小明和小英的成绩之各是198分,小英和小王的成绩之和是194分。求3人的平均成绩。

八、等量代换

33。一包巧克力的重量等于两袋饼干的重量,4袋牛肉干的重量等于一包巧克力的重量,一袋饼干等于几袋牛肉干的重量?

34。一只小猪的重量等于6只鸡的重量,3只鸡的重量等于4只鸭的重量。一只小猪的重量等于几只鸭的重量?

35。一头牛一天吃草的重量和一只兔子9天吃草的重量相等,也和6只羊一天吃草的重量相等,已知一头牛一天吃青草18千克,一只兔子和一只羊一天共吃青草多少千克?

36.A+A+A=18,A+B=10。A和B各是多少?

37.A-B=8,A+A+B+B=20。A和B各是多少?

九、重叠问题

38。有两块木板各长80厘米,钉在一起的地方长10厘米,钉好后共长多少厘米?

39。有两块同样的木板钉在一起后长88厘米,中间重叠的地方长8厘米,这两块木板各长多少厘米?

40。两根钢条焊接后长4米,已知一根长233厘米,焊接的地方长10厘米,另一根钢条长多少厘米?

41。丁老师出了两道数学题给数学兴趣小组的18名同学做,做对第一道题的有10名同学,做对第二道题的有12名同学,没有一道也没有做对的同学。两道题都做对了的同学有几名?

42。丁老师出了两道数学题给数学兴趣小组的18名同学做,做对第一道题的有10名同学,做对第二道题的有12名同学,有3名同学一道题也没有做对。两道题都做对了的同学有几名?

43.甲水池有水60吨,乙水池有水30吨,如果甲水池的水以每分钟3吨的速度流入乙水池,那么多少分钟后,乙水池的水是甲水池的2倍?

44.一个除式,商是18,余数是4,被除数、除数、商、余数的和是292,除数与被除数各是多少?

十一、定义新运算

45。规定:x★y=(x+y)+(x-y),求13★5;13★(5★4)

46。规定A▲B=(A+B)×(A-B)。求27▲9。

47。规定:m◎n=(m+n)×(m-n);求30◎(5◎3)。

48。如果1☆5=1+11+111+1111+11111,2☆4=2+22+222+2222,3☆3=3+33+333,4☆2=4+44,那么7☆4=_____________

49.买甲、乙两种戏票,甲种票每张6元,乙种票每张4元,两种票买了11张,一共用去50元,两种票各买了多少张?

50.扬栋有面值2元、5元纸币共30张,一共是90元,面值2元、5元纸币各有多少张?

51.一堆水泥,用小集装车装载,要用30辆,用大集装车装载,只要24辆,每辆大集装车比小集装车多装5吨。这批水泥有多少吨?

52.李宇春演唱会售出30元、40元、50元的门票共600张,收入23400元,其中40元和50元的张数相等,每种票各售出多少张?

53.老猫和小猫去钓鱼,老猫钓的是小猫的3倍。如果老猫给小猫3条后,小猫比老猫还少2条。两只猫各钓多少条鱼?

十二、和差问题

54。两个水桶共盛水50千克,如果把第一桶里的水倒出6千克,两个水桶中的水就一样多了。第一桶原盛水千克。

55。甲筐里有苹果30千克,乙筐里有桔子若干千克,如果从乙筐里取出12千克桔子,苹果就比桔子多10千克,乙筐原有桔子千克。

56。甲乙两船共载客623人,若甲船增加34人,乙船减少57人,这时两船乘客同样多,甲船原有乘客人。

57.张老师买回篮球比足球多83个球,其中篮球比足球的2倍多5个,这两种球各有多少个?

58.副食店中白糖的千克数比红糖的3倍少35千克,已知白糖比红糖多41千克。副食店有白糖、红糖各多少千克?

十三、和倍问题

59。乙两个粮库原来共存大米320吨,后来从甲粮库运出40吨,给乙库运进20吨,这时甲库存的大米是乙库的2倍,两个粮库原来各存大米多少吨?

60。水果店运来水果380千克,其中苹果比梨的3倍还少40千克,水果店运来苹果和梨各多少千克?

61。乙两个油桶共存油240千克,如果把乙根的油注入甲桶40千克,这时甲桶存油正好是乙桶存油的3倍,甲、乙根原来各存油多少千克?

十四、差倍问题

62.张老师买回篮球足球排球,其中足球是篮球的3倍,足球比排球多7个,排球比篮球多11个。这三种球各有多少个?

63.小明的存款数是小刚的3倍,现在小明取出380元,小刚取出110元,两人的存款数变得同样多。小明和小刚原来各存款多少元?

64.甲仓存粮吨数是乙仓的3倍,如果甲仓中取出60吨,乙仓中运进80吨,甲、乙两个粮仓存粮吨数正好相等。甲、乙两个粮仓各存粮多少吨?

65.甲、乙两个粮仓各存粮若干吨,甲仓存粮的吨数是乙的3倍。如果甲仓中运进60吨,乙仓中运进260吨,则甲、乙两个粮仓存粮的吨数相等。甲、乙两个粮仓各存粮多少吨?67。妈妈比小兰大24岁,今年妈妈的年龄是小兰年龄的5倍,多少年后,妈妈年龄是小兰年龄的3倍?

66.三(1)班学生去公园划船,如果每条船坐4人,则多出4人;如果每条船坐6人,则多出了4条船;公园里有多少条船?三(1)班有多少名学生?

67.学校给新生分配宿舍,如果每间住8人,则少了2间房,如果每间住10人,则多出了2间房,一共有几间房分给新生?新生有多少人住宿?

十五、年龄问题

68。爸爸、妈妈现在的年龄和是72岁,5年后,爸爸比妈妈大6岁。今年爸爸和妈妈各多少岁?

69。今年父亲比儿子大28岁,明年父亲的年龄正好是儿子的5倍,父子今年的年龄各是多少岁?

70。方方今年11岁,她妈妈今年43岁,几年后妈妈的年龄是女儿的3倍?几年前妈妈的年龄是女儿的5倍?

71。芳芳家有三口人,三个人年龄之和是72岁,妈妈和爸爸同岁,妈妈的年龄是孩子的4倍,问:三人各是多少岁?

72。王英5年前的年龄等于李明7年后的年龄,王英4年后与李明3年前的年龄和是35岁。李明、王英两人今年各多少岁?

73.乘法分配律的简算: a×105-6×a+a

a×9+9×b-9×(a+b)

97×23+23+23+23

74.填空

1.整数部分是零的最大两位小数与最小两位小数的和是(),差是()。2.整数的最小计数单位与小数的最大计数单位相差()。

3.在20厘米,10厘米,10厘米,8厘米的4条线段中选择3条,围成一个三角形,围成的是()三角形,它的周长是()厘米。

75.判断钝角的一半一定是锐角()

十六、周期问题

76。有一列数:1,3,5,1,3,5,1,3,5„„第20个数字是(),这20个数的和是()。

77。甲问乙:今天是星期五,再过30天是星期()。乙问甲:假如16日是星期一,这个月的31日是星期()。

78。甲、乙、丙、丁4人玩扑克牌,甲把“大王”插在54张扑克牌中间,从上面数下去是第37张牌,丙想了想,就很有把握地第一个抓起扑克牌来,最后终于抓到了“大王”,你知道丙是怎么算出来的吗?

79.小红把一个小数的小数点向右移动两位后,得到的新数比原来多了198,原数是多少?

十七、还原问题

80。小虎做一道减法题目时,把被减数十位上的6错写成了9,减数个位上的9错写成了6,最后所得的数差是577,这题的正确答案应该是多少?

81.某人去储蓄所取款,第一次取了存款的一半还多5元,第二次取了余下的一半还少10元,第三次取了存款15元,这时还剩125元,他原来有多少元存款?

82.一个书架分上、中、下三层,一共放书384本,如果从上层取出与中层同样多的本数放入中层,再从中层取出与下层同样多的本数放入下层,最后又从下层取出与现在上层同样多的本数放入上层,这时三层书的本数相同,求这个书架上原来上、中、下各放几本书?

十八、植树问题

83.在一块长100米,宽80米的长方形地的周围种树,每隔若干米种一棵,共种了20棵,求每两棵之间的距离。

84.在一条长250米的路两旁栽树,起点和终点都栽,一共栽了102棵,每两棵相邻的树之间的距离都相等,你知道是多少米吗?

85.四年级的全体学生参加广播操比赛,排成4路纵队入场,队伍长230米,每队中前后两人相距2米。四年级共有多少名学生?

86.有320盆菊花,排成8行,每行中相邻两盆菊花之间相距1米,每行菊花长多少米?

87.有一根木料长20米,先锯下2米长的损坏部分,然后把剩下的木料锯成一样长的木条,又锯了5次,每根短木条长多少米?

十九、简单方阵

88.学校组织一次团体操表演,把男生排列成一个实心方阵,又在这个实心方阵四周站一排女生。女生有72人参加表演,男生有多少人?

89.在正方形的广场四周装彩灯,四个角上都装一盏,每边装25盏,问这个广场一共需装彩灯多少盏?

90.运动会上,在正方形操场四周站着执旗的同学28人,如四个角上都站一名同学,求这个操场每边站台多少个学生?

91.小强用棋子排成了一个每边11枚的中空方阵,共2层,求这个方阵共用多少枚棋子?

101.简便计算:(1)125×4×8×25

(2)26×101

(3)999×111+333×667

(4)1+2+3+4+„„+99+100

102.小明期中考试语文,数学,英语三科平均分为m分,常识公布后,他的平均分提高了一分,这时小明的总分为多少?

103.红红和明明共有邮票a张,明明给红红6张邮票后,他俩的邮票同样多,红红原来有多少张邮票?

104.小红和小青有同样多的糖,后来妈妈又给小红a块糖,而小青却吃了b块,这样小红的糖块数是小青的2倍,他们原来各有多少块糖?

105.四年级有男生a人,女生比男生的2倍少10人,那么这个班共有多少人?如果男女生人数相等,那么a等于多少?

假设问题

106.某公司运输衬衫400箱,规定每箱运费30元,若损失一箱,不但不给运费,并要赔偿100元,运后的运费结算为8880元,问这次运输损失了几箱?

107.某小学进行英语竞赛,每答对一题得10分,没有做、答错一题倒扣2分,共有15道题,小明得了102分,他做对了多少题?

108.九湖小学六年级举行数学竞赛,共20道试题.做对一题得5分,没有做一题或做错一题倒扣3分.刘刚得了60分,则他做对了几题?

109.工人运青瓷花瓶250个,规定完整运一个到目的地给运费20元,损坏一个倒赔100元,运完这批花瓶后,工人共得4400元,则损坏了多少只?

110.乘法分配律的简算: 18×101

45×102

35×99

111.如果四个人的平均年龄是25岁,且没有小于16岁的,且这四个人的年龄互不相等,那么年龄最大的可能是多少岁?年龄最小的可能是多少岁?

112.在一次登山活动中,梓涵上山每分钟行50米,然后按原路下山,每分钟行75米。梓涵上山和下山平均每分钟行多少米?

113.一个同学读一本故事书,前4天每天读25页,以后每天读40页,又读了6天正好读完。这个同学平均每天读多少页?

114.梓涵同学读一本故事书,前4天每天读25页,以后6天又读了200页正好读完。这个同学平均每天读多少页?

115.琦涵五次考试平均分为96分(满分100分),那么她每次考试的分数不得低于多少分?

116.。把一个小数扩大到他的100倍以后,小数点又向右移动一位,得到27.5,这个小数原来是多少?

117.甲乙两数的和是682,甲数缩小到原来的 后就等于乙数,甲乙两数原来各是多少?

118.甲乙两数的和是374,甲数的小数点向右移动一位就与乙数相等,甲乙两数各是多少?

119.一个小数扩大1000倍是100,把这个小数的小数点去掉,它的值扩大了多少倍?

120.在一次登山活动中,梓涵上山每分钟行50米,18分钟到达山顶。然后按原路下山,每分钟行75米。梓涵上山和下山平均每分钟行多少米?

121.四年级有60名同学去栽树,平均每人栽4棵,恰好栽完。随后又派来一部分同学,这时平均每人栽树3棵就可完成任务,又派来几名同学?

122.有几位同学一起计算他们语文考试的平均分,梓涵的得分如果再提高13分,他们的平均分就达到90分,梓涵的得分如果降低5分,他们的平均分就只有87分,那么这些同学共有多少人?

123.九湖中心小学有100名学生参加数学竞赛,平均得分63分,其中男学生平均分是60分,女学生平均分是70分,男女生各有多少人?

124..甲、乙的平均数是26,乙、丙的平均数是28,甲、丙的平均数是21,求甲、乙、丙三数的平均数。

125.梓涵参加体育达标测试,五项平均成绩是85分,如果投掷成绩不算在内,平均成绩是83分,梓涵投掷得了多少分?

126..如果四个人的平均年龄是23岁,且没有小于18岁的,那么年龄最大的可能多少岁?

127.五个数的平均数是45,将5个数从小到大排列,前三个数的平均数是39,后三个数的平均数是53,第三个数是多少?

128.梓涵期末考试时,数学成绩公布前他四门功课的平均分数是92分,数学成绩公布后,他的平均成绩下降了1分。梓涵数学考了多少分?

盈亏问题的关系式:

1、(盈+亏)÷两次分配的差=份数

2、(大盈-小盈)÷两次分配的差=份数

3、(大亏-小亏)÷两次分配的差=份数

每次分的数量×份数+盈=总数量,每次分的数量×份数-亏=总数量,解答盈亏问题的关键是要求出总差额和两次分配的数量差,然后利用基本公式求出分配者人数,进而求出物品的数量。

129.幼儿园买来一些玩具,如果每班分8个玩具,则多出2个玩具,如果每班分10个玩具,则少12个玩具,幼儿园有几个班?这批玩具有多少个?

130.小明带了一些钱去买苹果,如果买3千克,则多出2元,如果买6千克,则少了4元,问苹果每千克多少元?小明带了多少钱?

131一组学生去搬书,如果每人搬2本,还剩12本,如果每人搬4本,还缺6本,这组学生有几人?这批书有多少本?

132.某学校有一些学生住校,每间宿舍住8人,空出床位24张,如果每间宿舍住10人,则空出床位2张,学校共有几间宿舍?住宿学生有几人?

133学校排练节目,如果每行排8人,则有一行少2人,如果每行排9人,则有一行少7人,一共排了多少行?一共有多少人?

134.同学们去划船,如果每条船坐5人,则有10人没船坐,如果每条船多坐2人,则多出两条船,共有几条船?有多少个同学?

135.小明从家到学校,如果每分钟走40米,则要迟到2分钟,如果每分钟走50米,则要早到4分钟,小明家到学校有多远?

136.如图,周长为52厘米的“L”形纸片可沿虚线

分成两个完全相同的长方形。如果最长的边长是16厘米,那么该“L”形纸片的面积是平方厘米。

137.48名学生参加聚会,第一个到会的男生和全部女生握手,第二个到会的男生只差一名女生没握过手,第三个到会的男生只差2名女生没握过手,„„最后一个到会的男生同9名女生握过手,这48名学生中共有名女生。

138.奶奶去买水果,她买4千克梨和5千克荔枝,需花68元,买1千克梨和3千克荔枝的价钱相等,问1千克梨和1千克荔枝各多少元?

139.3筐苹果和5筐橘子共重330千克,每筐苹果重量是每筐橘子重量的2倍,一筐苹果和一筐橘子各重多少千克?

140.张老师为阅览室买书,他买了6本童话书和7本故事书需102元,买3本童话书和5本故事书价钱相等,买1本童话书和1本故事书各需多少元?

141.粮店运来一批粮食,4袋大米和5袋面粉共重600千克,4袋大米和7袋面粉共重680千克,一袋大米和一袋面粉各重多少千克?

142.一个标准油桶,桶连油共重7千克。司机马叔叔已经用去一半油,现在连桶还重4千克。桶里还有多少千克油?这桶油原来有多少千克油?桶重多少千克?

143.一瓶香水连瓶重50克,用去一半的香水后,连瓶还重30克,原来有香水多少克?瓶重多少克?

144.有7筐苹果,每筐苹果个数相等,如果从每筐中拿出40个,那么7筐剩下的苹果个数正好和原来5筐的个数相等,原来每筐苹果多少个?

145.一年级有6班,每班人数相等,如果从每班中调出30个,那么6班剩下的人数正好和原来2班的人数相等,原来每班多少人?

146.韩琦练写字,计划每天写100字,实际每天比计划多写4字,结果提前一天完成任务。原计划要写多少字?

147..陈赫做千纸鹤,计划每天做30个,实际每天比计划多做6个,结果提前3天完成任务。原计划要做多少个千纸鹤?

148.大袋子里有68粒糖,小袋子里有28粒糖,每次从多的袋子里取出4个放到少的袋子里,拿几次才能使两个袋子里的糖的粒数相等?

149.电视机厂装一批电视,每天装80台,15天可完成任务,如果要提前3天完成,每天要装多少台?

150.某厂每天节约煤40千克,如果每8千克煤可以发电16度,照这样计算,该厂9月份(按25天计算)节约的煤可发电多少度?

151.某车间计划20人每天工作8小时,8天完成一批订货,后来要提前交货,该批货由32人工作,限4天内完成,每天需工作几小时?

152.学校总务处张老师去商店采购学生用练习本,练习本定价4元8角,带去买900本的钱。由于买得多,可以优惠,每本便宜了3角钱,张老师一共买回多少本练习本?

153.某工程队预计用20人,14天挖好一条水渠,挖了2天后,又增加20人,每人工作效率相同,可以提前几天完工?

154.锅炉房按照每天3600千克的用量储备了140天的供暖煤,供暖40天后,由于进行技术改造,每天能节约600千克煤,问这些煤共可以供暖多少天?

155.学校食堂管理员去农贸市场买鸡蛋,原计划每千克5元的鸡蛋买96千克,结果鸡蛋价格下调,用这笔钱多买了24千克的鸡蛋。问鸡蛋价格下调后每千克是多少元?

156.18个人参加搬一堆砖的劳动,计划8小时可以搬完,实际劳动2小时后,有6个人被调走,余下的砖还需多少小时才能搬完?

157.张师傅计划加工552个零件。前5天加工零件345个,照这样计算,这批零件还要几天加工完?

158.3台磨粉机4小时可以加工小麦2184千克。照这样计算,5台磨粉机6小时可加工小麦多少千克?

159.一个机械厂4台机床5小时可以生产零件720个。照这样计算,再增加6台同样的机床生产3600个零件,需要多少小时?

160.一个修路队计划修路126米,原计划安排7个工人6天修完。后来又增加了54米的任务,并要求在6天完工。如果每个工人每天工作量一定,需要增加多少工人才如期完工?

161.九湖中心小学买了一批粉笔,原计划25个班可用40天,实际用了10天后,有10个班外出,剩下的粉笔,够在校的班级用多少天?

162.扬栋发电厂有10200吨煤,前十天每天烧煤300吨,后来改进炉灶,每天烧煤240吨,这堆煤还能烧多少天?

163.师傅和徒弟同时开始加工各200个零件,师傅每小时加工25个,完成任务时,徒弟还要做2小时才能完成任务。徒弟每小时加工多少个?

164.甲乙两地相距200千米,汽车行完全程要5小时,步行要40小时。泽奇同学从甲地出发,先步行8小时后该乘汽车,还需要几小时到达乙地?

165.旭婷筑路队修一条长4200米的公路,原计划每人每天修4米,派21人来完成,实际修筑时增加了4人,可以提前几天完成任务?

166.舒琪自行车厂计划每天生产自行车100辆,可按期完成任务,实际每天生产120辆,结果提前8天完成任务,这批自行车有多少辆?

167.德韬同学计划30天做完一些计算题,实际每天比原计划多算80题,结果25天就完成了任务,这些计算题有多少题?

168.甲、乙两个书架共有书480本,如果从甲书架中取出40本放入乙书架,这时两个书架上书的本数正好相等。甲、乙两个书架原来各有多少本?

169.甲、乙两人共有150元钱,如果甲增加13元,而乙减少27元,那么两人的钱数就相等。甲、乙两人各有多少元?

170.甲、乙两堆货物共180吨,如果从甲堆货物调运30吨到乙堆货物,甲堆货物仍比乙堆货物多10吨,求甲乙两堆货物各多少吨?

171.甲、乙两筐苹果共64千克,从甲筐里取出5千克放到乙筐里去,结果甲筐的苹果反而比乙筐的苹果还少2千克。甲、乙两筐原有苹果各多少千克?

172..学校食堂共有三种蔬菜,其中黄瓜、番茄共重50千克,青菜、黄瓜共重70千克,青菜、番茄共重60千克。这三种蔬菜各有多少千克?

173.四个人年龄之和是77岁,最小的10岁,他和最大的人的年龄之和比另外二人年龄之和大7岁,最大的年龄是几岁?

174.小诺沿长与宽相差30米的游泳池跑了5圈,做下水前的准备活动。已知小诺共跑了700米,问:游泳池的长和宽各是多少米?

175.曾老师比琪晗重30千克,曾老师比陈赫重25千克,琪晗陈赫共重75千克,琪晗陈赫各重多少千克?

176.苗圃有很多花苗,11000棵不是玫瑰,12500棵不是牡丹,玫瑰和牡丹共有8500棵,玫瑰和牡丹各有多少棵?

177.甲乙两数和是150,甲数除以乙数的商是4,甲乙两数各是多少?

178.一块长方形木板,长是宽的2倍,周长54厘米,这块长方形木块的面积是多少?

179.有三堆煤,甲堆是乙堆的3倍,丙堆是甲堆的2倍,三堆煤共重240千克,那么甲堆、乙堆、丙堆煤各重多少千克?

180.张老师买回篮球足球排球共83个球,其中篮球比足球的2倍多5个,排球比足球的2倍少7个,这三种球各有多少个?

181.张老师买回篮球足球排球共83个球,其中篮球是足球的2倍,足球比排球多5个,这三种球各有多少个?

182.小张有36本课外书,小徐有24本课外书,两人捐出同样多的本数后,小张剩下的本数是小徐剩下本数的3倍,两人各捐出多少本书?

183.师徒两人加工同样多的一批零件,师傅加工了102个,徒弟加工了40个,这时,徒弟剩下的个数是师傅的3倍。师徒要加工多少个零件?

用假设法解题

兔数=(总脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡脚数)鸡数=鸡兔总数-兔数(假设鸡,先求出兔)或:鸡数=(每只兔脚数×鸡兔总数-总脚数)÷(每只兔子脚数-每只鸡脚数)兔数=鸡兔总数-鸡数(假设兔,先求出鸡)

184.鸡兔共30只,共有脚70只,鸡兔各有多少只?

185.在一个停车场内,汽车、摩托车共停了48辆,其中每辆汽车有4个轮子,每辆摩托车有3个轮子,这些车共有172个轮子,停车场内有汽车、摩托车各多少辆?

186.体育老师买了运动服上衣和裤子共21件,共用了439元,其中上衣每件24元,裤子每件19元,问老师买上衣和裤子各多少件?

187.王舒琪演唱会售出30元、40元、50元的门票共200张,收入7800元,其中40元和50元的张数相等,每种票各售出多少张?

188.某场足球比赛赛前售出甲、乙、丙三类门票共400张,甲类票50元/张,乙类票40元/张,丙类票30元/张,共收入15500元,其中乙类、丙类门票张数相同。则三种票各售出多少张?

189.甲,乙,丙三种练习本每本价钱分别为7角,3角,2角。三种练习本一共卖了47本,付了21元2角,买的乙种练习本的本数是丙种练习本本数的2倍。就三种练习本各买了多少本?

190.买一些4分和8分的邮票,共花6元8角.已知8分的邮票比4分的邮票多40张,那么两种邮票各买了多少张?

191.有一元,五元和十元的人民币共14张,共计66元,其中一元的张数比十元的多2张。问三种人民币各多少张?

192.三年级学生练习册,如果每人发5册还剩下32册,如果其中10个学生每人发4册,其余每人发8册,就恰好发完。那么三年级学生有多少人?练习册有多少本?

193.小明买了一本《趣味数学》,他计划:如果每天做3题,则剩下16题,如果每天做5题,则最后一天只要做1题。那么这本书共有几道题?小明计划做几天?

194.三(2)班同学去植树,如果每人植5棵,还有3棵没有人植,如果其中4人每人植4棵,其余每人植6棵,就恰好植完所有的树。那么参加植树的有几名同学?共植树多少棵?

195.小明从家到学校,出发时看看表,发现如果每分钟步行80米,他将迟到5分钟,如果先步行10分钟后,再改成骑车每分钟行200米,他就可以提前1分钟到校。问小明从家出发时离上学时间有多少分钟?

196.王云在计算325-□×5时先算了减法,结果得出1500,那么这道题的正确结果应该是。

197.今天(2010年4月11日)是星期日,则2010年的六一儿童节是星期。

198.今年,玲玲8岁,奶奶60岁,再过年,奶奶的年龄是玲玲的5倍。199.如果3台数控机床4小时可以加工960个同样的零件,那么1台数控机床加工400个相同的零件需要多长时间?

200.小红从家步行去学校,如果每分钟走120米,那么将比预定时间早到5分钟;如果每分钟走90米,则比预定时间迟到3分钟,那么小红家离学校有多远?

第五篇:四年级奥数 鸡兔同笼

学科:奥数

教学内容:第14讲 鸡兔同笼问题

知识网络

鸡兔同笼问题是我国古代数学著作《孙子算经》中的一个流传甚广的数学趣题:今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各有几何?翻译成现代汉语语言为:今有鸡兔共居一笼,已知鸡头与兔头共35个,鸡脚与兔脚共94只。问鸡、兔各有几只?这一古老的数学问题在现实生活中普遍存在,解法也多种多样,但一般采用的是假设法。

在解答应用题时,有时要采用“假设”的思想来分析,以找到解题途径。用假设思想解应用题,首先要根据题意去正确地判断应该怎样假设,并根据所做的假设,注意数量关系发生的变化,从所给的条件与变化了的数量关系的比较中做出适当的调整,来找到正确答案。

重点·难点

运用假设法是求解这类可以转化为鸡兔同笼问题的应用题的关键。

学法指导

用假设法解应用题的步骤:一是要根据题意正确地判断怎样“假设”,二是依据假设,按照题目所给的数量关系进行推算,所得结果与题中对应的数量不符时,要能够正确地运用别的已知量加以调整,三是进而得出正确的答案。

经典例题

[例1]一个农夫有若干只鸡和兔,它们共有50个头和140只脚,问鸡、兔各有多少?

思路剖析

鸡兔同笼问题适用的基本方法是假设法。假设这笼里全是鸡,那么鸡脚的总数应为:50×2=100(只),与实际相比较,脚减少的数为140-100=40(只)。脚减少的原因是每把一只兔当作一只鸡时,要少4-2=2(只)脚。所以实际的兔数是40÷(4-2)=20(只),若先假设的全是鸡,则先求出的是兔数。

解答

☆解法一:

设全是鸡,那么相应的鸡脚数:50×2=100(只)与实际相比,脚减少的数:140-100=40(只)

兔脚与鸡脚的差4-2=2(只)

实际兔数为40÷2=20(只)

那么实际的鸡数:50-20=30(只)

答:有鸡30只,有兔20只。

☆解法二:

利用方程求解:

设农夫有鸡x只,那么有免(50-x)只。那么鸡有脚2×x只,兔有脚4×(50-x)只。

列方程为2×x+4×(5-x)=140

解方程2×x+200-4×x=140

2×x=60 x=30

50-x=50-30=20

则鸡有30只,兔有20只。

☆解法三:

(不拘于传统的解法,让我们的思维发散,更具有创造性。)

农夫想知道鸡、兔分别有多少只,他做了一个有趣的设想,就是假设每只兔子又长出一个头来,把它劈开,变成“一头两脚”的两只“半兔”,半免和鸡都有两只脚,因而共有140÷2=70(只)头,从而多出了70-50=20(只)头,这就是兔子的数目,鸡的只数就是50-20=30(只)。

☆解法四:

兔有4只脚,而鸡有2只脚,不过鸡有2只翅膀,如果把翅膀也当作脚,则鸡、兔都有4只脚,于是脚有50×4=200(只),但题中翅膀不算脚,因而有翅膀200-140=60(只),每只鸡有两只翅膀,则鸡数为60÷2=30(只),兔有50-30=20(只)。

☆解法五:

农夫惊讶地看到鸡、兔们非凡的表演:每只鸡都用一只脚站立着,每只兔都用两只后腿站立起来。这种情况下,地上的总腿数是原来的一半,即70只腿,鸡的脚数与头数相同,而兔的脚数是头数的两倍,因此从70里减去总的头数,剩下来的就是兔的头数:70-50=20(只),即有20只兔,那么有鸡30只。

☆解法六:

我们还可以想像鸡、兔们经过专门训练后具有一些“特殊技能”,当它们听到哨音后,鸡飞起来,兔立即双脚站立起来。这时立在地上的应该都是兔,它的脚数:140-50×2=40(只)。因此有免:40÷2=20(只),鸡有:50-20=30(只)。

[例2]现有2分和5分的硬币共40枚,共值125分,问两种硬币各多少放?

思路剖析

利用假设法,假设40枚硬币全是2分的,则面值为80分,与实际相比减少了125-80=45(分),是由于把每个5分硬币少算了5-2=3(分)造成的,则可知有5分硬币45÷3=15(枚)。

解答

设全为2分的,则共值2×40=80(分)

与实际相比少125-80=45(分)

由于假设造成的差值5-2=3(分)

则有5分硬币45÷3=15(枚),2分硬币40-15=25(枚)。

答:有5分硬币15枚,2分硬币25枚。

点津

由假设造成的与实际的差值45分,是与把5分硬币当作2分硬币产生的差值相关的,而不是仅与5分硬币有关。

[例3]某次的小学数学奥林匹克竞赛,共有20道题,评分标准是:每做对一题得5分,每做错或不做一题扣3分。小贝贝参加了这次竞赛,得了68分,问:小贝贝做对了几道题?

思路剖析

假设小贝贝20道题全做对了,他应该得20×5=100(分),比实际上多了100-68=32(分),产生这一差异的原因是把做错或没做的题也算作做对的了,需要注意的是,做错或不做一题比做对一题应少得5+3=8(分),因此小贝贝做错或不做的题数:

32÷8=4(道)。

解答

20-(5×20-68)÷(5+3)

=20-32÷8=20-4

=16(道)

答:小贝贝做对了16道题。

点津

由于做错和不做的题不但不得分,还要扣掉分数,那么与做对一道题相比,就不是简单相减的关系,而应该求和得出。类似于零上5℃与零下3℃相差是8℃,而不是2℃。

[例4]农场工人上山植树造林,绿化祖国,晴天时每人每天植树20棵,雨天时每人每天植树12棵,工人张宁接连几天共植树112棵,平均每天植树14棵。问:张宁植树这些天共有几个雨天?

思路剖析

题目中虽然没有问张宁工作了几天,但总共做了多少天是一个关键量,须先求出来。天数=总量÷平均数=112÷14=8(天)。要求有多少个雨天,可假设每天都是晴天,那么应植20×8=160(棵),与实际相比,多植160-112=48(棵),是把雨天植树量当作20棵造成的,20-12=8(棵)是实际植树量与假设的差值。因此有雨天:48÷8=6(天)。

解答

[20×(112÷14)-112]÷(20-12)

=(160-112)÷8=48÷8

=6(天)

答:张宁植树这些天总共有6个雨天。

[例5]“和尚分馒头”题,记载于我国明代《算法统宗》。现代文译文:大和尚与小和尚共100名,分配100个馒头,大和尚每位给3个,小和尚3个人给1个,问大、小和尚各有多少人?

思路剖析

假设都是小和尚。因为小和尚3个人给1个馒头,分配100个馒头,应该有小和尚3×l00=300(人),比实际多了300-100=200(人)。是由于把大和尚看做小和尚造成的,由于大和尚每位给3个馒头,相当于给9位小和尚的量。由于假设出现的差值即为9-l=8(人),那么大和尚的人数220÷8=25(人)。

解答

(3×100-100)÷(3×3-1)

=(300-100)÷8=200÷8

=25(人)

100-25=75(人)

答:大和尚有25人,小和尚有75人。

点津

本题中给出的条件“大和尚每位给3个,小和尚3个人给1个”,无法直接求出大、小和尚在人数或在馒头数上的差值,需通过条件中给出的比例关系求得。

[例6]四年级某班有学生68人,为了更好地学习,同学们自愿结成了14个学习小组。这些小组有的3人,有的5人,有的7人。而且3人组与5人组的组数相同。问三种学习小组各有几组?

思路剖析

前面的例题中,总体中的数量总是“非此即彼”只有两种,而本题中出现了3种,似乎有些复杂。但题目中有个很重要的条件“而且3人组与5人组的组数相同”,是否可以利用这个条件将此题也转化成我们熟悉的鸡兔同笼题呢?我们将“3人组与5人组组数相同”这个条件,转化为将他们组成4人组,那么组数应为这两组的组数和,因为4是3和5的平均数。

那么分组情况可以看做是两类:4人组和7人组。假设都是4人组,那么应有人数:4×14=56(人),与实际人数的差值:68-56=12(人),由于假设出现的差值:7-4=3(人),则7人组的组数:12÷3=4(组)。

解答

(68-4×14)÷(7-4)

=(68-56)÷3=12÷3

=4(组)

那么3人组与5人组的组数(14-4)÷2=5(组)

答:学习小组中3人组和5人组各有5组,7人组有4组。

[例7]有蜘蛛、蜻蜓、蝉三种动物共18只,共有腿118条,翅膀20对(蜘蛛8条腿,蜻蜓6条腿、两对翅膀,蝉6条腿、一对翅膀),问蜻蜒有多少只?

思路剖析

依照例6的思路,我们应当将三种昆虫分成两类,从而将题目转化成与鸡兔同笼结构相同的题。分析题中的已知条件,找到可以归成一类的突破口。三种昆虫有两种有翅膀,一种没翅膀,显然不能按此划分。三种昆虫都有腿,而且其中两种腿数相同,与例6思路相同,将三种昆虫按腿数分成两类:8腿虫和6腿虫。假设18只昆虫都是8腿虫,则有腿8×18=144(条),与实际腿数的差值144-118=26(条),由于假设造成的差值8-6=2(条),那么有6腿虫:26÷2=13(只),知道了6腿虫的总数,就可以按翅膀对数再将它们分成两类:2对翅膀和1对翅膀。则又转化成一道鸡兔同笼结构的题目。假设13只昆虫都有2对翅膀,则有2×13=26(对),与实际翅膀数的差值26-20=6(对),由于假设造成的差值2-1=1(对),那么蝉(一对翅膀)有:6÷1=6(只)。

解答

(8×18-118)÷(8-6)

=(144-118)÷2=26÷2

=13(只)„„6腿虫数

(2×13-20)÷(2-1)

=(26-20)÷1

=6(只)„„1对翅膀虫数

13-6=7(只)„„2对翅膀虫数

答:蜻蜓有7只。

点津

恰当地把多组事物根据其特点划分成两类,转化成鸡兔同笼结构的题目是解题的关键。当组数大于2时,有时需要在同一题中解决多于1次的鸡兔同笼结构的题目,才能求得最终结果。

发散思维训练

1.动物园里有一群鸵鸟和大象,它们共有36只眼睛和52只脚,问鸵鸟和大象各有多少?

2.养殖场共养鸡、兔180只,已知鸡脚总数比兔脚总数多180只。问养的鸡、兔各多少只?

3.学校有象棋、跳棋共20副,2人下一副象棋,6人下一副跳棋,恰好可供60个学生进行活动。问象棋与跳棋各有多少副?

4.鸡、兔共有脚140只,若将鸡换成兔,兔换成鸡,则共有脚160只。问原有鸡、兔各几只?

5.老师教同学们练跳绳,若一次能连续跳8个,老师奖给同学4块巧克力;若跳不够8个,则退给老师2块。王芳同学一共练了10次,得到28块巧克力。问王芳有几次没跳够8个?

6.有6个谜语,让50人猜,共猜对了202个。已知每人至少猜对2个,且猜对2个的有5人,猜对4个的有9人,猜对3个和5个的人数一样多,那么,6个全猜对的有多少人?

7.现有大、小水桶共50个,每个大桶可装水6千克,每个小桶可装水3千克,大桶比小桶总共多装水30千克。问大、小桶各多少个?

8.小张是车工,平均每天车某种零件50个,每车好一个正品,可为企业创造财富14元,但车坏一个要损失96元。某天,他为企业创造了480元的财宝,这一天他车出的正品是多少个?

9.模拟考试已举行了24次,共出了试题426道,每次出的试题数不同,或者25题,或者16题,或者20题,那么,其中有25道试题的有多少次?

10.传说九头鸟有九头一尾,九尾鸟有九尾一头。今有头510个,尾590个,问:两种鸟各有多少个?

参考答案

发散思维训练

1.解:

由于每只动物有两只眼睛,由题意可知动物园里鸵鸟和大象的总数为:36÷2=18(只),假设鸵鸟和大象一样也有4只脚,那么脚总数为:18×4=72(只),与实际的差值为:72-52=20(只),由假设引起的差值:4-2=2(只),则鸵鸟数:20÷2=10(只),大象数:18-10=8(头)。

答:鸵鸟有10只,大象有8头。

2.解:

假设180只全是鸡,则兔脚数为0,则鸡脚数比兔脚数多:2×180=360(只),与实际相比:360-180=180(只),由假设造成的差值:2+4=6(只)。

那么实际的兔数是:180÷6=30(只)

鸡数为:180-30=150(只)

答:养的鸡为150只,兔为30只。

3.解:

假设象棋也可供6个人下,则可供6×20=120(人)学生进行活动。与实际相比,120-60=60(人),由假设造成的差值:6-2=4(人)。

那么实际的象棋数为60÷4=15(副)

跳棋数为20-15=5(副)

答:象棋有15副,跳棋有5副。

4.解:

由于鸡换成兔,兔换成鸡,脚的只数增加了20只。故原来的兔比鸡少20÷2=10(只),减去这10只鸡,则鸡、兔一样多,并且共有脚:140-2×10=120(只)。假设鸡、兔各有3只脚(鸡、兔脚数的平均数),那么鸡、兔共有120÷3=40(只),鸡、兔各有40÷2=20(只),实际的鸡数为:

20+10=30(只)。

答:原有鸡30只、兔20只。

5.解:

假设王芳10次都跳够8个,则应得巧克力4×10=40(块)。与实际相比,40-28=12(块)。由于跳不够,不但没得到巧克力,还要返还2块。

那么由假设造成的差值为4+2=6(块)。王芳没有跳够的次数:12÷6=2(次)。

答:没跳够8个的次数为2次。

6.解:

猜谜情况总共有5种,其中已知猜对2个的有5人、猜对4个的有9人,则猜对3、5、6个的人数:50-5-9=36(人),共猜对的题数:202-2×5-4×9=156(个)。

由于猜对3个和5个的人数一样多,可以把他们看作为猜对4个的人。

假设36个人都猜对了6个,那么共猜对的题数为6×36=216(个),与实际相比,216-156=60(个),由假设造成的差值6-4=2(个),则猜对4个的人数:60÷2=30(人),那么猜对6个的人数:36-30=6(人)。

答:有6人全猜对。

7.解:

假设50个桶都是大桶,则共装水6×50=300(千克),而此时小桶装水为0,与实际相比,相差300-30=270(千克)。若将大桶换成小桶,则每换一个,大桶装的水就减少6千克,小桶装的水增加3千克,大桶比小桶多装的重量就减少:6+3=9(千克),那么小桶的个数:270÷9=30(个)大桶的个数:50-30=20(个)

答:大桶有20个,小桶有30个。

8.解:

假设小张这天车出的零件全部是正品,那么应创造的财富为:14×50=700(元),可实际只有480元,其差额是700-480=220(元)。

根据题意:如果车坏一个零件要减少14+96=110(元),那么车坏零件的个数:220÷l10=2(个),零件正品个数:50-2=48(个)。

答:他车出的正品是48个。

9.解:

假设24次考试,每次都是16题,则并考了试题16×24=384(题),与实际考题数相比,426-384=42(题)。而考25题的每次多考25-16=9(题),考20题的每次多考20-16=4(题),这样有9×A+4×B=42,其中A表示考25题的次数,B表示考20题的次数。根据奇偶性分析,A只能是2。

答:考25题的次数是2次。

10.解:

尾数590个大于头数510个,说明九尾鸟多于九头鸟。590-510=80(个),两种鸟的尾数差为9-l=8(个),那么九尾鸟比九头鸟多80÷8=10(只)。除去这10只,剩下九头鸟与九尾鸟的数量相等,为(510-10)÷(9+l)=50(只),九尾鸟有50+10=60(只)。

答:九尾鸟有60只,九头鸟有50只。

下载四年级奥数期中测试卷word格式文档
下载四年级奥数期中测试卷.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    奥数教学计划四年级

    五年级奥数教学计划 一、指导思想 奥数活动是一项全面培养学生能力、尤其是数学兴趣的活动。现在越来越多的人已经意识到学习奥数的重要性,奥数曾经一度被人误认为是孩子的负......

    四年级奥数(五篇)

    四年级奥数 1.某厂运来一批煤,如果每天烧1500千克,那么比原计划提前一天烧完;如果每天烧1000千克,那么将比原计划多用一天。现在要求按原计划烧完,那么每天应烧煤多少千克?2.有砖2......

    逻辑推理四年级奥数专题

    逻辑推理之列表法、假设法 (★★★) 甲、乙、丙、丁四个人中有教师、医生、律师、警察各一名,已知: ⑴教师不知道甲的职业; ⑶律师是丙的法律顾问; ⑸乙和丙从未见过面。(★★......

    四年级奥数练习题

    四年级练习题 班级:姓名: 1 .今有鸡、兔同笼,上有三十五头,下有九十四脚,鸡、兔各几只?2.冬冬的存钱罐里有一些硬币,他倒出来数了数,2角和5角硬币共36枚,共计99角。问这两种硬币各多......

    四年级语文期中测试卷

    四年级语文期中测试卷 班级:姓名: 一、我会写。(10分) luî tuïshǔ yúlǚ yïuwú xiápí bâidào dãbǔ zhuō shāo huǐnínɡ ɡùjīnɡ jì 二、我会在括号里......

    二年级上册奥数期末测试卷

    二年级举一反三单元评价 童爸的数学乐园 二年级上册期末检测评价卷 一、填空题。 姓名________ 得分________ 1、找规律填数。 ①、12,13,14,(),16,17,()。 ②、22,24,26,28,(),32,()。 ③、8......

    四年级奥数——鸡兔同笼问题

    第6讲 鸡兔同笼问题与假设法 鸡兔同笼问题是按照题目的内容涉及到鸡与兔而命名的,它是一类有名的中国古算题。许多小学算术应用题,都可以转化为鸡兔同笼问题来加以计算。 【例......

    小学四年级奥数智力题

    小熊开店 小熊不喜欢学习,只想做生意,于是在学校旁边开了个水果店。小兔和小猴是它的同学,它们商量好,要教训这个不爱上学的懒家伙。 它们来到小熊的水果店。 “桃子怎么卖呀?”......