第一篇:混凝土配比计算书大全
普通混凝土配合比计算书
依据<<普通混凝土配合比设计规程>>(JGJ55-2000)(J64-2000)以及<<建筑施工计算手册>> 一.混凝土配制强度计算: 混凝土配制强度应按下式计算:
fcu,0≥fcu,k+1.645
其中: ──混凝土强度标准差(N/mm2)。取=5.00(N/mm2); fcu,0──混凝土配制强度(N/mm2);
fcu,k──混凝土立方体抗压强度标准值(N/mm2),取fcu,k=30(N/mm2);
经过计算得:fcu,0=30+1.645×5.00=38.23(N/mm2)。
二.水灰比计算: 混凝土水灰比按下式计算:
其中: a,b──回归系数,由于粗骨料为碎石,根据规程查表取 a=0.46,取0.52;
fce──水泥28d抗压强度实测值,取36.725(N/mm2);
经过计算得:W/C=0.46×36.725/(38.23+0.46×0.52×36.725)=0.36。
抗渗混凝土除了满足上式以外,还应该满足下表:
b= 由于抗渗等级为P6,采用C30混凝土,所以查表取水灰比 W/C=0.6。
实际取水灰比 :W/C=0.36 三.用水量计算: 每立方米混凝土用水量的确定,应符合下列规定: 1 干硬性和朔性混凝土用水量的确定: 1)水灰比在0.40~0.80范围时,根据粗骨料的品种,粒径及施工要求的混凝土拌合物稠度,其用水量按下两表选取:
2)水灰比小于0.40的混凝土以及采用特殊成型工艺的混凝土用水量应通过试验确定。2 流动性和大流动性混凝土的用水量宜按下列步骤计算: 1)按上表中坍落度90mm的用水量为基础,按坍落度每增大20mm用水量增加5kg,计算出未掺外加剂时的混凝土的用水量;
2)掺外加剂时的混凝土用水量可按下式计算:
其中: mwa──掺外加剂混凝土每立方米混凝土用水量(kg); mw0──未掺外加剂时的混凝土的用水量(kg);
──外加剂的减水率,取=0%。3)外加剂的减水率应经试验确定。
由于混凝土水灰比计算值小于0.40,所以用水量取试验数据 mwo= 200 kg。
四.水泥用量计算: 每立方米混凝土的水泥用量可按下式计算:
经过计算,得 mc0=200/0.36=555.56kg。
每立方米抗渗混凝土的水泥和矿物掺合料总量不宜小于320kg,实际取水泥用量:555.56kg。
五.粗骨料和细骨料用量的计算: 合理砂率按下表的确定:
根据水灰比为0.36,粗骨料类型为:碎石,粗骨料粒径:40(mm),查上表,取合理砂率 粗骨料和细骨料用量的确定,采用体积法计算,计算公式如下:
s=28%;
其中: mg0──每立方米混凝土的基准粗骨料用量(kg); ms0──每立方米混凝土的基准细骨料用量(kg); c──水泥密度(kg/m3),取3000.00(kg/m3);
g──粗骨料的表观密度(kg/m3),取2650.00(kg/m3); s──细骨料的表观密度(kg/m3),取2560.00(kg/m3); w──水密度(kg/m3),取1000(kg/m3);
──混凝土的含气量百分数,取α=1.00; 以上两式联立,解得 mg0=1161.44(kg),ms0=451.67(kg)。
六.混凝土配合比结论: 混凝土的基准配合比为: 水泥:砂:石子:水=556:452:1161:200 或重量比为: 水泥:砂:石子:水=1.00:0.81:2.09:0.36。
第二篇:混凝土配比:技术员必看
此试验数据为标准实验室获得,砂采用中砂,细度模数为2.94,碎石为5~31.5mm连续粒级。各等级混凝土配比也可以通过掺加外加剂来调整。c50混凝土 水泥480 砂650 碎石1154 c25水下混凝土 水泥383 砂789 碎石1046 c25泵送混凝土 水泥370 砂719 碎石1077 c25普通混凝土 水泥353 砂691 碎石1128 c30混凝土 水泥395 砂661 碎石1174 c30泵送混凝土 水泥426 砂718 碎石1076 c20混凝土 水泥321 砂646 碎石1253 c15混凝土 水泥430 砂774 碎石1026 c40混凝土 水泥444 砂627 碎石1164 掺配比例是这样算的。
首先你要先确定你所用的配合比石子的级配是什么,比如5-25mm,5-20mm等。然后对大石子进行筛分,对小石子进行筛分,把两种大、小石子筛分后的数值进行掺配,比如你所用的石子是5-25mm,那么把大、小两种石子的筛分数进行合并,70%的大石子加30%的小石子在掺合一起时,正好符合5-25mm的级配,那么就说明大、小两种石子要7:3掺。
最后按照你所算的掺配数,用大、小两种石子进行掺合,把掺合后的石子筛分,验证一下是否符合目标石子的级配。
C40的做桥梁的 70%10-25mm碎石+30%5-10碎石
混凝土标号与强度等级
长期以来,我国混凝土按抗压强度分级,并采用“标号”表征。1987年GBJ107-87标准改以“强度等级”表达。DL/T5057-1996《水工混凝土结构设计规范》,DL/T5082-1998《水工建筑物抗冰冻设计规范》,DL5108-1999《混凝土重力坝设计规范》等,均以“强度等级”表达,因而新标准也以“强度等级”表达以便统一称谓。水工混凝土除要满足设计强度等级指标外,还要满足抗渗、抗冻和极限拉伸值指标。不少大型水电站工程中重要部位混凝土,常以表示混凝土耐久性的抗冻融指标或极限拉伸值指标为主要控制性指标。
过去用“标号”描述强度分级时,是以立方体抗压强度标准值的数值冠以中文“号”字来表达,如200号、300号等。
根据有关标准规定,混凝土强度等级应以混凝土英文名称第一个字母加上其强度标准值来表达。如C20、C30等。
水工混凝土仅以强度来划分等级是不够的。水工混凝土的等级划分,应是以多指标等级来表征。如设计提出了4项指标C9020、W0.8、F150、εp0.85×10-4,即90 d抗压强度为20 MPa、抗渗能力达到0.8 MPa下不渗水、抗冻融能力达到150次冻融循环、极限拉伸值达到0.85×10-4。作为这一等级的水工混凝土这4项指标应并列提出,用任一项指标来表征都是不合适的。作为水电站枢纽工程,也有部分厂房和其它结构物工程,设计只提出抗压强度指标时,则以强度来划分等级,如其龄期亦为28 d,则以C20、C30表示。混凝土强度及其标准值符号的改变
在以标号表达混凝土强度分级的原有体系中,混凝土立方体抗压强度用“R”来表达。
根据有关标准规定,建筑材料强度统一由符号“f”表达。混凝土立方体抗压强度为“fcu”。其中,“cu”是立方体的意思。而立方体抗压强度标准值以“fcu,k”表达,其中“k”是标准值的意思,例如混凝土强度等级为C20时,fcu,k=20N/mm2(MPa),即立方体28d抗压强度标准值为20MPa。
水工建筑物大体积混凝土普遍采用90d或180d龄期,故在C符号后加龄期下角标,如C9015,C9020指90d龄期抗压强度标准值为15MPa、20MPa的水工混凝土强度等级,C18015则表示为180d龄期抗压强度标准值为15MPa。计量单位的变化
过去我国采用公制计量单位,混凝土强度的单位为kgf/cm2。现按国务院已公布的有关法令,推行以国际单位制为基础的法定计量单位制,在该单位体系中,力的基本单位是N(牛顿),因此,强度的基本单位为1 N/m2,也可写作1Pa。标号改为强度等级后,混凝土强度计量单位改以国际单位制表达。由于N/m2(Pa),数值太小,一般以1N/mm2=106N/m2(MPa)作为混凝土强度的实际使用的计量单位,读作“牛顿每平方毫米”或“兆帕”。
新标准中强度计量单位均采用MPa(兆帕)表达。配制强度计算公式的变更
原标准混凝土配制强度的计算公式为:
R配=R标/-t·Cv
新标准混凝土配制强度计算公式为:
fcu,o=fcu,k+t·σ
式中:fcu,o—混凝土配制强度MPa;
fcu,k—混凝土设计龄期的强度标准值MPa;
t —概率度系数
σ—混凝土强度标准差MPa。
原标准的公式和变更后本标准采用的公式所设计的配制强度没有实质上的差别。主要引自美国混凝土学会的ACI214-77《混凝土强度试验结果评定的推荐方法》(1989年重新批准发布)。ACI214-77称:对于任何设计,其需要的平均强度fcr,可根据使用的离差系数(CV)或标准离差(б)由公式(1)或(1a)计算求得。
Fcr=Fc′/1-t·Cv(1)Fcr=Fc′+tσ(1α)
式中:Fcr —需要的平均强度
Fc′—规定的设计强度
t —概率度系数
Cv—以小数表示的离差系数预测值
σ—标准差的预测值
现行国家标准及国内各行业标准,对混凝土配合比设计强度计算和混凝土生产质量控制,均采用以混凝土强度标准差(σ)为主要参数的计算方法。国家标准GB50204-1992《混凝土结构工程施工及验收规范》和JGJ55-2000《普通混凝土配合比设计规程》,以及有关建工系统混凝土的强度保证率(P)均采用95%,相应的概率度系数(t)为1.645,因而混凝土配制强度的计算公式均为:
fcu,o=fcu,k+1.645σ
新标准对混凝土配制强度公式fcu,o=fcu,k+tσ中,以t值取代常数1.645,这是因为水工混凝土工程结构复杂,不同的混凝土坝型,不同部位分区混凝土对混凝土强度保证率(P)有不同的要求,如重力坝混凝土强度的保证率一般要求80%,有些轻型坝P值要求85%~90%,而部分厂房和其它工程结构物混凝土P值要求为95%。对于不同混凝土对P值的要求,根据表1查得其相应的概率度t值。
表1 保证率和概率度系数关系
------------------保证率
P(%)65.5 69.2 72.5 75.8 78.8 80.0 82.9 85 90.0 93.3 95.0 97.7 99.9
------------------概率度
系数t 0.40 0.50 0.60 0.70 0.80 0.84 0.95 1.04 1.28 1.50 1.65 2.0 3.0
------------------强度标准差的选用
混凝土施工开工初始阶段,缺少混凝土施工的实测抗压强度统计资料,标准差σ值可按新标准表2中的数值参考选用。
表2 标准差σ值
------------------
混凝土强度等级 ≤C9015 C9020~C9025 C9030~C9035 C9040~C9045 ≥C9050
------------------
σ(90d)3.5 4.0 4.5 5.0 5.5
------------------
混凝土等级均以90天龄期为代表,如果其它龄期(如28天,180天)可相应换算后选用。
混凝土进入正常施工阶段,应根据前一个月(如一个月内还达不到统计所需试件组数n值要求时,可延迟至3个月内)相同强度等级,相同混凝土配合比的混凝土强度资料,进行混凝土强度标准差σ值的计算,其公式为:
式中:fcu,i —第i组的试件强度,MPa;
mfcu—n组试件强度平均值,MPa;
n — 试件组数,应大于30。
混凝土标准差的下限取值:通过施工实测强度值,计算的σ值,对于小于或等于C9025级混凝土,σ小于2.5MPa时,σ值用2.5 MPa;对于大于或等于C9030级混凝土,计算的σ小于3.0 MPa时,σ取用3.0 MPa。
σ值是28天龄期的实测强度值计算的。90天龄期的σ值一般要略大一些,但28天的σ值已基本反映了混凝土的质量波动,这亦是结合了混凝土质量控制的需要,90天的统计结果滞后了一些。28天的统计成果可有效的掌握施工质量的波动,并根据需要及时修正和调整配制混凝土抗压强度时所采用的σ值。实际上是要求以28天的混凝土强度标准差(σ)进行动态控制,以保证混凝土质量。
混凝土按强度分成若干强度等级,混凝土的强度等级是按立方体抗压强度标准值fcu,k划分的。立方体抗压强度标准值是立方抗压强度总体分布中的一个值,强度低于该值得百分率不超过5%,即有95%的保证率。混凝土的强度分为C7.5、C10、C15、C20、C25、C30、C35、C40、C45、C50、C55、C60等十二个等级。
混凝土配合比是指混凝土中各组成材料(水泥、水、砂、石)之间的比例关系。有两种表示方法:一种是以1立方米混凝土中各种材料用量,如水泥300千克,水180千克,砂690千克,石子1260千克;另一种是用单位质量的水泥与各种材料用量的比值及混凝土的水灰比来表示,例如前例可写成:C:S:G=1:2.3:4.2,W/C=0.6。
常用等级
C20 水:175kg水泥:343kg 砂:621kg 石子:1261kg 配合比为:0.51:1:1.81:3.68 C25 水:175kg水泥:398kg 砂:566kg 石子:1261kg 配合比为:0.44:1:1.42:3.17 C30 水:175kg水泥:461kg 砂:512kg 石子:1252kg 配合比为:0.38:1:1.11:2.72.......普通混凝土配合比参考: 水泥
品种 混凝土等级 配比(单位)Kng 塌落度mm 抗压强度 N/mm2 水泥 砂 石 水 7天 28天
P.C32.5 C20 300 734 1236 195 35 21.0 29.0 1 2.45 4.12 0.65 C25 320 768 1153 208 45 19.6 32.1 1 2.40 3.60 0.65 C30 370 721 1127 207 45 29.5 35.2 1 1.95 3.05 0.56 C35 430 642 1094 172 44 32.8 44.1 1 1.49 2.54 0.40 C40 480 572 1111 202 50 34.6 50.7 1 1.19 2.31 0.42 P.O 32.5 C20 295 707 1203 195 30 20.2 29.1 1 2.40 4.08 0.66 C25 316 719 1173 192 50 22.1 32.4 1 2.28 3.71 0.61 C30 366 665 1182 187 50 27.9 37.6 1 1.82 3.23 0.51 C35 429 637 1184 200 60 30.***6.2 1 1.48 2.76 0.47 C40 478 *** 1128 210 60 29.4 51.0 1 1.33 2.36 0.44 P.O 32.5R C25 321 749 1173 193 50 26.6 39.1 1 2.33 3.65 0.60 C30 360 725 1134 198 60 29.4 44.3 1 2.01 3.15 0.55 C35 431 643 1096 190 50 39.0 51.3 1 1.49 2.54 0.44 C40 480 572 1111 202 40 39.3 51.0 1 1.19 2.31 0.42 P.O 42.5(R)C30 352 676 1202 190 55 29.***5.2 1 1.92 3.41 0.54 C35 386 643 1194 197 50 34.5 49.5 1 1.67 3.09 0.51 C40 398 649 1155 199 55 39.5 55.3 1 1.63 2.90 0.50 C50 496 606 1297 223 45 38.4 55.9 1 1.22 2.61 0.45 PII 42.5R C30 348 652 1212 188 50 31.***6.0 1 1.87 3.48 0.54 C35 380 639 1187 194 50 35.0 50.5 1 1.68 3.12 0.51 C40 398 649 1155 199 55 39.5 55.3 1 1.63 2.90 0.50 C45 462 618 1147 203 4***2.7 59.1 1 1.34 2.48 0.44 C50 480 633 1115 192 25 45.7 62.8 1 1.32 2.32 0.40 P.O 52.5R C40 392 645 1197 196 53 40.2 55.8 1 1.64 3.05 0.50 C45 456 622 1156 19***2 43.5 59.5 1 1.36 2.53 0.43 C50 468 626 1162 192 30 45.2 61.6 1 1.33 2.47 0.41
第三篇:混凝土圆管涵计算书
钢 筋 混 凝 土 圆 管 涵(φ100cm)计 算
一.设计资料
设计荷载:公路Ⅰ级
填土高度:H=1.5m:土容重:γ1=18KN/m3;土的内摩擦角φ=35°,管节内径D内=1.0m,外径D外=1.2m,管壁厚度为0.1m,每节1m长,采用30号混凝土,γ2=25KN/m3,混凝土强度为C15,管节下设10号混凝土0.2m。
二.外力计算
1.恒载计算
填土垂直压力
q上=Hγ1=1.5×18=27KN/m2 管节自重垂直压力 q管=γ2t=25×0.1=2.5 KN/m2
2.活载计算
采用车辆荷载,公路Ⅰ级荷载标准,填料厚度等于或者大于0.5m不计汽车冲击力。
一个后轮单边荷载横向分布宽度=0.6/2+1.5×tan30°=1.166m
故后轮垂直荷载横向分布宽度互相重叠,荷载横向分布宽度a 应两辆车后轮外边至外边计算。即
a=(0.6/2+1.5×tan30°)×2+(1.3+2×1.8)=7.23m
同理,纵向后轮垂直荷载长度分布互相重叠,荷载纵向分布宽度b应按照两辆车轮(后轴)外边至外边计算,即
b=(0.2/2+1.5×tan30°)×2+1.4=3.33m q汽=2(2140)=23.26KN/m2
7.233.33三.弯矩计算和内力组合
忽略管壁环向压力及径向剪力N和V,仅考虑管壁上的弯矩见上图。1.恒载弯矩 填土产生的弯矩为 M1=M2=0.137q上R2(1-λ)=0.137×27×(1+1.2)/2×(1-λ)(其中λ=tan2(45°-φ/2)=0.271)
=0.137×27×1.1×(1-0.271)= 2.97KN·m 管壁自重产生的弯矩为 M管=0.369γtR2 =0.369×25×0.1×1.12 =1.12KN·m 2.活载弯矩
车辆荷载产生的弯矩为 M汽=0.137q汽R2(1-λ)=0.137×23.26×1.12×0.729
=2.81KN·m
3.内力组合
γ0dM=0.9×(1.2M恒+1.4M汽)=0.9×1.2×(2.97+1.12)+1.4×2.81 =8KN·m 正常使用极限状态下组合、短期组合: MS=M恒+0.7M汽=4.09+0.7×2.81=6.06 KN·m 长期组合: ML=M恒+0.4M汽=4.09+0.4×2.81=5.12KN·m 四.截面强度设计
管节处预留接缝宽度为1cm,故实际预制管节长99cm,承受1m内的荷载,考虑任一位置都可承受正负弯矩,布置双层钢筋φ10@100mm,由《公路钢筋混凝土及预应力混凝土桥涵设计规范》,按单筋截面算
χ=fsdAs195(1178.5)==24.6mm
6.9fcdb h0=100-25=75mm
ξbh0=75×0.62=46.5>χ=24.6mm 而fcdbχ(h0-χ/2)=6.9×103×0.99×0.0246×(0.075-0.0246/2)
=10.5KN·m>8 KN·m 满足截面强度要求。五.裂缝宽度验算 σss= =MS
0.87ASh06.06 6-30.871187.5107510=96.5Mpa AS1187.5106 ρ===0.013 10.075bh0 C1=1.4(光面钢筋)C2=1+0.5×(5.12/6.06)=1.42 C3=1.15 Wfk=C1·C2·C3·
30dσss·(0.2810ρEs)
=1.4×1.42×1.15×
96.5×(30+10)/(0.28+10×0.013)52.210 =0.1mm<0.2mm.满足要求。
第四篇:C30混凝土配合比计算书
C30混凝土配合比计算书
一、基准混凝土配合比的计算
(一)确定配置强度
取标准差:ó=5.0Mpa Fcu.o≥fcu.k+1.645ó=38.2Mpa(二)确定水灰比
aa=0.46 ab=0.07 fce=46.0Mpa W/C=aafce/(fcu.o+aaabfce)=0.53(三)确定用水量
根据<<普通混凝土配合比设计规程>>第4.0.1-2表查得当塌落度75-90mm、碎石20mm时,用水量取215时,塌落度每增加20mm,增加用水量5kg.该工程采用泵送混凝土塌落度取160 mm +30 mm =190mm.增加用水量(190 mm-90 mm)/20X5=25kg 由此确定用水量为 215+25=240kg(四)确定水泥用量
Mco=Mwc/(W/C)=240/0.53=452kg
二、掺用减水剂和粉煤灰时对用水量及水泥用量进行调整;
(一)掺用J2B-3后水用量为
Mw=Mwo-MabX(1-30%)=168kg
(二)调整水灰比
根据用水量的调整,同时对水灰比进行调整,并满足《混凝土泵送施工技术规程》第3.2.5条泵送混凝土的水灰比为0.4-0.6的规定。
将水灰比调整为0.45(1)0.48(2)(三)调整水泥用量
由Mco=Mwo(W/C),当水灰比取0.45时.Mco=373kg 当水灰比取0.48时.Mco=350kg
三、按重量法计算得每立方米混凝土的砂、石用量
查表含砂率取 βs=39.5 当水灰比取0.45时
Mso=(M总-Mc-Mw)X 0.395=(2380-373-168-6.0)X 0.395=724kg Mfo=2380-373-168-6.0-726=1109kg 当水灰比取0.48时
Mso=(M总-Mc-Mw)X 0.395=(2380-350-168)X 0.395=733kg Mfo=2380-350-168-6.0-735=1123kg
四、按取代水泥率算出每立方米混凝土的水泥用量
粉煤灰为II级 砼强度为C30时 粉煤灰取代水泥百分率(βc)f=19% 当水灰比取0.45时 Mg(1)=373 X 0.19=70.9kg 取71 kg
Mc=373 X(1-0.19)=302kg 当水灰比取0.48时 Mg(2)=350 X 0.19=66.5kg 取67kg
Mc=350 X(1-0.19)=283.5kg 超量系数k取1.5时
Mg(1)=71 X 1.5=106kg 即粉煤灰超量为106-71=35 Mg(2)=67 X 1.5=100kg 即粉煤灰超量为100-67=33
五、由此得每立方米粉煤灰混凝土材料计算用量
当水灰比取0.45时 当水灰比取0.48时.Mc=302kg Mc=283kg Mw=168kg Mw=168kg Ms=689kg Ms=700kg Mf=1109kg Mf=1123kg Mg=106kg Mg=100kg Mad=6.0 Mad=6.0 2
第五篇:东南水泥混凝土路面计算书
1路面类型设计参数公路技术等级三级公路 2面层类型普通混凝土路面 3可靠度指标设计参数自然区划IV 4安全等级四级
5设计基准期20
6目标可靠度80
7目标可靠指标.84
8变异水平等级中
9可靠度系数1.05交通参数交通分级特重交通 11计标准轴载作用次数(万次/车道)8448.3512 12轴载类型标准轴载 13 轴载累计作用次数计算参数交通增长率(%)5 14车轮轮迹横向分布系数.35标准轴载使用初期标准轴载作用次数(n/d)20000 16 基层类型选择基层类型新建公路 17 土基设计参数土基模量(Mpa)30 18土基控制弯沉(1/100 mm)322.0162 19防冻最小厚度(cm)0结构组合(基层与底基层)层号1 21材料类型水泥稳定粒料 22材料模量(MPa)1500
23材料厚度(cm)20
24水泥稳定粒料顶面当量回弹模量(MPa)193.6543 25水泥稳定粒料顶面施工控制弯沉(1/100 mm)49.88521 26 结构组合(基层与底基层)层号2
27材料类型3%水泥稳定碎石 28材料模量(MPa)900
29材料厚度(cm)15
303%水泥稳定碎石顶面当量回弹模量(MPa)89.17884 313%水泥稳定碎石顶面施工控制弯沉(1/100 mm)108.3271
普通混凝土路面基层顶面当量回弹模量(MPa)193.6543 33混凝土弹性模量(MPa)31000 34混凝土弯拉强度模量(MPa)5
35应力折减系数.9
36混凝土线膨胀系数(1/度).00001 37最大温度梯度(度/m)89
38板长(cm)450
39板宽(cm)375
面层设计厚度普通混凝土面层厚度(cm)20.8 41路面总厚度(cm)55.8
42荷载疲劳应力(MPa)3.694151 43温度疲劳应力(MPa)1.06467
44考虑可靠度系数的综合应力(MPa)4.996761