第一篇:初中数学七(上)第2章《有理数的运算》小结
浙教版数学七年级(上)第2章《有理数的运算》
1、有理数的运算法则:(1)同号两数相加,取的符号,并把相加;异号两数相加,取绝对值的加数的符号,并用的绝对值减去较小的绝对值;的两个数相加得零,一个数同零相加仍得。
(2)减去一个数,等于加数这个数的。
(3)两数相乘,得正,得负,相乘。任何数与零相乘,积为。
(4)两数相除,同号,异号,并把相除;零除以任何一个都得零。
(5)除以一个数(不等于零),等于乘以这个数的。
注意:零不能作除数。注意:通常我们把除法运算转化为乘法,使运算更简便合理。
(6)有理数混合运算的法则是:先算,再算,最后算。如有括号,就先进行的运算。
2、有理数的运算律:
(1)a+b=+;(a+b)+c=a+(+)。
(2)a×b=;(a×b)×c=a×();a×(b×c)=。
3、有关概念:
(1)乘积为的两个有理数称为互为倒数。
(2)求几个的积的运算叫做乘方,乘方的叫做幂。在an中,a叫做,n叫做。an读做“a的n次方”或“a的n次幂”。
(3)把一个数表示成与的幂相乘的形式叫做科学记数法。
(4)与实际的数称为准确数,与实际的数称为近似数。
4、主要方法和技能:
(1)用四舍五入法按预定精度取近似值。
(2)用科学记数法表示较大的数。
(3)用计算器进行有理数的运算。
(参考答案)
1、有理数的运算法则:
(1)同号两数相加,取与加数相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得零,一个数同零相加仍得这个数。
(2)减去一个数,等于加数这个数的相反数。
(3)两数相乘,同号得正,异号得负,并把绝对值相乘。任何数与零相乘,积为零。
(4)两数相除,同号得正,异号得负,并把绝对值相除;零除以任何一个不为零的数都得零。
(5)除以一个数(不等于零),等于乘以这个数的倒数。
注意:零不能作除数。
注意:通常我们把除法运算转化为乘法,使运算更简便合理。
(6)有理数混合运算的法则是:先算乘方,再算乘除,最后算加减。如有括号,就先进行括号里的运算。
2、有理数的运算律:
(1)a+b= b + a ;(a+b)+c=a+(b + c)。
(2)a×b= b×a;(a×b)×c=a×(b×c);a×(b+c)= ab+ac。
3、有关概念:
(1)乘积为1的两个有理数称为互为倒数。
(2)求几个相同因数的积的运算叫做乘方,乘方的结果叫做幂。在an中,a叫做底数,n叫做指数。an读做“a的n次方”或“a的n次幂”。
(3)把一个数表示成a(1≤a<10)与10的幂相乘的形式叫做科学记数法。
(4)与实际完全符合的数称为准确数,与实际接近的数称为近似数。
4、主要方法和技能:
(1)用四舍五入法按预定精度取近似值。
(2)用科学记数法表示较大的数。
(3)用计算器进行有理数的运算。
第二篇:初中数学七年级上册《有理数及其运算》说课稿
北师大版初中数学七年级上册《有理数及其运算》说课稿
尊敬的各位领导老师:下午好。基于课标和教材的变化,基于学生和我们老师在使用时出现的情况,下面我将和各位老师交流一下关于七上第二章 有理数及其运算的教材分析。希望通过这样的分析,能抛砖引玉,给老师们有所启发。不当之处,请多多指正。
首先我们一起看一下课标的主要变化
2001年实验版课程标准:1.会求有理数的相反数与绝对值。(绝对值符号内不含字母)2.掌握有理数简单的混合运算。(以三步为主)3.能对含有较大数字的信息作出合理的解释和推断。
2011年版新课程标准:1.掌握求有理数的相反数与绝对值,知道︱a︱的含义(这里a表示有理数)。2.掌握有理数简单的混合运算(以三步以内为主)3.删除了目标3 这是教材变化前后关于这一章总的2001年实验版课程标准和2011年版新课程标准:
新课标1加入,知道︱a︱的含义,加强对绝对值符号语言的要求,为下一章字母表示数做好铺垫。新课标的2将以三步为主改为以三步以内为主,可见,对混合运算的要求更重于简单的基础。下面一起看一下章节中有变化的2.6一节的新课标变化
适当运用运算律简化运算。改为新目标:列式进行有理数的加减混合运算。由此,运用运算律看重的是运算技巧,而列式是需要建模的,可以看出,新教材放低了对运算技巧的要求,更看重解决问题的能力。
下面再来看教材方面的主要变化:
变化一:3处结构的调整。
1、相反数的位置由2.2与数轴一起,改为2.3与绝对值一起,2、由2.6“有理数的加减混合运算”两课时和2.7“水位变化”而水位变化就是混合运算的实际应用,两节内容,改为2.6“有理数的加减混合运算”一节3课时。
3、把第六章的“科学记数法”作为一节,乘方的应用,加入到2.10。
通过3处结构的处理,使知识更成体系,结构更加合理。
变化二:几处表述的调整 1、2.1标题“数怎么不够用了”改为“有理数”,开门见山。同时去掉小学教材已有的正负数定义,做了初小衔接。2、2.4有理数的加法,情境引入去掉原来的足球净胜球为背景,沿用了第一节情境。同时对于加法法则的推理,由四框图减为两个,删掉了数轴的表示。简洁明了。3、2.6有理数的加减混合运算第一课时 删去了旧教材的引例(水位的变化),改用游戏方式引入。增加了趣味性,同时让学生更容易进入问题的情景,增加了可操作性。4、2.7 “有理数的乘法”中给出“倒数”的更完整严密的定义。5、2.8“有理数的除法”中的除法法则由填空形式改为直接给出。突出了重点。
变化三:题目的调整
经典例题练习的删减,调换,增加,是教材变化的亮点。
如 2.1有理数 例题中的第(1)题和第(2)题重复,进行了删除。同时加入第(3)题对基准问题的讨论,这个问题在小学教材已出现,再次提出,即贴近生活,又由某个数值这个单一的点扩充到一段范围,加深了对相反意义的量的理解。
又如:2.6 有理数的加减混合运算中例题变化,删两数运算为四数运算,改分数类型为整分都有的类型,相比,变化后对于运算的例题示范,更丰富,加大了难度。
此外,教材中加入的例题还有这样几处: 2.1有理数 随堂练习第2题数的分类,习题第6题设定标准用正负数表示学生体重,2.2 数轴 随堂练习数轴表示数,2.3 绝对值 随堂练习第1题数轴上距离原点2个单位长度的点表示什么数? 2.6有理数的加减混合运算第二课时 增加了“做一做”就汽油价格的调整情况出了一道应用有理数加减混和运算的题。
2.8 有理数的除法 增加了例2,在小学的基础上进一步熟练运用除法法则,关注负数和小数的倒数。2.9有理数的乘方 第一课时 随堂练习2幂运算,习题第4题,平方16的数可能是几?
2.9有理数的乘方
第二课时
随堂练习2 判断幂的符号。联系拓广加入第3题,考察了数形结合和归纳法,渗透极限的思路,利用优生发展。2.10科学计数法增加了相应的例题,对计数法进行落实。
变化后,题目更加精细,更具有代表性,从而教材的重点更加突出。根据课标和教材的变化,本章应重点关注的几个方面:
①对于负数引入和相关运算法则、运算规律的获得,更加强调学生的自主探索。
② 更加重视在现实背景中对运算意义的理解和运算的应用。通过具体的问题情境,认识运算作用,加深对运算的理解。
③ 继续关注运算技能的培养,但对于笔算难度的要求有所降低。正因为繁难的计算可以使用计算器等其他计算工具,因此《标准》降低了对运算难度的要求,而进一步加强了对算理的理解。④对于运算方法,更加鼓励“算法多样化”。
“算法多样化”是对群体的要求,而不是对学生个体的要求。对某一个学生而言,方法可能只有一种,但对众多学生而言,方法就呈现出多样化,通过交流,让学生体验、学习别人的思维活动成果,掌握适合自己的一种或几种算法。对于多样化,过去常在黑板上呈现,而现在我们更需要时是让黑板的多样化落实到个体的多样化。现在希望通过这种共同探讨,自我吸收,选择个性的最优化方法。⑤对于运算结果,在重视原有精确计算的基础上,加强了估算。
运算能力不等同于运算技能,从国际范围看,许多国家对运算的定位也发生了很大的变化,注重口算和估算,淡化固定的计算程序和方法,提倡计算方法多样化。因此《标准》对运算方面的要求作了调整和改变,与过去相比,发生了很大变化。
下面结合以往的经验和新的变化来谈谈对教材的分析: 一、概念理解
1、有理数 :对于有理数的整分的分类和正负的分类,对于0在两种分类中的位置,大部分学生还是不够清晰明确,这是难点。
采用的措施:
(1)小数在小学时作为小数、分数两种分类,而在中学小数基于把有限小数和无限循环小数划在分数类,无限不循环放在无理数,小数基于有限,无限,循环不循环的分类,要关注中小学的不同来突破数的分类。
例如这种分类的题目:将下列各数填在相应的集合中:
-8.5,6,5154,0,-200,0.1,-20%,-2.35,0.01,+86,8.(1)正整数集合{
};(2)负整数集合{
};(3)非正整数{
};(4)非负整数{
};(5)正分数集合{
};(6)负分数集合{
};(7)整数集合{
};
(8)分数集合{
};(8)正有理数集合{
};
(10)负有理数集合{
}.
(2)在分类中仍要强调不重不漏,例如非负整数极易出错,很多学生把它当成了整个有理数范畴,加上了正分数,而这里的非负整数指的是整数范畴,指的是0和正整数。
(3)由于本节涉及概念多,虽然浅显,但对于初一的孩子来说,仍需反复加以分析、比较和区别,加强辨析练习。
同时还可以适当补充非负数、非正数,非负整数等概念,做好关于数轴、绝对值问题的伏笔。
2、数轴:对于能正确画出数轴,正确清晰的用数轴表示数,仍是学生的难点。新教材调整后的第2节只有数轴这一个点,在处理起来时间上从容了许多。对于数轴的正确表示可以采用以下措施:
(1)结合温度计,让学生充分理解为何要有数轴的原点、正方向、单位长度。(2)设置识别常见错误的数轴表示的题目。
如同步的P29页正误辨析的第6题把没有0刻度,无箭头,单位长度不统一,负刻度排列错误的的四种情况呈现,另外还可以补充两种学生常会出现的有两个箭头,直线负方向不出头的情况,一一列举,让学生纠错。
(3)老师一步步在黑板示范,带领学生亲身体验,跟着一步步在练习本上画数轴,在数轴上表示相应的点。出现错误及时投影展示纠正。(4)规范数轴表示的具体要求。
比如刻度画法,要求是悬在线上的小线段,刻度数在线下;对于表示的数的画法,要求串在线中实心点,数写在线上,与刻度数分开。
3、相反数,绝对值:
对于符号表示的理解以前是难点,现在又是变化后的重点。如何解决,也很困惑。针对新课标的要求这一点是否可以采用下面措施:
(1)对于基本符号a表示任一个数,-a表示一个数的相反数,a表示一个数的绝对值,常见的等式a=b,表示两数相等a=-b,表示一个数等于另一个数的相反数,a+b=0,表示两数和为0,-a=a,表示一个数的相反数等于它本身,aa表示一个数的绝对值等于它的本身,a-a一个数的绝对值等于它的相反数,对于各种字母符号表示的意义可以作为一个专题,单独拿出分析比较。
(2)对于-a学生容易说成负数,在初学时就要点明,符号相反的实质,是相反数的表示。
(3)对于绝对值等于本身,和绝对值等于它的相反数的情况学生极易把0给漏掉,所以要学生明确,0的相反数是0,0的绝对值是0也可理解为-0,也就是0的绝对值即可以理解是它本身,也可以理解成它的相反数。同样在最初讲0的绝对值时就要明确讲清楚。
二、算理的要求
根据教材的变化,对于算理的要求增强了,这也是现在课堂的重心,是思维的有效呈现,也是学生思维培养的核心。对于这一点,也是我现在所困惑和需要加强的。
有理数的加法是运算的起始课,是基础,算理的理解尤为重要。我下面以它为例说一说对于算理的引导策略。
(1)首先,韩泉老师今天的课给了很好的阐释,用了吴亚平教授的三放三收,对加法算理的引导是很好的范本。由于负数的引入,让学生对加法可能出现的类型进行分类,引导学生对于未知的情况进行研究,先突破简单的和0相加,再突破重点的负数加负数,和异号相加的情况。其中让学生提供实际背景和新的情景来表示-3+(-5)和-5+3?“算理”的探究和“算法多样化”得到很好的体现。(2)对于“算理的引导”相比从前的教学,需要给予充分的时间保障,应该作为重点处理。(3)下面欣赏用正负电子的形象直观演示加法算理的ppt(4)这是通过数轴的点动态移动演示的加法算理。
这两个多媒体我在上课时给学生用过,学生看的特别认真,直观生动,印象深刻。符号问题理解对于小学跨越大,抽象,但对于这种直观展示,很好的突破了有理数的算理。所以好的多媒体能有效提高课堂的效率和容量。合理使用。
三、运算的落实
算理有效的增进了学生对运算的理解,而对于每个学生都能正确运算,无论教材的前后,都是我们课堂教学的重要目标。仍是难点,是我们需要反复琢磨的。
(1)由于小学只有正数不考虑符号,在有理数运算中学生关于符号出现问题最多。符号处理要放在重要的位置。针对这一点,可以采用先不求结果,只确定符号的专项训练来突破。
(2)对于有理数运算步骤要及时引导学生进行归纳。
比如加法:①先确定类型(同号、异号等);②确定和的符号;③确定绝对值的加减。比如加法简便运算:优先考虑顺序①凑相反数 ②凑十(消个位)③凑整 ④ 凑同号。比如有理数的加减混合运算对代数和的处理:要求淡化形式、注重实质。建议转化为和的基本形式。比如-3+4-6还原为(-3)+(+4)+(-6)。关于代数和的读法,建议按性质符号读为“-3,+4,-6”的代数和。
(3)对于运算,按照《课标》要求“以三步以内为主”,应避免繁杂的运算。
(4)对于运算的实际应用,如2.5有理数减法中教材P42页习题第4题,海平面以下27米上升到海平面以下18米处,此潜艇上升了多少米?学生们出现的情况很多,有27-18,有-27-(-18),有(-18)-(-27)的,这三种都可以合理解释。对于-27-(-18)=-9再需要求绝对值得到上升的高度。对此,算法的多样性会带来过程多样,同时要求老师多角度理解。
四、估算和计算器的使用。
对于估算新教材加入了要求,这一章哪几处可以引入估算呢?对于加、减、乘、除有理数的基本运算的引入都可以先让学生大胆的猜测,进行估算。而最典型采用估算的应是2.9有理数的乘方中P60问题解决的拉面问题,用到了估算。对于这种在实际问题中或探索规律中出现的复杂运算,建议使用计算器,这道题可以通过计算器依次乘2试值的方式来进行突破。教学中出现几点困惑:
1、算理中算法多样化的积累不丰富。
2、对于要不要提前预习这个问题很纠结?对于成绩落后的学生预习是必要的,而对于提前预习后对于算理的探究会出现本末倒置的情况。比如在推导减法法则时会问:为什么可以理解2-(—3)=2+3?有学生直接用法则来解释,而实际需要探究为什么得到减法法则。
3、对于“24点”游戏,如何利用混合运算快速凑24点,有没有有效可循的方法?
最后,和老师们一起分享托尔斯泰的一句名言:知识,只有当它靠积极的思维得来,而不是凭记忆得来的时候,才是真正的知识。谢谢大家。
第三篇:七上第二章有理数及其运算复习题
有理数及其运算
一.选择题〔每题3分,共18分〕
1.以下说法正确的选项是〔
〕
A.整数包括正整数、负整数
B.分数包括正分数、负分数和0
C.有理数中不是负数就是正数
D.有理数包括整数和分数
2.陕西省元月份某一天的天气预报中,延安市的最低气温为-6℃,西安市的最低气温为2℃,这一天延安市的最低气温比西安市的最低气温低〔
〕
A.8℃
B.-8℃
C.6℃
D.2℃
3.以下各计算结果是正数的有〔
〕个.
①-〔-2〕
②-│-2│
③-〔-3〕2
④[-〔-3〕]2
A.1
B.2
C.3
D.4
4.计算2-〔-1〕2等于()
A.1
B.0
C.-1
D.3
5.假设>0〔n取正偶数〕,那么以下说法正确的选项是〔
〕
A.a一定是负数
B.a一定是正数
C.a可能是正数也可能是负数
D.a可能是任何数
6.两个有理数的和比其中任何一个加数都小,那么一定是
()
A.这两个有理数同为正数
B.这两个有理数同为负数
C.这两个有理数异号
D.这两个有理数中有一个为零
二.填空题〔每题3分,共12分〕
7.的绝对值是,相反数是,倒数是
.
8.如果m<n<0,那么-m
-n。
9、式子-62的底数是,指数是,计算结果是。
10、假设〔a-1〕2+|b+2|=0,那么a+b=。
三、解答题
11、计算(每题5分,共30分)
①
18-6÷(-2)×
②〔-〕×〔-8+-〕
③-〔1-0.5〕××[2-(-3)2]
④
-22+(-2)3×5-(0.28)÷(-2)2
⑤
-×[-32×(-)2-|-2|3]
⑥
用简便方法计算:
12、=,=,求m+n〔此题8分〕
13、学校组织同学到博物馆参观,小明因事没有和同学同时出发,于是准备在学校门口搭乘出租车赶去与同学们会合,出租车的收费标准是:起步价为6元,3千米后每千米收1.2元,缺乏1千米的按1千米计算。请你答复以下问题:
〔1〕小明乘车,应付费________元。(3分)
〔2〕小明乘车,应付费_________元。(3分)
〔3〕小明身上仅有10元钱,乘出租车到距学校7千米远的博物馆的车费够不够?请说明理由。(4分)
14、先阅读下面的问题。
在实际生活中常见到求平均数的问题。例如:
问题
某校初一级篮球队12名同学的身高〔厘米〕分别如下:
171,168,170,173,165,178,166,161,176,172,176,176
求全队同学的平均身高
解:分别将各数减去170,得
1,-2,0,3,-5,8,-4,-9,6,2,6,6
这组数的平均数为:
〔1-2+0+3-5+8-4-9+6+
2+6+6〕÷12
=12÷12=1
那么数据的平均数为
170+1=171
答:全队同学的平均身高为171厘米。
通过阅读上面解决问题的方法,请利用它解决下面的问题:
〔1〕10
筐苹果称重〔千克〕如下:
问这10筐苹果的平均重量是多少?(4分)
〔2〕假设有一组数为:a-1,a+5,a-1,a-2,a-4,,a+1
a+2
这组数的平均数为___________________.(6分)
15、观察下面一列数,探究其中的规律:
—1,,,(1)
填空:第11,12,13三个数分别是,(4分)
(2)
第2021个数是什么?(4分)
〔3〕如果这列数无限排列下去,与哪个数越来越近?(4分)
16、附加题
ab>0,试求的值〔10分〕
第四篇:教案新人教版七上1.3.4 有理数的加减混合运算-
更多资料请访问http://www.maths.name
1.3有理数的加减混合运算
崔秀芹
一、背景与意义分析
本课安排在更多资料请访问http://www.maths.name
师:(1)读出这两个算式.
(2)“+、-”读作什么?是哪种符号?
“+、-”又读作什么?是什么符号?
学生活动:口答教师提出的问题.
师继续提问:(1)这两个题目运算结果是多少?
(2)(-5)-(+7)这题你根据什么运算法则计算的?
学生活动:口答以上两题(教师订正).
师小结:减法往往通过转化成加法后来运算.
【教法说明】为了进行有理数的加减混合运算,必须先对有理数加法,特别是有理数减法的题目进行复习,为进一步学习加减混合运算奠定基础.这里特别指出“+、-”有时表示性质符号,有时是运算符号,为在混合运算时省略加号、括号时做必要的准备工作.
师:把两个算式(-20)+(+3)与((-5)-(+7)之间加上减号就成了一个题目,这个题目中既有加法又有减法,就是我们今天学习的有理数的加减混合运算.(板书课题:有理数的加减混合运算
教学说明:由复习的题目巧妙地填“-”号,就变成了今天将学的加减混合运算内容,使学生更形象、更深刻地明白了有理数加减混合运算题目组成.
(二)探索新知,讲授新课
1.讲评(-20)+(+3)-(-5)-(+7)
(1)省略括号和的形式
师:看到这个题你想怎样做?
学生活动:自己在练习本上计算.
教师针对学生所做的方法区别优劣.
【教法说明】题目出示后,教师不急于自己讲评,而是让学生尝试,给了学生一个展示自己的机会,这时,有的学生可能是按从左到右的顺序运算,有的同学可能是先把减法都转化成了加法,然后按加法的计算法则再计算„„这样在不同的方法中,学生自己就会寻找到简单的、一般性的方法.
师:我们对此类题目经常采用先把减法转化为加法,这时就成了-20,+3,+5,-7的和,加号通常可以省略,括号也可以省略,即:
http://www.maths.name给全国数学老师提供一个交换教学资源的平台
更多资料请访问http://www.maths.name 原式=(-20)+(+3)+(+5)+(-7)
=-20+3+5-7.
提出问题:虽然加号、括号省略了,但-20+3+5-7仍表示-20,+3,+5,-7的和,所以这个算式可以读成„„
学生活动:先自己练习尝试用两种读法读,口答(教师纠正).
【教法说明】教师根据学生所做的方法,及时指出最具代表性的方法来给学生指明方向,在把算式写成省略括号代数和的形式后,通过让学生练习两种读法,可以加深对此算式的理解,以此来训练学生的观察能力及口头表达能力.
巩固练习:(出示投影1)
1.把下列算式写成省略括号和的形式,并把结果用两种读法读出来.
(1)(+9)-(+10)+(-2)-(-8)+3;
(2)-2111+(-)-(-)-(+)36
422.判断
式子-7+1-5-9的正确读法是().
A.负
7、正
1、负
5、负9;
B.减
7、加
1、减
5、减9;
C.负
7、加
1、负
5、减9;
D.负
7、加
1、减
5、减9;
学生活动:1题两个学生板演,两个学生用两种读法读出结果,其他同学自行演练,然后同桌读出互相纠正,2题抢答.
【教法说明】这两题旨意在巩固怎样把加减混合运算题目都转化成加法运算写成代数和的形式,这里特别注意了代数和形式的两种读法.
2.用加法运算律计算出结果
师:既然算式能看成几个数的和,我们可以运用加法的运算律进行计算,通常同号两数放在一起分别相加.
-20+3+5-7
http://www.maths.name给全国数学老师提供一个交换教学资源的平台
更多资料请访问http://www.maths.name
=-20-7+3+5.
学生活动:按教师要求口答并读出结果.
巩固练习:(出示投影2)
填空:
1.-4+7-4=-______________-_______________+_______________
2.+6+9-15+3=_____________+_____________+_____________-_____________
3.-9-3+2-4=____________9____________3____________4____________2
4. 15421254--+=________________________ 26732367
学生活动:讨论后回答.
【教法说明】学生运用加法交换律时,很可能产生“-20+7+5-3”这样的错误,教师先让学生自己去做,然后纠正,又做一组巩固练习,使学生牢固掌握运用加法运算律把同号数放在一起时,一定要连同前面的符号一起交换这一知识点.
师:-20-7+3+5怎样计算?
学生活动:口答
[板书]
-20-7+3+5
=-27+8
=-19
巩固练习:(出示投影3)
1.计算(1)-1+2-3-4+5;
(2).
2.做完前面两个题目计算:(1)(+9)-(+10)+(-2)-(-8)+3;
(2).
http://www.maths.name给全国数学老师提供一个交换教学资源的平台
更多资料请访问http://www.maths.name
学生活动:四个同学板演,其他同学在练习本上做.
【教法说明】针对一道例题分成三部分,每一部分都有一组相应的巩固练习,这样每一步学生都掌握得较牢固,这时教师一定要总结有理数加减混合运算的方法,使分散的知识有相对的集中.
师小结:有理数加减法混合运算的题目的步骤为:
1.减法转化成加法; a+b-c=a+b+(-c)2.省略加号括号;
3.运用加法交换律使同号两数分别相加;
4.按有理数加法法则计算.
(三)反馈练习
(出示投影4)
计算:(1)12-(-18)+(-7)-15;
(2).
学生活动:可采用同桌互相测验的方法,以达到纠正错误的目的.
【教法说明】这两个题目是本节课的重点.采用测验的方式来达到及时反馈.
(四)归纳小结
师:1.怎样做加减混合运算题目?
2.省略括号和的形式的两种读法?
学生活动:口答.
【教法说明】小结不是教师单纯的总结,而是让学生参与回答,在学生思考回答的过程中将本节的重点知识纳入知识系统.
(五)、随堂练习
1.把下列各式写成省略括号的和的形式
(1)(-5)+(+7)-(-3)-(+1);
http://www.maths.name给全国数学老师提供一个交换教学资源的平台
更多资料请访问http://www.maths.name
(2)10+(-8)-(+18)-(-5)+(+6).
2.说出式子-3+5-6+1的两种读法.
3.计算
(1)0-10-(-8)+(-2);
(2)-4.5+1.8-6.5+3-4;
(3).
(六)、布置作业
课本32页第5题
四、板书设计
有理数加减混合运算
步骤: 例 计算(-20)+(+3)-(-5)-(+7)
1.减法转化成加法 解:(-20)+(+3)-(-5)-(+7)
2.省略括号和的形式 =(-20)+(+3)+(+5)+(-7)
3.同号数结合在一起 =-20+3+5-7 4.同号两数相加 =-20-7+3+5 5.异号两数相加 =-27+8 =-19
练习:1略
五、练习与拓展选题
某水利勘察队,第一天向上游走5千米,第二天又向上游走5千米,第三天向下游走4千米,第四天又向下游走4.5千米,这时勘察队在出发点的哪里?相距多少千米?
更多资料请访问http://www.maths.name
练习:2略
http://www.maths.name给全国数学老师提供一个交换教学资源的平台
第五篇:初中数学教案:七年级数学《有理数的加减混合运算》教案
http://www.xiexiebang.com
初中数学教案:七年级数学《有理数的加减混合运算》教案模板
教学目标
1.了解代数和的概念,理解有理数加减法可以互相转化,会进行加减混合运算; 2.通过学习一切加减法运算,都可以统一成加法运算,继续渗透数学的转化思想; 3.通过加法运算练习,培养学生的运算能力。教学建议
(一)重点、难点分析
本节课的重点是依据运算法则和运算律准确迅速地进行,难点是省略加号与括号的代数和的计算.
由于减法运算可以转化为加法运算,所以加减混合运算实际上就是有理数的加法运算。了解运算符号和性质符号之间的关系,把任何一个含有有理数加、减混合运算的算式都看成和式,这是因为有理数加、减混合算式都看成和式,就可灵活运用加法运算律,简化计算.
(二)知识结构
(三)教法建议
1.通过习题,复习、巩固有理数的加、减运算以及加减混合运算的法则与技能,讲课前教师要认真总结、分析学生在进行有理数加、减混合运算时常犯的错误,以便在这节课分析习题时,有意识地帮助学生改正.
2.关于“去括号法则”,只要学生了解,并不要求追究所以然.
3.任意含加法、减法的算式,都可把运算符号理解为数的性质符号,看成省略加号的和式。这时,称这个和式为代数和。再例如-3-4表示-
3、-4两数的代数和,-4+3表示-
4、+3两数的代数和,http://www.xiexiebang.com
3+4表示3和+4的代数和
等。代数和概念是掌握有理数运算的一个重要概念,请老师务必给予充分注意。4.先把正数与负数分别相加,可以使运算简便。5.在交换加数的位置时,要连同前面的符号一起交换。如 12-5+7 应变成 12+7-5,而不能变成12-7+5。教学设计示例一(一)
一、素质教育目标
(一)知识教学点 1.了解:代数和的概念.
2.理解:有理数加减法可以互相转化. 3.应用:会进行加减混合运算.
(二)能力训练点
培养学生的口头表达能力及计算的准确能力.
(三)德育渗透点
通过学习一切加减法运算,都可以统一成加法运算,继续渗透数学的转化思想.
(四)美育渗透点
学习了本节课就知道一切加减法运算都可以统一成加法运算.体现了数学的统一美.
二、学法引导
1.教学方法:采用尝试指导法,体现学生主体地位,每一环节,设置一定题目进行巩固练习,步步为营,分散难点,解决关键问题. http://www.xiexiebang.com
2.学生写法:练习→寻找简单的一般性的方法→练习巩固.
三、重点、难点、疑点及解决办法
1.重点:把加减混合运算算式理解为加法算式.
2.难点:把省略括号和的形式直接按有理数加法进行计算.
四、课时安排 1课时
五、教具学具准备 投影仪或电脑、自制胶片.
六、师生互动活动设计
教师提出问题学生练习讨论,总结归纳加减混合运算的一般步骤,教师出示练习题,学生练习反馈.
七、教学步骤
(一)创设情境,复习引入
师:前面我们学习了有理数的加法和减法,同学们学得都很好!请同学们看以下题目: -9+(+6);(-11)-7. 师:(1)读出这两个算式.
(2)“+、-”读作什么?是哪种符号? “+、-”又读作什么?是什么符号? 学生活动:口答教师提出的问题.
师继续提问:(1)这两个题目运算结果是多少?(2)(-11)-7这题你根据什么运算法则计算的? http://www.xiexiebang.com
学生活动:口答以上两题(教师订正). 师小结:减法往往通过转化成加法后来运算.
【教法说明】为了进行,必须先对有理数加法,特别是有理数减法的题目进行复习,为进一步学习加减混合运算奠定基础.这里特别指出“+、-”有时表示性质符号,有时是运算符号,为在混合运算时省略加号、括号时做必要的准备工作.
师:把两个算式-9+(+6)与(-11)-7之间加上减号就成了一个题目,这个题目中既有加法又有减法,就是我们今天学习的.(板书课题2.7(1))
教学说明:由复习的题目巧妙地填“-”号,就变成了今天将学的加减混合运算内容,使学生更形象、更深刻地明白了有理数加减混合运算题目组成.
(二)探索新知,讲授新课
1.讲评(-9)+(-6)-(-11)-7.(1)省略括号和的形式 师:看到这个题你想怎样做? 学生活动:自己在练习本上计算. 教师针对学生所做的方法区别优劣.
【教法说明】题目出示后,教师不急于自己讲评,而是让学生尝试,给了学生一个展示自己的机会,这时,有的学生可能是按从左到右的顺序运算,有的同学可能是先把减法都转化成了加法,然后按加法的计算法则再计算„„这样在不同的方法中,学生自己就会寻找到简单的、一般性的方法.
师:我们对此类题目经常采用先把减法转化为加法,这时就成了-9,+6,+11,-7的和,加号通常可以省略,括号也可以省略,即: 原式=(-9)+(+6)+(+11)+(-7)=-9+6+11-7. http://www.xiexiebang.com
提出问题:虽然加号、括号省略了,但-9+6+11-7仍表示-9,+6,+11,-7的和,所以这个算式可以读成„„
学生活动:先自己练习尝试用两种读法读,口答(教师纠正).
【教法说明】教师根据学生所做的方法,及时指出最具代表性的方法来给学生指明方向,在把算式写成省略括号代数和的形式后,通过让学生练习两种读法,可以加深对此算式的理解,以此来训练学生的观察能力及口头表达能力. 巩固练习:(出示投影1)
1.把下列算式写成省略括号和的形式,并把结果用两种读法读出来.(1)(+9)-(+10)+(-2)-(-8)+3;(2)+()-()-(). 2.判断
式子-7+1-5-9的正确读法是(). A.负
7、正
1、负
5、负9; B.减
7、加
1、减
5、减9; C.负
7、加
1、负
5、减9; D.负
7、加
1、减
5、减9;
学生活动:1题两个学生板演,两个学生用两种读法读出结果,其他同学自行演练,然后同桌读出互相纠正,2题抢答.
【教法说明】这两题旨意在巩固怎样把加减混合运算题目都转化成加法运算写成代数和的形式,这里特别注意了代数和形式的两种读法. 2.用加法运算律计算出结果
师:既然算式能看成几个数的和,我们可以运用加法的运算律进行计算,通常同号两数放在一起分别相加. http://www.xiexiebang.com
-9+6+11-7 =-9-7+6+11.
学生活动:按教师要求口答并读出结果. 巩固练习:(出示投影2)填空:
1.-4+7-4=-______________-_______________+_______________ 2.+6+9-15+3=_____________+_____________+_____________-_____________ 3.-9-3+2-4=____________9____________3____________4____________2 4.____________________________________ 学生活动:讨论后回答.
【教法说明】学生运用加法交换律时,很可能产生“-9+7+11-6”这样的错误,教师先让学生自己去做,然后纠正,又做一组巩固练习,使学生牢固掌握运用加法运算律把同号数放在一起时,一定要连同前面的符号一起交换这一知识点. 师:-9-7+6+11怎样计算? 学生活动:口答 [板书] -9-7+6+11 =-16+17 =1 巩固练习:(出示投影3)1.计算(1)-1+2-3-4+5; http://www.xiexiebang.com
(2).
2.做完前面两个题目计算:(1)(+9)-(+10)+(-2)-(-8)+3;(2).
学生活动:四个同学板演,其他同学在练习本上做.
【教法说明】针对一道例题分成三部分,每一部分都有一组相应的巩固练习,这样每一步学生都掌握得较牢固,这时教师一定要总结有理数加减混合运算的方法,使分散的知识有相对的集中.
师小结:有理数加减法混合运算的题目的步骤为: 1.减法转化成加法; 2.省略加号括号;
3.运用加法交换律使同号两数分别相加; 4.按有理数加法法则计算.
(三)反馈练习(出示投影4)
计算:(1)12-(-18)+(-7)-15;(2).
学生活动:可采用同桌互相测验的方法,以达到纠正错误的目的.
【教法说明】这两个题目是本节课的重点.采用测验的方式来达到及时反馈.
(四)归纳小结
师:1.怎样做加减混合运算题目? 2.省略括号和的形式的两种读法? http://www.xiexiebang.com
学生活动:口答.
【教法说明】小结不是教师单纯的总结,而是让学生参与回答,在学生思考回答的过程中将本节的重点知识纳入知识系统.
八、随堂练习
1.把下列各式写成省略括号的和的形式(1)(-5)+(+7)-(-3)-(+1);(2)10+(-8)-(+18)-(-5)+(+6). 2.说出式子-3+5-6+1的两种读法. 3.计算
(1)0-10-(-8)+(-2);(2)-4.5+1.8-6.5+3-4;(3).
九、布置作业
(一)必做题:1.计算:(1)-8+12-16-23;(2);
(3)-40-28-(-19)+(-24)-(-32);(4)-2.7+(-3.2)-(1.8)-2.2;
(二)选做题:(1)当时,,哪个最大,哪个最小?(2)当时,,哪个最大,哪个最小?
十、板书设计 http://www.xiexiebang.com
随堂练习答案
1.(1)-5+7+3-1;(2)10-8-18+5+6. 2.负3加5减6加1或负3、5、负6、1的和。3.(1)-4;(2)-10.2;(3)-. 作业 答案
(一)必做题:1.(1)-35;(2);(3)-41;(4)-6.3(二)教学目标
让学生熟练地进行有理数加减混合运算,并利用运算律简化运算. 教学重点和难点
重点:加减运算法则和加法运算律. 难点:省略加号与括号的代数和的计算. 课堂教学过程 设计
一、从学生原有认知结构提出问题
什么叫代数和?说出-6+9-8-7+3两种读法.
二、讲授新课 1.计算下列各题:
2.计算: http://www.xiexiebang.com
(1)-12+11-8+39;(2)+45-9-91+5;(3)-5-5-3-3;
(7)-6-8-2+3.54-4.72+16.46-5.28;
3.当a=13,b=-12.1,c=-10.6,d=25.1时,求下列代数式的值:(1)a-(b+c);(2)a-b-c;(3)a-(b+c+d);(4)a-b-c-d;(5)a-(b-d);(6)a-b+d;(7)(a+b)-(c+d);(8)a+b-c-d;(9)(a-c)-(b-d);(10)a-c-b+d.
请同学们观察一下计算结果,可以发现什么规律? a-(b+c)=a-b-c; a-(b+c+d)=a-b-c-d; a-(b-d)=a-b+d;(a+b)-(c+d)=a+b-c-d;(a-c)-(b-d)=a-c-b+d.
括号前是“-”号,去括号后括号里各项都改变了符号;括号前是“+”号(没标符号当然也是省略了“+”号)去括号后各项都不变. 4.用较简便方法计算:
(4)-16+25+16-15+4-10.
三、课堂练习
1.判断题:在下列各题中,正确的在括号中打“√”号,不正确的在括号中打“×”号: http://www.xiexiebang.com
(1)两个数相加,和一定大于任一个加数.()
(2)两个数相加,和小于任一个加数,那么这两个数一定都是负数.()(3)两数和大于一个加数而小于另一个加数,那么这两数一定是异号.()(4)当两个数的符号相反时,它们差的绝对值等于这两个数绝对值的和.()(5)两数差一定小于被减数.()(6)零减去一个数,仍得这个数.()(7)两个相反数相减得0.()
(8)两个数和是正数,那么这两个数一定是正数.()2.填空题:
(1)一个数的绝对值等于它本身,这个数一定是______;一个数的倒数等于它本身,这个数一定是______;一个数的相反数等于它本身,这个数是______.(2)若a<0,那么a和它的相反数的差的绝对值是______.(3)若|a|+|b|=|a+b|,那么a,b的关系是______.(4)若|a|+|b|=|a|-|b|,那么a,b的关系是______.(5)-[-(-3)]=______,-[-(+3)]=______.
这两组题要求学生自己分析,判断题中错的应举出反例,同时要求符号语言与文字叙述语言能够互化.
四、作业
1.当a=2.7,b=-3.2,c=-1.8时,求下列代数式的值:(1)a+b-c;(2)a-b+c;(3)-a+b-c;(4)-a-b+c. 2.分别根据下列条件求代数式x-y-z+w的值: http://www.xiexiebang.com
(1)x=-3,y=-2,z=0,w=5;(2)x=0.3,y=-0.7,z=1.1,w=-2.1;
3.已知3a=a+a+a,分别根据下列条件求代数式3a的值:(1)a=-1;(2)a=-2;(3)a=-3;(4)a=-0.5.
4.(1)当b>0时,a,a-b,a+b,哪个最大?哪个最小?(2)当b<0时,a,a-b,a+b,哪个最大?哪个最小?
5.判断题:对的在括号里打“√”,错的在括号里打“×”,并举出反例.(1)若a,b同号,则a+b=|a|+|b|.()(2)若a,b异号,则a+b=|a|-|b|.()(3)若a<0、b<0,则a+b=-(|a|+|b|).()(4)若a,b异号,则|a-b|=|a|+|b|.()(5)若a+b=0,则|a|=|b|.()6.计算:(能简便的应当尽量简便运算)
课堂教学设计说明
1.本课时是习题课.通过习题,复习、巩固有理数的加、减运算以及加减混合运算的法则与技能.讲课前教师要认真总结、分析学生在进行有理数加、减混合运算时常犯的错误,以便在这节课分析习题时,有意识地帮助学生改正.
2.关于“去括号法则”,只要求学生了解,并不要求追究所以然.
来源:中师教育 www.xiexiebang.com