初中数学有理数教案(5篇范文)

时间:2019-05-13 01:34:15下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《初中数学有理数教案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《初中数学有理数教案》。

第一篇:初中数学有理数教案

《有理数—正数和负数》教学设计

一、教学目标

1、认知目标:1)数的意义

2)正数和负数的概念

2、能力目标:1)能比较数的大小

2)渗透将实际问题抽象成数学模型的思想 3)增强学生对实际问题的数学思维能力

3、情感目标:培养学生的敏锐观察力

二、教学重难点

重点:正数负数的概念及意义

难点:将实际问题数学化(建立数学模型)

三、教学过程

(一)创设情境,引入课题

小a有10斤苹果,以3元每斤的价格卖给小n4斤。(这里使用小a小n代替小明小红,目的是使学生习惯用字母来表示一些常数项,这有利于后续的数学学习)

1)现在小a的苹果数量 2)小a的收入,小n的支出

引出:我们把一种意义的量规定为正的,把另一种和它意义相反的量规定为负的,于是就产生了正数和负数。(哪种意义的量规定为正,是可以任意选定的(如上升2米规定为+2米或-2米都可以))

【设计意图:从实际问题中引出正数负数的概念,让学生能够快速的从实际问题中抽象出数学模型】

(二)拓展延伸,练习巩固

1、日常生活中用到正数负数的实例:财务的收支,温度的表示,海拔的高低等。

2、正数负数的分界线——0 0既不是正数也不是负数,它是个整数,它表示正数和负数的分界。

对于正数和负数的概念,不能简单理解为带“+”的数是正数,带“-”的数是负数。如+0是0,-0也是0;当a<0时,-a就是正数。

(三)探究新知,增加储备

10-4=6的数学意义和实际意义 数学意义:10-4=6 实际意义:+10+(-4)=+6(+8和-3就是实际中两个意义相反的量)【设计意图:将数学应用到实际就需要清楚数学模型的实际含义】

(四)课堂小结,布置作业

1,本节课讲了哪些用到正负数的实例 2,你能否再举出类似的例子 3,作业:练习巩固2、3、4 四,教学设计说明

1、设计的主要思路:从基本的日常生活中引出正负数的概念,让学生充分理解正负的意义,为后阶段的学习打下基础。

2、让学生成为课堂的主体,充分发挥学生的主观能动性,使学生能将数学从实际问题中抽象出来,再将数学运用到实际中去。

第二篇:初中数学 《有理数的乘法》教案3

《有理数的乘法(1)》教案

教学目标:

1.经历探索有理数乘法法则的过程,发展归纳、猜测等能力; 2.能运用法则进行有理先相加数乘法运算; 3.理解有理数倒数的意义; 4.能用乘法解决简单的实际问题.

教学重点

有理数乘法法则及运算.

教学难点

有理数乘法中的积的符号法则.

教学过程

一.创设情景 导入新课 问题1

(1)商店降价销售某种产品,若每件降5元,售出60件,问与降价前比,销售额减少了多少?(2)商店降价销售某种产品,若每件提价-5元,售出60件,与提价前比,销售额增加了多少?(3)商店降价销售某种产品,若每件提价a元,售出60件,问与提价前比,销售额增加了多少? 问题2

(1)登山队攀登一座高峰,每登高1km,气温下降6℃,登高3km后,气温下降多少?(2)登山队攀登一座高峰,每登高1km,气温上升-6℃,登高3km后,气温上升多少?(3)登山队攀登一座高峰,每登高1km,气温上升-6℃,登高-3km后,气温有什么变化? 问题3

(1)2×3=(2)-2×3=(3)2×(-3)=___(4)(-2)×(-3)=____(5)3×0=_____(6)-3×0=_____.思考:比较-2×3=-6,2×3=6,你对一个负数乘一个正数有什么发现? 归纳:把一个因数换成它的相反数,所得积是原来的积的相反数 比较(-2)×(-3)=6,2×3=6,你对两个负数相乘有什么发现? 引导学生思考:5×0,-5×0,0×(-2)的结果是多少? 法则归纳

新知一

有理数乘法法则:

1.两数相乘,同号得______,异号得_______,并把________相乘.(同号得正,异号得负)2.任何数同0相乘,都得______.强调:“同号得正”有两种,一种是两个在有理数相乘,另一种是两个负有理数相乘(负负得正),并与小学学习的乘法比较,关键是乘法的符号法则.

二.应用迁移

巩固提高

问题:由法则,如何计算(-5)×(-3)的结果?(1)师生共同完成: 依据 方法步骤

(-5)×(-3)„„„„同号两数相乘„„„看条件(-5)×(-3)=+()同号得正„„„„„决定符号 5×3=15„„„„„„把绝对值相乘„„„计算绝对值 ∴(-5)×(-3)=+15

(2)分组类似(1)讨论,归纳:(-7)×4(3)师生共同完成:

有理数的乘法:与小学里数的乘法在法则和方法步骤方面分别有什么联系? ①符号决定以后,有理数的乘法就转化成了小学里数的乘法; ②由①可见,小学里数的乘法是有理数乘法的基础. 三.应用迁移

巩固提高

例 计算:(1)(-5)×(-6),(2)(-

3135)×,(3)()×(),(4)8×(-1.25)2653第一,引导学生强化法则、步骤;第二,教给正确的书写格式.板演并相互纠错

练习

1、确定下列两数的符号:

(1)5×(-3)(2)(-4)×6

(3)(-7)×(-9)(4)0.5×0.7

(5)7

32、计算

(1)6×(-9)(2)(-6)×(-9)(3)(-6)×9(4)(-6)×0(5)0×(-9)(6)(新知二

倒数 回顾:

满足什么条件的两个数互为倒数?0.2的倒数是多少?7.29的倒数呢?

2512)()(7)(4)()522923的倒数呢?(2).7

满足什么条件的两个数互为相反数? 0.2的相反数是多少? 探索:

23呢? 7在有理数范围内,我们仍然规定:乘积是1的两个数互为倒数.-0.2的倒数是多少?-7.29的倒数呢? -

23的倒数呢? 7指出:因为任何数同0相乘都不等于1,所以0没有倒数.由学生找出练习2中哪些题里的两个因数互为倒数,为什么?

分组讨论:

1.两个互为倒数的数的符号有什么特征?2.绝对值有什么关系?3.如何找一个有理数的倒数?

练习:

1.-1的倒数是1还是-1?为什么? 2.9的倒数是______;0的倒数________.4a、b互为_____数.3._____________的两个数互为相反数._______的两个数互为倒数.若a+b=0,则a、b互为_____数,若ab=1,则 4.计算:(1)(-6)×4=______=____;(2)-29()=_________=_____.345.在数-5,1,-3,5,-2中任取3个相乘,哪3个数相乘的积最大? 哪3个数相乘的积最小? 新知三

有理数与1或者-1相乘

口答:1×(-5);(-1)×(-5);1×a;(-1)×a.

引导学生归纳:一个数乘以1等于它本身;一个数乘以-1等于它的相反数. 四.总结反思 拓展升华

在进行有理数乘法运算时,与有理数加法运算狠相似,要注意:

一、先确定积的符号

二、积的绝对值是两个因数绝对值的积.

五.作业

1.计算:(-16)×15;(-9)×(-14);0.72×(-1.25). 2.(1)若a = 3,a与2a哪个大?若 a= 0 呢? 又若 a=-3呢?(2)a与2a哪个大?(3)判断:9a一定大于2a;(4)判断:9a一定不小于2a.(5)判断:9a有可能小于2a.3.若a>b,则ac>bc吗?为什么?请举例说明.4.若mn=0,那么一定有()(A)m=n=0.(B)m=0,n≠0.(C)m≠0,n=0.(D)m、n中至少有一个为0.

第三篇:初中数学有理数知识模块归纳总结

初中数学有理数知识模块归纳总结

第一章

有理数

1,2,3~~叫做自然数。包括0和正整数。自然数:数0,”(读作“正”)号,通常可以省略不写。正数:大于零的数叫做正数。正数前面常有“复数:小于零的数,叫做负数,负数用“—”号标记(读作“负”)零既不是正数,也不是负数;它是正负数的分界线。整数:正整数、0、负整数统称整数。分数:正分数、负分数统称分数

1、有理数的概念有理数:整数和分数统称有理数。无理数:无限不循环小数称为无理数。数轴:规定了原点,正方向和单位长度的直线叫做数轴。(数轴三要素:原点,正方向和单位长度)相反数:在数轴上,原点左、右两边到原点距离相等的点所表示的有理数,只有符号不同,这样的一对数互为相反数。11例如:6与-6,与-等。(a的相反数是-a,这里a可以是正数、负数或0。当a6时,-a-6;a-6时,-a(--6)6。440的相反数是0,)

正奇数正整数|正整数正偶数正有理数|整数零正分数|

2、有理数的分类按整数和分数的关系分类负奇数按正数、零和负数的关系分类零负整数|负偶数负整数负有理数|负分数正分数|分数负分数

1倒数:乘积为1的两个数互为倒数。一般的,a的倒数为a,其中a0。(0没有倒数,倒数等于它本身的数只有1,乘积为-1的两个数互为互倒数。)绝对值:数轴上表示a的点与原点的距离,叫做数a的绝对值,记作|a|。正数的绝对值是它本身;负数的绝对值是a(a>0)0的绝对值是0,即:|a|0(a0)它的相反数;a(a<0)(任意有理数a的绝对值永远是非负数,或者说|a|0,0是绝对值之中最小的数;-a|;互为相反数的两个数的绝对值相等。例如:a与-a,互为相反数,故|a||若两数的绝对值相等,则这两个数相等或者互为相反数。即若|a||b|,则ab或ab。)

3、有理数大小的比较

1、数轴法:数轴上右边的数总比左边的大

2、代数比较法:正数大于0,负数都小于0,正数大于负数;两个正数,绝对值大的数大;两个负数,绝对值大的数小.ab>0ab

3、差值比较法:设a、b为任意两个数,则ab0abab0ab有理数的大小比较:aaa

1、设a、b两个正数,则1ab;1ab;1,abbbb

4、商值比较法:aa

2、设a、b两个负数,则a1ab;1ab,1,abbbb1,绝对值最小的是0.)(最大的负整数是-1,最大的非负整数0,最小的非负整数0,最小的正整数是

加法:同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值有理数的加减法法则较大的数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数与0相加,仍得这个数。减法:减去一个数,等于加上这个数的相反数,即aba(b),a(b)ab代数和:几个正数或负数的和运算符号与性质符号:、、、叫做运算符号,而、、又可叫做性质符号。加法交换律:两数相加,交换加数的位置,和不变,即abba。加法结合律:三数相加,前两数先相加,或后两数先相加,和不变。即(ab)ca(bc)乘法:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘都得0.1有理数乘除法法则:除法:除以一个不等于0的数等于乘上这个数的倒数,即aba(b不等于0),两数相除,同号得正,4、有理数的计算b0除以任何数得0,除数不能为0.异号得负,并把绝对值相除。乘法交换律:abba乘法结合律:(ab)ca(bc)乘法分配律:a(bc)abbc有理数乘方法则:求n个相同因数的积的运算叫做乘方,而乘方的结果叫做幂,表示为:aaaaaaan(n是正整数),n其中a为底数,n称为指数。有理数的混合运算顺序:先算乘方,再算乘除,最后算加减,如果有括号,就先算括号里面的,再算括号外面的,对于同级运算,应从左向右依次进行。

第四篇:初中数学有理数的乘方说课稿

《有理数的乘方》说课稿

在以学生发展为本的教育理念的指导下,为提高学生的学习兴趣及效率,提高教学质量,结合新课程标准的要求,对初一年级第一章第五节作如下的设计。

一、说教材

1、地位作用:

有理数的乘方是初一年级上学期第一章第五节的教学内容,是有理数的一种基本运算,从教材编排的结构上看,共需要4个课时,此课为第一课时,是在学生学习了有理数的加、减、乘、除运算的基础上来学习的,它既是有理数乘法的推广和延续,又是后继学习有理数的混合运算、科学记数法和开方的基础,起到承前启后、铺路架桥的作用。在这一课的教学过程中,可以培养学生观察问题、分析问题和解决问题的能力,以及转化的数学思想,通过这一课的学习,对培养学生的这些能力和转化的数学思想起到很重要的作用。

2、教学目标:

(1)让学生理解并掌握有理数的乘方、幂、底数、指数的概念及意义;能够正确进行有理数的乘方运算。

(2)在生动的情境中让学生获得有理数乘方的初步经验;培养学生观察、分析、归纳、概括的能力;经历从乘法到乘方的推广的过程,从中感受转化的数学思想。

(3)让学生通过观察、推理,归纳出有理数乘方的符号法则,增进学生学好数学的自信心。

(4)经历知识的拓展过程,培养学生探究的能力和动手操作的能力,体会与他人合作 交流的重要性。

3、教学重点:

有理数的乘方、幂、底数、指数的概念及其相互间的关系;有理数乘方的运算方法。

4、教学难点:

有理数的乘方、幂、底数、指数的概念及其相互间的关系的理解。

二、说教学方法

启发诱导式、实践探究式。

三、说学法

根据初一学生好动、好问、好奇的心理特征,课堂上采取由浅入深的启发诱导,随着教学内容的深入,让学生一步一步的跟着动脑、动手、动口,在合作交流中培养学生学习的积极性和主动性,使学习方式由“学会”变为“会学”。

四、说教学手段

利用多媒体教学,目的之一是使课堂生动、形象又直观,能激发学生的学习兴趣,目的之二是增大教学容量,增强教学效果。

五、说教学设计

第五篇:初中数学有理数的乘法教案设计

【教学目标】

(一)知识技能

1。使学生掌握多个有理数相乘的积的符号法则;

2。掌握有理数乘法的交换律和结合律,并利用运算律简化乘法运算;

(二)过程方法

在师生互动、生生互动的系列活动中,学会与老师及与其他同学交流、沟通和合作,准确表达自己的思维过程。培养学生观察、归纳、概括能力及运算能力。

(三)情感态度

通过例题与练习,体验“简便运算”带来的愉悦,懂得运算的每一步都必须有依据。通过新知的导入和运用过程,感受到人们认识事物的一般规律是“实践、认识、再实践、再认识”。培养学生的观察和分析能力,渗透转化的教学思想。

教学重点

乘法的符号法则和乘法的运算律。

教学难点

几个有理数相乘的积的符号的确定。

【复习引入】

1。有理数乘法法则是什么?

2。计算(五分钟训练):

(1)(—2)×3;(2)(—2)×(—3);(3)4×(—1。5);(4)(—5)×(—2。4);

(5)—2×3×(—4);(6)97×0×(—6);

(7)1×2×3×4×(—5);(8)1×2×3×(—4)×(—5);

(9)1×2×(—3)×(—4)×(—5);(10)1×(—2)×(—3)×(—4)×(—5);

(11)(—1)×(—2)×(—3)×(—4)×(—5)。

【教学过程】

1。几个有理数相乘的积的符号法则

引导学生观察上面各题的计算结果,找一找积的符号与什么有关?

(7),(9),(11)等题积为负数,负因数的个数是奇数个;(18),(20)等题积为正数,负因数个数是偶数个。

是不是规律?再做几题试试:

(1)3×(—5);(2)3×(—5)×(—2);(3)3×(—5)×(—2)×(—4);

(4)3×(—5)×(—2)×(—4)×(—3);(5)3×(—5)×(—2)×(—4)×(—3)×(—6)。

同样的结论:当负因数个数是奇数时,积为负;当负因数个数是偶数时,积为正。

再看两题:

(1)(—2)×(—3)×0×(—4);(2)2×0×(—3)×(—4)。

结果都是0。

引导学生由以上计算归纳出几个有理数相乘时积的符号法则:

几个不等于0的数相乘,积的符号由负因数的个数决定。当负因数有奇数个时,积为负;当负因数有偶数个时,积为正。

几个有理数相乘,有一个因数为0,积就为0。

说明:(1)这样以后进行有理数乘法运算时必须先根据负因数个数确定积的符号后,再把绝对值相乘,即先定符号后定值。

(2)第一个因数是负数时,可省略括号。

例1 计算:

解:=6

2。乘法运算律

在做练习时我们看到如果像小学一样能利用乘法的交换律和结合律

计算:

(1)5×(—6);(2)(—6)×5;

(3)[3×(—4)]×(—5);(4)3×[(—4)×(—5)];

由上面计算结果,可以说明有理数乘法也同样有交换律,结合律,(1)乘法交换律

文字叙述:两个数相乘,交换因数的位置,积不变。

代数式表达:ab=ba。

(2)乘法结合律

文字叙述:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变。

代数式表达:(ab)c=a(bc)。

例2,用简便方法计算:(1)(—5)×89。2×(—2)

(2)(—8)×(—7。2)×(—2。5)×

解:(1)原式=5×2×89。2……交换因数位置,决定积的符号

=892………………按顺序依次运算

(2)原式=-(8×2。5)×(7。2×)……交换因数位置,决定积的符号

=-60………………按顺序依次运算

【课堂作业】

1。确定积的符号:

积的符号 ;

积的符号 ;

积的符号。

2完成下面填空:

(1)(—10)×()× 0。1 × 6 =_______

(2)(—10)×(—)×(—0。1)× 6 =________

(3)(—10)×(—)×(—0。1)×(—6)=________

(4)(—5)×(—)× 3 ×(—2)× 2=________

(5)(—5)×(—8。1)× 3。14 × 0=________

3。计算

(1)8+(—0。5)×(—8)×(2)(—3)× ×(—)×(—)

(3)(—)× 5 × 0 ×(—)(5)(—6)×(+37)×(—)×(—)

4。计算:(1)(—4)×(—7)×(—25)(2)(—)×8×(—)

(3)(—0。5)×(—1)× ×(—8)(4)(—5)—(—5)× ×(—4)。

(5)(—3)×(7)×—3 ×(—6)(6)(—1)×(—7)+6×(—1)×

(7)1—(—1)×(—1)—(1)×0×(—1)

参考答案:

1、-,+,-

2、(1)—2(2)—2(3)2(4)—30(5)03、(1)11(2)(3)0(4)—

54、(1)—700(2)(3)—1(4)

(5)—378(6)4(7)0

【教学反思】

有理数乘法的教学,是教学中的难点。学生也能很快融会贯通,只是计算中还会存在着一些问题,练习过程中要一一指正,并提出要求,让学生在练习中自己总结经验,牢记结论,做到在简单的运算中不失分。这节课主要针对刚迈人初中阶段的学生年龄特点和心理特征,以及他们现有的认知水平,采用启发式,小组合作、尝试练习等教学方法,让尽可能多的学生自觉参与到学习活动中来。

下载初中数学有理数教案(5篇范文)word格式文档
下载初中数学有理数教案(5篇范文).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    七年级数学有理数复习教案范文

    倒数是;若ab=1 a、b互为倒数;若ab=-1 a、b互为负倒数. a初一数学知识点总结 6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a≠0,那么a的1第一章有理数 1.有理数: 凡能......

    [初中数学]有理数的加法教案2 华东师大版

    《有理数的加法》教案 湖州新世纪外国语学校章盛丽沈 晖钱俊杰 教学目标 1.使学生掌握有理数加法的运算律,并能运用加法运算律简化运算; 2.培养学生观察、比较、归纳及运算能力.......

    初中数学七年级上册《有理数及其运算》说课稿

    北师大版初中数学七年级上册《有理数及其运算》说课稿 尊敬的各位领导老师:下午好。基于课标和教材的变化,基于学生和我们老师在使用时出现的情况,下面我将和各位老师交流一......

    初中数学-有理数的加法教学设计

    初中数学-有理数的加法教学设计 一、教学目标1、知识与技能 (1)通过足球赛中的净胜球数,使学生掌握有理数加法法则,并能运用法则进行计算; (2)在有理数加法法则的教学过程中,注意培......

    初中数学教案:七年级数学《有理数的加减混合运算》教案

    http://www.xiexiebang.com 初中数学教案:七年级数学《有理数的加减混合运算》教案模板 教学目标 1.了解代数和的概念,理解有理数加减法可以互相转化,会进行加减混合运算; 2.......

    七年级数学有理数的加减法教案

    株洲大学生家教舒新 http://www.xiexiebang.com电话*** 初一同步辅导材料(第9讲) 第一章有理数加减及其混合运算 【知识梳理】 1、有理数的加法法则: 同号两数相加,取相......

    初一数学有理数的乘法教案

    有理数的乘法 一、教学目标 1、 知识与技能:掌握有理数乘法法则,能利用乘法法则正确进行有理数乘法运算。 2、过程与方法:经历探索、归纳有理数乘法法则的过程,发展学生观察、归......

    七年级数学有理数的减法教案

    七年级数学有理数的减法教案 以下是查字典数学网为您推荐的 七年级数学有理数的减法教案,希望本篇文章对您学习有所帮助。 七年级数学有理数的减法教案 学习目标: 1、理解......