费马点(推荐5篇)

时间:2019-05-15 07:58:17下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《费马点》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《费马点》。

第一篇:费马点

费马点定义费马点定义费马点定义费马点定义 在一个多边形中,到每个顶点距离之和最小的点叫做这个多边形的费马点费马点费马点费马点。在平面三角形中:(1).三内角皆小于三内角皆小于三内角皆小于三内角皆小于120°的三角形的三角形的三角形的三角形,,分别以分别以分别以分别以 AB,BC,CA,,为边为边为边为边,,向三角形外侧做正三角形向三角形外侧做正三角形向三角形外侧做正三角形向三角形外侧做正三角形ABC1,ACB1,BCA1,然后连接然后连接然后连接然后连接AA1,BB1,CC1,则三线交于一点则三线交于一点则三线交于一点则三线交于一点P,则点则点则点则点P就是所求的费马点就是所求的费马点就是所求的费马点就是所求的费马点.(2).若三角形有一内角大于或等于若三角形有一内角大于或等于若三角形有一内角大于或等于若三角形有一内角大于或等于120度度度度,则此钝角的顶点就是所求则此钝角的顶点就是所求则此钝角的顶点就是所求则此钝角的顶点就是所求.(3)当当当当△△△△ABC为等边三角形时为等边三角形时为等边三角形时为等边三角形时,此时外心与费马点重合此时外心与费马点重合此时外心与费马点重合此时外心与费马点重合 证明证明证明证明(1)费马点对边的张角为120度。△CC1B和△AA1B中,BC=BA1,BA=BC1,∠CBC1=∠B+60度=∠ABA1, △CC1B和△AA1B是全等三角形,得到∠PCB=∠PA1B 同理可得∠CBP=∠CA1P 由∠PA1B+∠CA1P=60度,得∠PCB+∠CBP=60度,所以∠CPB=120度 同理,∠APB=120度,∠APC=120度(2)PA+PB+PC=AA1 将△BPC以点B为旋转中心旋转60度与△BDA1重合,连结PD,则△PDB为等边三角形,所以∠BPD=60度 又∠BPA=120度,因此A、P、D三点在同一直线上,又∠APC=120度,所以A、P、D、A1四点在同一直线上,故PA+PB+PC=AA1。(3)PA+PB+PC最短 在△ABC内任意取一点M(不与点P重合),连结AM、BM、CM,将△BMC以点B为旋转中心旋转60度与△BGA1重合,连结AM、GM、A1G(同上),则AA1

费马在光学方面,确立了几何光学的重要原理,命名为费马原理。这一原理是几何光学的最重要基本理论之一,对于笛卡儿的“光在密媒质中比在疏媒质中传播要快”的观点给予了有力的反驳,把几何光学的发展推向了新的阶段。

几何光学已有悠久的发展历史。公元前400年,我国《墨经》中便有光的直线传播和各种面镜对光的反射的记载。公元100年亚历山大里亚的希罗(Hero)曾提出过光在两点之间走最短路程的看法。托勒密在公元130年对光的折射进行过研究。公元1611年开普勒对光学的研究达到了较高的定量程度。最后,1621年斯涅尔总结出了光的折射定律。费马则是用数学方法证明了折射定律的主要学者之一。费马原理是根据经济原则提出的,它指出:光沿着所需时间为极值的路径传播。可以理解为,光在空间沿着光程为极值的路传播,即沿光程为最小、最大或常量路径传播。费马定理不但是正确的,同时它与光的反射定律和折射定律具有同等的意义。由于费马原理的确立,几何光学发展到了费马(Pierre De Fermat)是法国数学家,1601年8月17日出生于法国南部图卢兹附近的博蒙·德·洛马涅。费马曾提出关于三角形的一个有趣问题:在三角形所在平面上,求一点,使该点到三角形三个顶点距离之和最小.人们称这个点为“费马点”.引例:有甲乙丙三个村庄,要在中间建一供水站向三地送水,现要确定供水站的位置以使所需管道总长最小?将此问题用数学模型抽象出来即为:在△ ABC中确定一点P,使P到三顶点的距离之和PA+PB+PC最小。解法如下:分别以AB AC为边向外侧作正三角形ABD ACE 连结CD BE交于一点,则该点 即为所求P点。证明:如下图所示。连结PA、PB、PC,在△ABE和△ACD中,AB=AD AE=AC ∠BAE=∠BAC+60° ∠DAC=∠BAC+60°=∠BAE ∴△ABE全等△ACD。∴ ∠ABE=∠ADC 从而A、D、B、P四点共圆∴∠APB=120°,∠APD=∠ABD=60°同理:∠APC=∠BPC=120°以P为圆心,PA为半径作圆交PD于F点,连结AF,以A为轴心将△ABP顺时针旋转60°,已证∠APD=60°∴△APF为正三角形。∴不难发现△ABP与△ADF重合。∴BP=DF PA+PB+PC=PF+DF+PC=CD另在△ABC中任取一异于P的点G,同样连结GA、GB、GC、GD,以B为轴心将△ABG逆时针旋转60°,记G点旋转到M点.。则△ABG与△BDM重合,且M或 在 线 段DG上 或 在DG外。GB+GA=GM+MD≥GDGA+GB+GC≥GD+GC>DC。从而CD为最短的线段。以上是简单的费马点问题,将此问题外推到四点,可验证四边形的对角线连线的交点即是所求点。较为完善的程度。

第二篇:费马点简洁证明

費馬點(Fermat Point)

一、前言

費馬(Pierre de Fermat,1601-1665)是一位律師和法國政府的公務員,他利用閒暇的時間研究數學,他從未發表他的研究發現,但是他幾乎與同時代的所有歐洲的大數學家保持通信。曾經,費馬是歐洲所有數學研究進展之交換中心。有一天,他要回答一個收到的問題,『要找出三角形裡最小點的位置,這個最小點是指這點到三個頂點的距離總和為最短』。

「在平面上找一個點,使此點到已知三角形三個頂點的距離和為最小」,這個點就是所謂的費馬點(Fermat Point),這個問題可以應用在,例如有三個城市,然後要蓋一個交通中心到這三個城市的距離最短這一類的問題。

二、找費馬點

在平面上一三角形ABC,試找出內部一點P,使得PAPBPC為最小。首先,讓我們先找到P點的性質,再來研究怎麼做出P點。

P點有什麼性質呢?它的位置是否有什麼特殊意義呢?在中學裡,我們學過三角形的內心、外心、重心以及垂心,P點和這些心之間有關聯嗎?還是和有些線段長、角度大小有關係呢?

APB、BPC和CPA很接近,這三個角度有何關聯?

【解法1】

1如右圖,以B點為中心,將APB旋轉60到C'BP' ○

因為旋轉60,且PBP'B,所以P'PB為一個正三角形PBP'P

因此,PAPBPCP'C'P'PPC

由此可知當C'、P'、P、C四點共線時,PAPBPCP'C'P'PPC為最小

2若C'P'P共線時,則 ○

BP'P60C'P'BAPB120

同理,若P'PC共線時,則BPP'60BPC120

所以P點為滿足APBBPCCPA120的點。

但是,該用什麼方法找出P點呢?

A'

以ABC三邊為邊,分別向外作正三角形ABC'、A'BC、AB'C

連接AA'、BB'、CC'

AA'、BB'、CC'三線共點,設交點為P,即為所求

【證明1】

(在解法1曾提到若PAPBPCP'C'P'PPC,即C'P'PC四點共線時,小值,所以P要在CC'上。)

A'

ABB'AC'C1

2則DPB~DAC',得3460 在PC'上取點P',使得BPBP'BPP'為正三角形

則ABPC'BP',得APC'P'

所以PAPBPCP'C'P'PPCC'C

【證明2】 PAPBPCC'C有最

所以CPA'60 A' APBBPCCPA120,又A'BPC四點共圓(BPCBA'C180)

故APCCPA'180,因此P在AA'上 同理可證P在BB'、CC'上,故P為AA'、BB'、CC'三線交點

三、畫出費馬點

經過上面的討論,可以知道,在平面上ABC,想找出一點P,使PAPBPC為最小,方法為:分別以AB、BC為邊長做出正三角形ABC'及A'BC,連接AA'、CC',兩線交於一點P,P點即為費馬點。

使用上述方法需要注意到一點,ABC的每一個內角均小於120,如果其中有一內角大於120,那麼P點就是ABC最大內角的頂點。

第三篇:关于费马点知识总结

费马点

一、研究目的

费马点是17世纪法国著名的数学家费马发现的。所指的是在三角形所在的平面上,有一个点到三角形三个顶点距离之和最小。而费马点有许多有意义的性质,即为此,本人以费马点的性质为因来进行一系列的调查与研究。

二、研究结果

(一)费马点的发现者

费马点的发现者是费马[Fermat, Pierre de, 1601-1665],17世纪的法国数学家。1601年8月17日在法国南部图卢兹附近波蒙--德洛马涅出生。早年于家乡受教育,后入图卢兹大学供读法律,毕业后任职律师。自1631年起任图卢兹议会议员。任职期间,他利用工余时间钻研数学,并经常以书信与笛卡儿、梅森、惠更斯等著名学者交往,讨论数学问题。他饱览群书,精通数国文字,掌握多门自然科学的知识。虽年近三十才认真注意数学,但成就累累。最后于1665年1月12日在卡斯特尔逝世。

他生前由于性情淡泊,为人谦逊,因此较少发表论着,大多成果只留在手稿、通信或书页之空白处。他的儿子于1679年把这些遗作整理汇集成书[共两卷],在图卢兹出版。

由于他在数论、解析几何、概率论等方面贡献良多,被后世誉为「业余数学家之王」。

(二)费马点的求法

△ABC需是三个内角皆小于120°三角形,分别以 AB、BC、CA为边,向三角形外侧做正三角形△ABD、△ACE,然后连接DC、BE,则二线交于一点,记作点P,则点P就是所求的费马点。

(三)费马点的验证

1.△ABC是等边三角形,以边AB、AC分别向△ABC外

侧作等边三角形,连接DC、EB,交点为点P,点P为

费马点。则可得出结论:

①AP=BP=CP;②∠APB=∠BPC=∠APC=120°;③点P 是内心,是在三角形三个内角的角平分线的交点;④

点P是垂心,是△ABC各边的高线的交点;⑤△ABP、△ACP、△BCP全等。⑥点P是△ABC各边的中线的交

点;⑦△ABC的三顶点的距离之和为AP+BP+CP,且点

P为费马点时和最小。

2.△ABC是等腰三角形,以边AB、AC分别向△ABC外

侧作等边三角形,连接DC、EB,交点为点P,点P为

费马点。则可得出结论:

①△ABC的三顶点的距离之和为AP+BP+CP,且点P为

费马点时和最小;②∠APB=∠BPC=∠APC=120°;③

△ABP与△ACP全等;④△BCP为等腰三角形。

3.△ABC是直角三角形,以边AB、AC分别向△ABC外

侧作等边三角形,连接DC、EB,交点为点P,点P为

费马点。则可得出结论:

①△ABC的三顶点的距离之和为AP+BP+CP,且点P为

费马点时和最小;②∠APB=∠BPC=∠APC=120°

(四)费马点的性质

1.费马点到三角形三个顶点距离之和最小

2.费马点连接三顶点所成的三夹角皆为120°

3.费马点为三角形中能量最低点。(调查得知)

4..三力平衡时三力夹角皆为120°,所以费马点是三力平衡的点。(调查得知)

(五)费马点的应用

在实际生活中,若三角形的三个顶点分别是在三个地方,而要求是在“三角形”内建一处车站等,且要是车站到三个地方的公路路程和最短,可利用费马点的性质①:费马点到三角形三个顶点距离之和最小。则这车站应建在费马点上。

三、结论

由此次研究可让我们知道,若想要在某方面做出伟大成就必先努力、锲而不舍的钻研,就如胡适所言:“做学问要再不疑处有疑„„”。并且,将成就运用于生活,服务生活,方便生活,才是他们的价值所在!

二、找费马点

在平面上一三角形ABC,试找出内部一点P,使得PAPBPC为最小。首先,让我们先找到P点的性质,再来研究怎么做出P点。

P点有什么性质呢?它的位置是否有什么特殊意义呢?在中学里,我们学过三角形的内心、外心、重心以及垂心,P点和这些心之间有关联吗?还是和有些线段长、角度大小有关系呢?

APCB

APB、BPC和CPA很接近,这三个角度有何关联? 【解法1】

C'AP'PC

1如右图,以B点为中心,将APB旋转60到C'BP' ○

B

因为旋转60,且PBP'B,所以P'PB为一个正三角形PBP'P

因此,PAPBPCP'C'P'PPC

由此可知当C'、P'、P、C四点共线时,PAPBPCP'C'P'PPC为最小 2若C'P'P共线时,则 ○

BP'P60C'P'BAPB120

同理,若P'PC共线时,则BPP'60BPC120 所以P点为满足APBBPCCPA120的点。

但是,该用什么方法找出P点呢?

C'AB'PCB

以ABC三边为边,分别向外作正三角形ABC'、A'BC、AB'C 连接AA'、BB'、CC'

AA'、BB'、CC'三线共点,设交点为P,即为所求

A'【证明1】

(在解法1曾提到若PAPBPCP'C'P'PPC,即C'P'PC四点共线时,PAPBPCC'C有最小值,所以P要在CC'上。)

C'2P'4DP31CBAB'

ABB'AC'C12

A'

则DPB~DAC',得3460

在PC'上取点P',使得BPBP'BPP'为正三角形 则ABPC'BP',得APC'P'

所以PAPBPCP'C'P'PPCC'C 【证明2】

C'AB'PCB

APBBPCCPA120,又A'BPC四点共圆(BPCBA'C180)所以CPA'60

故APCCPA'180,因此P在AA'上 同理可证P在BB'、CC'上,故P为AA'、BB'、CC'三线交点

三、画出费马点

经过上面的讨论,可以知道,在平面上ABC,想找出一点P,使PAPBPC为最小,A'

方法为:分别以AB、BC为边长做出正三角形ABC'及A'BC,连接AA'、CC',两线交于一点P,P点即为费马点。

使用上述方法需要注意到一点,ABC的每一个内角均小于120,如果其中有一内角大于120,那么P点就是ABC最大内角的顶点。

第四篇:费马的房间观后感

费马的房间观后感(精选多篇)

费马点定义费马点定义费马点定义费马点定义 在一个多边形中,到每个顶点距离之和最小的点叫做这个多边形的费马点费马点费马点费马点。在平面三角形中:.三内角皆小于三内角皆小于三内角皆小于三内角皆小于120°的三角形的三角形的三角形的三角形,,分别以分别以分别以分别以 ab,bc,ca,,为边为边为边为边,,向三角形外侧做正三角形向三角形外侧做正三角形向三角形外侧做正三角形向三角形外侧做正三角形abc1,acb1,bca1,然后连接然后连接然后连接然后连接aa1,bb1,cc1,则三线交于一点则三线交于一点则三线交于一点则三线交于一点p,则点则点则点则点p就

是所求的费马点就是所求的费马点就是所求的费马点就是所求的费马点..若三角形有一内角大于或等于若三角形有一内角大于或等于若三角形有一内角大于或等于若三角形有一内角大于或等于120度度度度,则此钝角的顶点就是所求则此钝角的顶点就是所求则此钝角的顶点就是所求则此钝角的顶点就是所求.当当当当△△△△abc为等边三角形时为等边三角形时为等边三角形时为等边三角形时,此时外心与费马点重合此时外心与费马点重合此时外心与费马点重合此时外心与费马点重合 证明证明证明证明费马点对边的张角为120度。△cc1b和△aa1b中,bc=ba1,ba=bc1,∠cbc1=∠b+60度=∠aba1, △cc1b和△aa1b是全等三角形,得到∠pcb=∠pa1b 同理可得∠cbp=∠ca1p 由∠pa1b+∠ca1p=60度,得∠pcb+∠cbp=60度,所以∠cpb=120度 同理,∠apb=120度,∠apc=120度 pa+pb+pc=aa1 将△bpc以点b为旋转中心旋转60度与△bda1重合,连结pd,则

△pdb为等边三角形,所以∠bpd=60度 又∠bpa=120度,因此a、p、d三点在同一直线上,又∠apc=120度,所以a、p、d、a1四点在同一直线上,故pa+pb+pc=aa1。pa+pb+pc最短 在△abc内任意取一点m,连结am、bm、cm,将△bmc以点b为旋转中心旋转60度与△bga1重合,连结am、gm、a1g,则aa

1费马在光学方面,确立了几何光学的重要原理,命名为费马原理。这一原理是几何光学的最重要基本理论之一,对于笛卡儿的“光在密媒质中比在疏媒质中传播要快”的观点给予了有力的反驳,把几何光学的发展推向了新的阶段。

几何光学已有悠久的发展历史。公元前400年,我国《墨经》中便有光的直线传播和各种面镜对光的反射的记载。公元100年亚历山大里亚的希罗曾提出过光在两点之间走最短路程的看法。托勒密在公元130年对光的折射进行过研究。公元1611年开普勒对光学的研究达到了较高的定量程度。最后,1621

年斯涅尔总结出了光的折射定律。费马则是用数学方法证明了折射定律的主要学者之一。费马原理是根据经济原则提出的,它指出:光沿着所需时间为极值的路径传播。可以理解为,光在空间沿着光程为极值的路传播,即沿光程为最小、最大或常量路径传播。费马定理不但是正确的,同时它与光的反射定律和折射定律具有同等的意义。由于费马原理的确立,几何光学发展到了费马。费马是十七世纪最卓越的数学家之一,他在数学许多领域中都有极大的贡献,因为他的本行是专业的律师,为了表彰他的数学造诣,世人冠以“业余王子”之美称,在三百六十多年前的某一天,费马正在阅读一本古希腊数学家戴奥芬多斯的数学书时,突然心血来潮在书页的空白处,写下一个看起来很简单的定理这个定理的内容是有关一个方程式 xn + yn =zn的正整数解的问题,当n=2时就是我们所熟知的毕氏定理:x2 + y2 =z2,此处z表一直角形之斜边而x、y为其之

两股,也就是一个直角三角形之斜边的平方等於它的两股的平方和,这个方程式当然有整数解,例如:x=

3、y=

4、z=5;x=

6、y=

8、z=10;x=

5、y=

12、z=13...等等。

费马声称当n>2时,就找不到满足xn +yn = zn的整数解,例如:方程式x3 +y3=z3就无法找到整数解。

当时费马并没有说明原因,他只是留下这个叙述并且也说他已经发现这个定理的证明妙法,只是书页的空白处不够无法写下。始作俑者的费马也因此留下了千古的难题,三百多年来无数的数学家尝试要去解决这个难题却都徒劳无功。这个号称世纪难题的费马最後定理也就成了数

学界的心头大患,极欲解之而後快。

十九世纪时法国的法兰西斯数学院曾经在一八一五年和一八六0年两度悬赏金质奖章和三百法郎给任何解决此一难题的人,可惜都没有人能够领到奖

赏。德国的数学家佛尔夫斯克尔在1908年提供十万马克,给能够证明费马最後定理是正确的人,有效期间为100年。其间由於经济大萧条的原因,此笔奖额已贬值至七千五百马克,虽然如此仍然吸引不少的“数学痴”。

二十世纪电脑发展以後,许多数学家用电脑计算可以证明这个定理当n为很大时是成立的,1983年电脑专家斯洛文斯基借助电脑运行5782秒证明当n为286243-1时费马定理是正确的。

虽然如此,数学家还没有找到一个普遍性的证明。不过这个三百多年的数学悬案终於解决了,这个数学难题是由英国的数学家威利斯所解决。其实威利斯是利用二十世纪过去三十年来抽象数学发展的结果加以证明。

五○年代日本数学家谷山丰首先提出一个有关椭圆曲线的猜想,後来由另一位数学家志村五郎加以发扬光大,当时没有人认为这个猜想与费马定理有任何关联。在八○年代德国数学家佛列将

谷山丰的猜想与费马定理扯在一起,而威利斯所做的正是根据这个关联论证出一种形式的谷山丰猜想是正确的,进而推出费马最後定理也是正确的。这个结论由威利斯在1993年的6月21日於美国剑桥大学牛顿数学研究所的研讨会正式发表,这个报告马上震惊整个数学界,就是数学门墙外的社会大众

也寄以无限的关注。不过威利斯的证明马上被检验出有少许的瑕疵,於是威利斯与他的学生又花了十四个月的时间再加以修正。1994年9月19日他们终於交出完整无瑕的解答,数学界的梦魇终於结束。1997年6月,威利斯在德国哥庭根大学领取了佛尔夫斯克尔奖。当年的十万法克约为两百万美金,不过威利斯领到时,只值五万美金左右,但威利斯已经名列青史,永垂不朽了。

要证明费马最後定理是正确的

只需证 x4+ y4 = z4 和xp+ yp = zp,都没有整数解。附录:费马小传

费马是十七世纪最伟大的数学家

之一,1601年8月20日生於法国南部土鲁士附近的一个小镇,父亲是一个皮革商,1665年1月12日逝世。

费马在大学时专攻法律,学成後成为专业的律师,也曾经当过土鲁士议会议员。

费马是一位博览群书见广多闻的谆谆学者,精通数国语言,对於数学及物理也有浓厚的兴趣,是一位多采多艺的人。虽然他在近三十岁才开始认真专研数学,但是他对数学的贡献使他赢得业余王子之美称。这个头衔正足以表彰他在数学领域的一级成就,他在笛卡儿之前引进解析几何,而且在微积分的发展上有重大的贡献,尤其为人称道的是费马和巴斯卡被公认是机率论的先驱。然而人们所津津乐道的则是他在数论上的一些杰作,例如费马定

理:apº a,对任意整数a及质数p均成立。这个定理第一次出现於1640年的一封信中,此定理的证明後来由欧拉发表。费马为人非常谦虚、不尚

名利,生前很少发表论文,他大部分的作品都见诸於与友人之间的信件和私人的札记,但通常都未附证明。最有名的就是俗称的费马最后定理,费马天生的直觉实在是异常敏锐,他所断言的其他定理,後来都陆续被人证出来。有先见之明的费马实在是数学史上的一大奇葩

心灵的房间

心灵的房间,不打扫就会落满灰尘。蒙尘的心,会变得灰色和迷茫。我们每天都要经历很多事情,开心的,不开心的,都在心里安家落户。心里的事情一多,就会变得杂乱无序,然后心也跟着乱起来。有些痛苦的情绪和不愉快的记忆,如果充斥在心里,就会使人委靡不振。所以,扫地除尘,能够使黯然的心变得亮堂;把事情理清楚,才能告别烦乱;把一些无谓的痛苦扔掉,快乐就有了更多更大的空间。

浙江金华白龙桥实验小学三年级:郑志豪80

我的房间

我们每个人都有自己的一个小房间,我也是,我把它称为是我的小天地,我非常喜欢它,它给我带来了无限的快乐,接下来,我便大家介绍一下吧!打开门,走进我的房间,首先映入眼帘的是我那张暖和又舒适的床,花儿有绿的、红的、黄的、还有草地的青翠,这便是床单和被子的颜色,活泼动感的色彩搭配,绝对是家中一道亮丽的风景。床的左边是一个大衣柜,里面的衣服静静地挂着,也没什么新鲜的。床的右边是一张象牙白的写字台;上面放着一个银灰色的小台灯,我在晚上用它来照明、看书、写作业;在它的旁边还放着一个很漂亮的功夫熊猫玩具和一个红色的闹钟,它每天早上都会准时的叫我起床,使我不得不从美梦中醒来,再往它的旁边看,你就会发现一个相当可爱的笔筒,它是米奇的形状,笔筒放了一袋圆珠笔管、两个中性笔壳、一只可擦水笔,一只2b铅笔。还有削笔器、计算器等等。有桌子当然也有椅子,那是一把粉红色 的椅子,写字台的右边是一整面四扇明亮的落地窗,它被一个落地窗帘罩住了,窗帘上有一片片五颜六色的叶子,在炎热的夏天,我看着窗帘就会想到秋天,那一片片的叶子,似乎让我感觉到一阵阵秋风的凉意,心情便不再浮躁,而是变得十分宁静的。特别是冬天,每当清晨太阳就会透过落地窗照射进房间里,使我觉得暖洋洋的。床的正对面是一张长方形的原木电视矮柜,上面摆放着一台48英寸等离子高清电视,每到周末,它便是我的“忠实好友”,它能带领我进入更精彩的世界,纵观世间趣闻。左边是一个胡桃木五层的书柜。上面是妈妈的书,大部份是一些养生,医学,保健的书,而下面则是我的“私人财产”书柜里装着欢我平时最喜看的书。什么课外阅读、订阅的书刊,窗边的小豆豆,查理与大玻璃升降机、十万个为什么??真是琳琅满目,令人眼花缭乱。尽管数量很多,他们还是按高矮个摆放得很整齐。它用其独特的魅力,把我引入知识的海

洋。书柜的正上方是一台美的空调,在炎热的夏天,开启空调,会感到很凉爽;在寒冷的冬天,开启空调,会感到好温暖。好舒服。空调的功能真不错!我房间的白墙上有我小时侯的涂鸦作品。嘻嘻~在我房间的顶上有一盏太阳图案的大吊灯,它总能让我进入甜甜的梦乡。

这就是我的房间,可爱、漂亮、我爱我的房间!更爱我的爸爸妈妈,是他们给予我这珍贵的、温馨的房间。

福建福州鼓楼区井大小学四年级:梦想天空

第五篇:费马大定理的启示

“费马大定理”的启示

“设想你进入大厦的第一间房子,里面很黑,一片漆黑,你在家具之间跌跌撞撞,但是你搞清楚了每一件家具所在的位置,最后你经过6个月或者再长些的时间,你找到了开关,拉开了灯,突然整个房间充满光明,你能确切地明白你身在何处。然后,你又进入下一个房间,又在黑暗中摸索了6个月。因此每一次这样的突破,尽管有的时候只是一瞬间的事,有时候是一两天的时间,但它们实际上是之前许多个月在黑暗中跌跌撞撞的最终结果,没有前面的这一切它们是不可能出现的”——1996年3月,维尔斯因证明费马大定理获得沃尔夫奖

作为一个数学老师,数学是大多数学生讨厌的学科,而我们教师更多的只是告诉、教会学生就这么用,就这么做。怎么才能让学生不那么讨厌数学呢?我想应该从尊重数学开始。

当我第二次翻看《明朝那些事》时,我不禁又一次感慨:历史原来可以这样写?历史就应该这样写。本着这样的思维,在严谨的数学叙事中加上事件节点人物的历史,可能更有意思一些,最起码,让学生喜欢读,读的有趣味。从而使学生明白伟大的数学家是怎么影响整个世界的。尊重应该从这里开始。

这个念头一直萦绕脑海,直到我无意中打开选修3-1,才鼓舞起余勇,翻找资料,以费马大定理为主线说说几千年来数学家们前仆后继的历史。

222xyz

首先,我们来看一个公式:。

有人说:“这不就是勾股定理吗?直角三角形的两条直角边的平方等于斜边的平方。谁不知道?”

没错我们中国人知道勾股定理十分久远,公元前1100年,西周开国时期,周公与商高讨论测量时,商高就提到过“勾广三,股修四。径隅五”。这段话被记载于《周脾算经》中。而西方记载勾股定理的是哥伦比亚大学图书馆的泥版“普林顿322”大约公元前1900~公元前1600年的事。

但是中国人说的数学严格的说,应该叫算学。我国古代就有丰富的数学典籍注1,但是你看这些书籍的章节结构,就不难看出它鲜明的特点——实用。比如:《九章》中的方田、粟米、差分、少广、商功、均输等,就字面意思也能看出它就是为了解决实际问题。

我们中国就是一个实用的民族,就比如勾股定理,你拿去用就可以,不用计较为什么这样,这也就是为什么我们的典籍中很少有公理和定律的原因了。所以在世界主流数学史中,我国数学家是没有太多地位的,说起这个就不得不说有一个让国人气愤的事情,1972年,美国数学史家莫里斯·克莱因的《古今数学思想》注2序言里有这么一段话:“为了不让本书内容漫无目的的铺张,所以有些民族的数学我们就自动忽略了,如:日本、玛雅、中国。”他还说:“他们的数学对世界人类的主流思想是没有什么贡献的。”很让人不服气的说法,但是你回到数学历史的主流,不难发现我国的算学,跟世界主流数学的目的就不一样。

言归正传,我们回到古希腊。说道古希腊,就不得不提一个人——毕达哥拉斯。我们引以为豪的勾股定理,在初中的课本中也是用的毕达哥拉斯定理来引入的。毕达哥拉斯定理和勾股定理的区别就在于他们要证明这个结论。从这里你就可以发现东西方数学的区别,西方数学史这种死心眼般的研究精神,完全就是一种剔除了理性的宗教迷狂,是一种不出于实用的目的完全的智力上的比拼竞赛。就是佛教里的“贪嗔痴”!比如那些著名的数学问题:“四色问题”,不就是四种颜色就可以区分出复杂地图的行政区域么,放在我国,知道了就可以,但是在西方就一定要搞清楚为什么?还有“哥德堡七桥问题”,就是不重复的走过七座桥,对中国人来说我们讲究的是说走就走的旅行,神经病才研究这个,有这功夫,走两遍不就观光了吗?这就是实用主义和智力竞赛之间的区别。从一开始就分道扬镳了。

毕达哥拉斯就是前文那个公式的发现者。毕达哥拉斯(约公元前580~约前500)古希腊数学家、哲学家。他的信徒们组成了一个唯心主义学派——毕达哥拉斯学派。这个政治和宗教团体旨在用“数”去描述世间一切,他们从数学中感受到了整个世间那种美妙,他们认为数就是世界的规律。这也难怪,没有手机食物单调,娱乐空乏的年代,人们尤其是那些高智商圣贤智力充裕的人们找到了这个世界上让他兴奋的事情——从事“数”的研究,他的门徒们发现原来世间一切,上帝就是通过“数”来统治世界的。比如:音乐,和音好听,是因为一根弦是另一根弦的整数倍。凡此种种,这不就是天神的暗示么,我们就应该在数中生活啊,我们的一切包括生命就应该奉献、祭祀给这些数。公正的说这个学派早期它推动了数学研究发扬了这种精神,但后期也阻碍了数学的发展,著名的数学史上“第一次数学危机”就是又这个学派成员西帕索斯发现了2,从而颠覆了毕达哥拉斯学派的数学信仰,因为毕达哥拉斯终生的信仰就是,世间一切都是由整数构成,小数是两个整数的比,而西帕索斯发现一个问题:当x=y=1时,z等于什么?现在的初中生都知道是2。,而根据那个时候的数系,这推翻了毕达哥拉斯的世界理论依据。因为根号2是一个无限不循环小数,无法被两个整数表示。我们来证明根号2永远不能化成分数即可。这里又要用到反证法(高中数学课本有证明过程我复制了一下),我们先假设√2=a/b(a,b都是正整数不用说了吧)。现在,我们平方一次,a^2/b^2=2,于是,a^2=2*(b^2),这样一看,a^2就是偶数了,那么,a必然也是偶数。那就设a=2m吧,(2m)^2=2*(b^2),4*(m^2)=2*(b^2),b^2=2*(m^2),再一看,b也成偶数了,好吧,设为2n。现在问题来了,根号2不仅可以化成a/b,还可以化成m/n,而且,后者更简洁。按照同样的方法,可以一直化简下去,而分数必然存在最简形式,不可能无限化简,于是得出矛盾。所以,根号2永远不能化成分数。毕达哥拉斯最后没有办法解决,就像坚持日心说的布鲁诺一样西帕索斯本人也就被同门扔到河里杀害。此后30年数系才进一步扩充到了实数领域。

考虑到希腊文明的数学挺牛的,而这个毕达哥拉斯还不够牛,只是名气比较大而已,所以,我们得让古希腊人多出场几位。接下来,我可以推荐两个与费马大定理有关的重量级人物。

一个是欧几里得,欧几里得最大的贡献体现在几何学,最牛的著作叫《几何原本》。不过,他也有很多数论成就,所以,在费马大定理的故事中,他的名字会反复出现,根号2是无理数是他第一个证的,有无穷多个素数是他第一个证的,算术基本定理也是他第一个证的。罗胖不是提到“比如说我们学平面几何都知道,由那么简单的几个公理,居然可以推出如此缤纷的一个定理的世界”,第一个系统性(这个系统太牛逼了)地干这个事情的人就是欧几里得。至于那么简单的公理到底是几个?这个是有数字的,23个定义,5条公理,5条公设,这是所有推导的基础。当然,《几何原本》也有一些不严谨的地方,却仍然笑傲江湖两千年,直到希尔伯特写出《几何基础》,才算彻底完善了欧几里得几何。不过,欧几里得还是给后人挖了一个坑,就是他的第五公设比较啰嗦,怎么看都不像一个公理而像一个定理。于是,无所牛人前赴后继去证明这个东西,却发现,所有宣称证明了第五公设的人,其证明都陷入了循环论证的陷阱中,换句话说,证来证去只是它自己不同的变形而已。这个第五公设真正的问题在哪里呢?很简单,欧几里得几何叫平面几何,这个第五公设只在平面几何中成立,而别的公理或公设却都是具有普遍适用性的。修改一下第五公设,别的公理不变,非欧几何就诞生了。事实上,非欧几何遇到的最大障碍不是数学家解决这个问题的水平不够,而是来自传统观念的压力。高斯早就研究过非欧几何,但迟迟不敢发表,因为担心遭受各种攻击。还有一个波尔约,研究非欧几何成就斐然,可惜被高斯一盆凉水浇灭了激情。再一个就是罗巴切夫斯基,名气最大的非欧几何创始人,生前遭受各种打击,仍不屈不挠传播罗氏几何,死后多年才被承认,被赞誉为“几何学中的哥白尼”。这三个人不约而同地研究了非欧几何中的双曲几何情形,却留下一种椭圆几何情形,让黎曼捡了个漏。不过,黎曼搞定这种情形可不是凭运气,他从思路上就领先其他人了,其他人都是从公理系统出发研究,黎曼手握微分几何之武器直接玩起了曲率,不仅补充了椭圆几何的情形,还一举统一了欧氏平面几何、罗氏双曲几何和他的椭圆几何。这种牛逼人的牛逼事儿讲起来还是蛮有意思的。

好啦,下一个古希腊人,丢番图。欧几里得写了本《几何原本》,成了几何学的一代宗师,丢番图写了本《算术》,也是数论中的经典之作,他本人也荣登“代数学之父”的宝座。他提出的丢番图方程让无数后人为之奋斗,至今仍有大量问题未能解决。《算术》是本好书,费马有空就抱着读,费马大定理就是读《算术》的心得。

按照时间顺序,下一个该费马出场了。费马这辈子活得可是够值了。官场得意、婚姻美满、家庭幸福、子女争气,更牛逼的是,一个业余爱好让他名垂青史。读读别的数学家的故事,贫困、疾病、家庭不幸,还是来自同行的打击,各种问题层出不穷,简直就是“天才多磨难”,而费马的小日子,滋润得让人嫉妒。而且,费马这人不像同行那么玩命死磕,不就一业余爱好嘛,玩票心态就好了。结果,很多灵感嗖嗖地冒出来,挡都挡不住。后来人们一总结,这家伙比很多职业数学家成就还大:解析几何的发明者之一,对于微积分诞生的贡献仅次于牛顿和莱布尼茨,概率论的主要创始人之一,以及17世纪数论界第一人。不过,费马还是干了一件不厚道的事儿,就是在费马大定理的问题上,他宣称自己有了一个美妙的证法,就是不说,害得数学家们为之死磕了三百多年。

接下来,该欧拉上场了。欧拉是有史以来最多产的数学家,虽然眼睛不好使,但心算能力却是一流,简直是一台人体计算机。成就太多太多,就只好省略了。我们知道几件事就够了。欧拉无比牛逼,却仅仅证明了费马大定理n=3的情形,说明费马大定理真的很难。此外,罗胖提到哥德堡七桥问题,想说明西方人这种琢磨精神和中国人不同,其实,这个论据不充分,论点也不对,中国人也搞出了很多孤立的趣题和难题,这一点,东西方人是相似的。区别在哪儿呢?区别在于西方有欧拉这种数学家,他不是搞明白一个孤立问题就完事儿啦,而是由此出发,上升到理论高度,圆满地解决一类问题,更牛逼的是,一群数学家马上跟进,搞出更多东西,直到形成系统仍在推进,这就是我一直强调的数理系统的可怕之处。其实,这个哥德堡七桥问题本质上就是一笔画问题,中国人恰好也研究过,但中国人只是把它当成一种游戏,从来没想过要搞出一个数学分支。而到了西方人那里,“七桥问题”的研究是图论研究的开端,同时也为拓扑学的起源。顺便说下,“四色问题”和“七桥问题”是同类问题,属于图论,也可以看成拓扑学问题。别看“七桥问题”被欧拉轻松搞定,这个“四色问题”看似简单,却是一道难度绝不亚于费马大定理的难题。爱因斯坦的老师闵可夫斯基就曾经在学生面前夸下海口要证明之,结果失败只好放弃。最后,这个证明是依靠计算机完成的,虽然计算机的证明无法核对,这让很多数学家很不爽,但是,这提供了证明问题的新思路,也标志着计算机将在数学世界中发挥更大的作用,你能说,这种问题的研究没有意义吗?更何况,在证明的过程中,虽然多次失败,数学家们得到的东西可比问题本身多得多,这正是证明难题的意义,它会催生出很多宝贝,从而进一步完善数理体系。

下一个,该讲高斯了。高斯的贡献就不说了,这种神级人物,有多大贡献都是正常的,我讲讲他的两个毛病吧。第一个,就是研究问题时,只发表成熟而完善的证明,却不让别人捕捉到他的证明思路的蛛丝马迹。这非常不好,他的思路会给别人很多启发,反而是证明步骤,可利用价值低多了。另一个就是,高斯本人很牛逼,可是,却没干过什么提携后生的事情,反而不利于别人成长。也不是说他故意打击人家,就是别人觉得他牛逼,想请他指点一二时,他要么压根儿不理睬,要么冷冰冰的。前文提到的阿贝尔,其成果寄给高斯看,让高斯给扔了,伽罗华临死前写的东西也没忘给高斯寄一份儿,估计高斯也没看,波尔约(这次可是他朋友的儿子)研究非欧几何的成果,想得到他的支持,他说自己早就研究过了,波尔约于是心灰意冷。当然,高斯虽然有缺点,但他由于过于牛逼,世人赞扬崇拜唯恐不及,缺点也就没人计较了。

伽罗华肯定也是要谈的,但是,前面讲的伽罗华的故事太多了,这里不再赘述。就说一点,有人认为伽罗华是一个好色之徒,这是不公平的。一来,他是法国人,他只是做了一个正常法国男人会做的事情;二来,他也没有到处沾花惹草;三来,这件事本身就可能是一个圈套,作为一个激进的共和派青年,政府早就想把他弄死。说到底,伽罗华是一个数学天才,但运气不好,他之所以政治上这么激进,也是数学方面处处碰壁郁闷无处发泄造成的。当然了,伽罗华的悲剧也有自身缺点,就是写东西太简洁,年轻人容易浮躁,天才更是年少轻狂,思想本来就已经非常超前了,又不表述清楚,那些前辈们怎么会认真看呢?

前面提到的这些人都是大神,年轻时就很牛逼,然后牛逼了一辈子(虽然有的人一辈子也很短)。事实上,数学这个东西,最牛逼的思想往往是年轻人创立的,年长者只能为数学大厦添个砖加个瓦,却很少再有开山之举。一个数学家,如果到三十岁还没搞出什么成就,这辈子基本上就这样了。所以,数学界的最高奖菲尔兹奖只发给40岁以下的人,放宽到40岁,已经把各种意外都考虑进去了,可是,怀尔斯却是意外中的意外。他年轻时实在不够牛逼,三十多岁还在埋头苦干,到了四十岁却一举成名。我想,与其把怀尔斯的故事看成一个牛逼数学家的创奇,不如看成一个老屌丝逆袭的励志故事。都说数学家成名要趁早,比如他的同行陶哲轩同学,人家7岁进高中,9岁进大学,10岁、11岁、12岁参加国际数学奥林匹克竞赛分别拿下铜奖、银奖、金奖,20岁获得博士学位,24岁当教授,31岁时拿下菲尔兹奖。而31岁的怀尔斯在干嘛,默默无闻。混到33岁时,怀尔斯终于决定要干点什么了,命运也正好给了他一个机会。1985年,德国数学家格哈德·弗赖指出了谷山-志村猜想和费马大定理之间的关系,1986年,美国数学家里贝特证明了这一命题。怀尔斯意识到自己的机会来啦,费马大定理绕了一大圈,竟然和自己现在最擅长的领域椭圆曲线有关,必须赌一把了。于是,怀尔斯开始了长达七年的闭关修炼,当然了,修炼的时候还得偶尔放放风,因为之前不够牛,教授的位置不牢固,不发表论文会下岗的。修炼的过程前面讲过,就不说了,总之,博采众家之长,功力大大加深,七年之后出山,一举震动江湖。但是,数学家对待证明的态度是非常严谨的,数学证明一旦通过就永远正确,他们必须对后人负责,所以,怀尔斯的论文需要经过严格审查。六个顶级数学家开始对怀尔斯天书般的论文进行漫长的死磕,终于有一天,一个叫尼克·凯兹的发现了漏洞。说来也巧,当初怀尔斯论文发表前,想找个人内测一下,找的就是尼克·凯兹,那个时候,这哥们儿没发现问题,这都公开了,却揪出问题了,这让怀尔斯情何以堪:你丫是不是在逗我?事实上,这是个大问题,足以破坏怀尔斯的证明。至此,怀尔斯逆袭受挫,如果漏洞不能修复,不会有人为费马大定理的证明道路上多一个失败者而惋惜。好在这时怀尔斯已经混成了终身教授,不用担心下岗的风险了,宅在家里好好研究就行了。这次,他还找了一个助手,叫泰勒,这人是他之前的学生,一个牛逼而又值得信任的人,又经过将近一年的奋斗,终于填补了漏洞且简化了证明。怀尔斯一跃成为武林泰斗,这一次,地位无人撼动。接下来,我们要给怀尔斯几句颁奖词:他不一定是最聪明的,也不一定有着耀眼头衔,但一定以科学为生命,一定坚韧、谦和并一步一个脚印向前走。在这里,我还要提一下两个人:谷山丰和志村五郎。志村五郎是一个勤奋的人,很多地方和怀尔斯气质很像,而谷山丰,是一个真正的天才。谷山-志村猜想是费马大定理证明过程中最重要的一环,可是,在怀尔斯享受各种荣誉的时候,却很少有人愿意提及他们(虽然谷山丰在30多年前就自杀了,但志村五郎还在)。数学的世界,有时候,也是只认成功者。讲这件事,也是提醒大家:在费马大定理的故事中,怀尔斯不是唯一的主角,无数人为之奋斗过,他们甘为基石,他们也是英雄。

费马大定理的故事,至此终于可以结束了。

回顾人类解开宇宙奥秘的各个节点,探得进化论,主要靠达尔文;揭示力学原理,主要靠牛顿;艰深的相对论,可能有许多天才不懂,但创建它,也全凭一个爱因斯坦。发现元素周期律,创建精神分析理论,还有宇宙大爆炸、DNA分子结构模型……都只有一个两个人。唯独这个中学生都能看懂的费马大定理,各路英雄好汉,有的退避三舍,有的自愧无力,有的倾尽其力也只抓上一鳞半爪,连万能的计算机也无可奈何。但是,我们不仅仅要看到它的困难,更要看到困难背后的意义,费马大定理是一只“会下金蛋的鹅”(希尔伯特语):因为它,扩展了“无穷递降法”和虚数的应用;催生出库默尔的“理想数论”;促成了莫德尔猜想、谷山--志村猜想得证;拓展了群论的应用;加深了椭圆方程的研究;找到了微分几何在数论上的生长点;发现了伊利瓦金—弗莱切方法与伊娃沙娃理论的结合点;推动了数学的整体发展和研究……费马大定理催生出一批又一批重量级数学家,这是货真价实的事实,也是真正的厉害之处。“一个民族有一些关注天空的人,他们才有希望;一个民族只是关心脚下的事情,那是没有未来的。”

注1我国古代就有丰富的数学典籍,如:前文中的《周脾算经》、东汉末年比美《几何原本》的《九章算术》、公元400年的数学入门读物《孙子算经》,而盛唐时的李淳风,就是那个有名的“推背图”的道学家,他在算学馆整理编注了著名的《算学十书》虽然水平很次,没能培养出什么像样的数学家,但不可否认对盛唐的商业和天文历法有积极推动作用,此后各种不提,直到共济会的利玛窦和我国的徐光启共同翻译了《几何原本》等海外著作。但奇怪的是中国的数学新著往往都出现在乱世和盛世。数学家也星光璀璨,如:祖冲之,秦九韶,刘徽、杨辉,等。

注2《古今数学思想》不仅在科学界,在整个学术文化界都广泛、持久的影响。

下载费马点(推荐5篇)word格式文档
下载费马点(推荐5篇).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    大学马原论矛盾的特点

    矛盾的特点 一、含义: 矛盾是反映是事物内部与事物之间的对立统一关系的哲学范畴,简而言之,矛盾就是对立统一。唯物辩证法的矛盾是指事物内部各方面既相互对立、相互排斥又相互......

    李克强给马云点赞

    李克强给马云点赞:把你请来就代表着 我们的信任 2013年11月07日 07:43 中国青年报 我有话说(2,700人参与) 李克强给马云“点赞” 本报记者 陈璐 “你们创造了一个消费时点!”1......

    点马厂小学安全责任书

    点马厂小学安全责任书 为贯彻国家、省、市关于加强安全工作一系列重要指示精神,从讲政治、促发展、保稳定的高度进一步落实“安全第一,预防为主”的方针,切实加强学校的安全管......

    2016考研数学 费马定理5篇

    考研交流学习群【198233974】 对于中值定理这部分的学习,很多同学都感到很困惑。然而中值定理又是我们考研数学中的难点,这部分的试题灵活性,综合性比较强,对考生的思维要求比......

    证明费马大定理的故事

    解答数学“大问题”——证明费马大定理的故事 为了寻求费马大定理的解答,三个多世纪以来,一代又一代的数学家们前赴后继,却壮志未酬。1995年,美国普林斯顿大学的安德鲁·怀尔......

    费马最后定理的历史过程

    数学与统计学院1007班廖亚平 被公认执世界报纸牛耳地位地位的纽约时报於1993年6月24日在其一版头题刊登了一则有关数学难题得以解决的消息,那则消息的标题是“在陈年数学困局......

    《费马大定理-谜题的破解》

    《费马大定理-谜题的破解》这个定理,本来又称费马最后定理,由17世纪法国数学家费马提出,而当时人们称之为“定理”,并不是真的相信费马已经证明了它。虽然费马宣称他已找到一个......

    费马大定律读后感(样例5)

    费马大定律读后感真是难以想象,很多现在看起来高深的学科,最开始都不是什么专家型的人物奠定了深厚的基础。而数字是如此有趣,那些书本中学习过的公式和定理原来后面都有那么多......