2010年高考数学几何证明试题分类解析(教师版)范文大全

时间:2019-05-15 07:58:58下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《2010年高考数学几何证明试题分类解析(教师版)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《2010年高考数学几何证明试题分类解析(教师版)》。

第一篇:2010年高考数学几何证明试题分类解析(教师版)

2010年高考数学几何证明试题分类解析

1、(2010陕西文数)15.(几何证明选做题)如图,已知Rt△ABC的两条直角边AC,BC的长分别为3cm,4cm,以AC为直径的圆与AB交于点D,则BD=

解析:CDAB,由直角三角形射影定理可得 16cm.5BC2BDBA,又BC4,BA5,所以BD16 52、(2010北京理数)(12)如图,O的弦ED,CB的延长线交于

点A。若BDAE,AB=4, BC=2, AD=3,则DE=;

CE=。

答案:

53、(2010天津文数)(11)如图,四边形ABCD是圆O的内接四边形,延长AB和DC相交于点P。若PB=1,PD=3,则

【答案】BC的值为。AD1

3【解析】本题主要考查四点共圆的性质与相似三角形的性

质,属于容易题。

因为A,B,C,D四点共圆,所以DABPCB,CDAPBC,因为P为公共角,所以 ⊿PBC∽⊿PAB,所以BCPB1== ADPD3

【温馨提示】四点共圆时四边形对角互补,圆与三角形综合问题是高考中平面几何选讲的重要内容,也是考查的热点。

4、(2010天津理数)(14)如图,四边形ABCD是圆O的内接四边形,延长AB和DC相交于点P,若PB1PC1BC=,=,则的值为。

PA2PD3AD

【解析】本题主要考查四点共圆的性质与相似三角

形的性质,属于中等题。

因为A,B,C,D四点共圆,所以DABPCB,CDAPBC,因为P为公共角,所以

⊿PBC∽⊿PAB,所以PBPCBCxy.设OB=x,PC=y,则有,所以x

PDPAAD3y2xBCx AD3y65、(2010广东理数)

14、(几何证明选讲选做题)如图3,AB,CD是半径为a的圆O的两条弦,它们相交于AB的中点P,PD=2a,∠OAP=30°,则CP=______.9 14.a.因为点P是AB的中点,由垂径定理知,OPAB.8

在RtOPA中,BPAPacos30.由相交线定理知,2BPAPCPDP92CPa,所以CPa. 836、(2010广东文数)14.(几何证明选讲选做题)如图3,在直角梯形ABCD中,DC∥AB,CBAB,AB=AD=a,CD=

点E,F分别为线段AB,AD的中点,则EF= a, 2a

2解:连结DE,可知AED为直角三角形。则EF是RtDEA斜

边上的中线,等于斜边的一半,为a.27、(2010辽宁理数)(22)(本小题满分10分)选修4-1:几何证明选讲

如图,ABC的角平分线AD的延长线交它的外接圆于点E

ADC(I)证明:ABE

(II)若ABC的面积S1ADAE,求BAC的大小。

2证明:

(Ⅰ)由已知条件,可得BAECAD

B因为AE与

AEB=ACD AC是同弧上的圆周角,所以

故△ABE∽△ADC.……5分

ABAD,即AB·AC=AD·AE.AEAC

11又S=AB·ACsinBAC,且S=AD·AE,故AB·ACsinBAC= AD·AE.22

则sinBAC=1,又BAC为三角形内角,所以BAC=90°.……10分(Ⅱ)因为△ABE∽△ADC,所以

8、(2010江苏卷)21.选修4-1:几何证明选讲(本小题满分10分)AB是圆O的直径,D为圆O上一点,过D作圆O的切线交AB延长线于点C,若DA=DC,求证:AB=2BC。

[解析] 本题主要考查三角形、圆的有关知识,考查推理论证能力。

(方法一)证明:连结OD,则:OD⊥DC,又OA=OD,DA=DC,所以∠DAO=∠ODA=∠DCO,∠DOC=∠DAO+∠ODA=2∠DCO,所以∠DCO=300,∠DOC=600,所以OC=2OD,即OB=BC=OD=OA,所以AB=2BC。

(方法二)证明:连结OD、BD。

因为AB是圆O的直径,所以∠ADB=900,AB=2 OB。

因为DC 是圆O的切线,所以∠CDO=900。

又因为DA=DC,所以∠DAC=∠DCA,于是△ADB≌△CDO,从而AB=CO。

即2OB=OB+BC,得OB=BC。

故AB=2BC。

第二篇:2010年高考数学几何证明试题分类解析(学生版)

2010年高考数学几何证明试题分类解析

1、(2010陕西文数)15.(几何证明选做题)如图,已知Rt△ABC的两条直角边AC,BC的长分别为3cm,4cm,以AC为直径的圆与AB交于点D,则BD=cm.2、(2010北京理数)(12)如图,O的弦ED,CB的延长线交于点A。若BDAE,AB=4, BC=2, AD=3,则DE=;CE=。

3、(2010天津文数)(11)如图,四边形ABCD是圆O的内接四边形,延长AB和DC相交于点P。若PB=1,PD=3,则的值为。

4、(2010天津理数)(14)如图,四边形ABCD是圆

O的内接四边形,延长AB和DC相交于点P,若

PB

PA=1PC1BC,=,则的值为。2PD3ADBCAD5、(2010广东理数)

14、(几何证明选讲选做题)

如图3,AB,CD是半径为a的圆O的两条弦,它们

相交于AB的中点P,PD=2a

3,∠OAP=30°,则CP=______.6、(2010广东文数)14.(几何证明选

做题)如图3,在直角梯形ABCD中,DC∥AB,CBAB,AB=AD=a,CD=a

2,点E,F分别为线段AB,AD的中点,则EF=

7、(2010辽宁理数)(22)(本小题满分10分)选修4-1:几何证明选讲 如图,ABC的角平分线AD的延长线交它的外接圆于点E(I)证明:ABE

ADC

(II)若ABC的面积S12ADAE,求BAC的大小。

8、(2010江苏卷)21.选修4-1:几何证明选讲 AB是圆O的直径,D为圆O上一点,过D作圆O的切线交AB延长线于点C,若DA=DC,求证:AB=2BC。

第三篇:高二文科数学几何证明试题

高二文科数学几何证明试题

经典试题:

1.(2008梅州一模文)如图所示,在四边形ABCD中,EF//BC,FG//AD,则

EFBC+FG

AD

=.

2.(2008广州一模文、理)在平行四边形ABCD中,点E在边AB上,且AE:EB=1:2,DE与AC交于 点F,若△AEF的面积为6cm2,则△ABC的面积为 cm2.

3.(2007广州一模文、理)如图所示,圆O上

一点C在直径AB上的射影为D,CD=4,BD=8,则圆O的半径等于.

4.(2007深圳二模文)如图所示,从圆O外一点P

作圆O的割线PAB、PCD,AB是圆O的直径,若PA=4,PC=5,CD=3,则∠CBD=__

5.(2008广东文、理)已知PA是圆O的切线,切点为A,PA=2.AC是圆O的直径,PC与圆O交于点B,PB=1,则圆O的半径R=_______.6.(2007广东文、理)如图所示,圆O的直径

AB=6,C圆周上一点,BC=3,过C作圆的切线l,过A作l的垂线AD,AD分别与直线l、圆交于点

D、E,则∠DAC=,线段AE的长为

三、基础训练:

1.(2008韶关一模理)如图所示,PC切⊙O于 点C,割线PAB

经过圆心O,弦CD⊥AB于 点

E,PC=4,PB=8,则CD=________.2.(2008深圳调研文)如图所示,从圆O外一点A 引圆的切线AD和割线ABC,已知

AD= AC=6,圆O的半径为3,则圆心O到AC的距 离为________.3.(2008东莞调研文、理)如图所示,圆O上一

点C在直径AB上的射影为D,CD=4,BD=8,则圆O的半径等于.

D C

B

4.(2008韶关调研理)如图所示,圆O是 △ABC的外接圆,过点C的切线交AB的延长线于点D,CD=AB=BC=3.则BD的长______,AC的长_______.5.(2007韶关二模理)如图,⊙O′和 ⊙O相交于A和B,PQ切⊙O于P,交⊙O′于Q和M,交AB的延长线于N,MN=3,NQ=15,则 PN=______.

6.(2008广州二模文、理)如图所示, 圆的内接

△ABC的∠C的平分线CD延长后交圆于点E,连接BE,已知BD=3,CE=7,BC=5,则线段.N

7.(2007湛江一模文)如图,四边形ABCD内接

于⊙O,BC是直径,MN切⊙O于A,∠MAB=250,则∠D=___.8.(2007湛江一模理)如图,在△ABC中,D D

是AC的中点,E是BD的中点,AE交BC

BF=于F,则

FC

9.(2008惠州一模理)如图:EB、EC是⊙O的两 条切线,B、C是切点,A、D是⊙O上两点,如果∠E=460,∠DCF=320,则∠A的度数是.10.(2008汕头一模理)如图,AB是圆O

直线CE和圆O相切于点C,AD⊥CE于D,若AD=1,∠ABC=300,则圆O的面积是______.11.(2008佛山一模理)如图,AB、CD是圆O的两条弦,C

且AB是线段CD的中垂线,已知AB=6,CD=25,则线段AC的长度为

12.已知:如图,在梯形ABCD中,AD∥BC∥EF,E是AB的中点,EF交BD于G,交AC于H.若 AD=5,BC=7,则GH=________.13.如图,圆O上一点C在直径AB上的射影为D.C

B

AD=2,AC= 2,则AB=____

14.如图,PA是圆的切线,A为切点,PBC是圆的 割线,且PB=

1PABC,则的值是________.2PB

15.如图,⊙O的割线PAB交⊙O于A、B两点,割线

PCD经过圆心O,PE是⊙O的切线。已知PA=6,AB=7,PO=12,则PE=____O的半径是_______.3(2011)

(2011年佛山一模)16.如图,在ABC中,DE//BC,EF//CD,若BC3,DE2,DF1,则AB的长为___________. 17.(湛江市)如图,圆O上一点C在直径AB上的射影为D.AD2,AC2,则AB.

18(广州)如图3,四边形ABCD内接于⊙O,BC是直径,MN与⊙O相切, 切点为A,MAB35

则D.19(广州一模)CD是圆O的切线, 切点为C,点A、B在圆O上,BC1,BCD30,则圆O的面积为

A

O

C

B

D

320(韶关)如图,⊙O的半径R5,P是弦BC过P点作⊙O的切线,切点为A,若PC1,PA3,则圆心O到弦BC的距离是。

P

B的点,21(深圳)如图,AB是半圆O的直径,C是半圆O上异于A,CDAB,垂足为D,已知AD2,CBCD

22(肇庆一模)如图2,PC、DA为⊙O的 切线,A、C为切点,AB为⊙O的直径,若 DA=2,CDDP=12,则AB=

B

图2C

D

23(东莞)如图,⊙O的割线

PBA过

圆心O,弦CD交PA于点F,且COF∽PDF, PBOA2,则PF

24(惠州)如图,已知⊙O的割线PAB交⊙O于A,B 两点,割线PCD经过圆心,若PA=3,AB=4,PO=5 则⊙O的半径为_____________.25(江门)如图3,PT是圆O的切线,O

D A P

PAB是圆O的割线,若PT2,PA1,P60o,则圆O的半径r.

26((2007湛江一模理)如图1,在△ABC中,D是ACF 图

1BF

E是BD的中点,AE交BC于F,则FC

27(2010天津理科)如图2,四边形ABCD是圆O的内接四边形,延长AB和DC相交于点P。若则

PB1PC1

,,PA2PD

3图

2BC的值为。AD

28如图,在△ABC中,AB=AC,∠C=720,⊙O过A、B两点且 与BC相切于点B,与AC交于点D,连结BD,若BC=51, 则AC=

29如图:PA与圆O相切于A,PCB为圆O的割线,并且不过圆心O,O 

D

B

C

已知∠BPA=30,PA=PC=1,则圆O的半径等于.

B

第 28 题图

A30如图1所示,圆O的直径AB6,C为圆周上一点,BC3.

过C作圆的切线l,过A作l的垂线AD,AD分别与直线l、圆交于点D,E,则∠DAC,线段AE的长为.

A

图1

第四篇:中考数学几何证明、计算题及解析

1、如图,在梯形ABCD中,AB∥CD,∠BCD=90°,且AB=1,BC=2,tan∠ADC=2.(1)求证:DC=BC;

(2)E是梯形内一点,F是梯形外一点,且∠EDC=∠FBC,DE=BF,试判断△ECF的形状,并证明你的结论;

(3)在(2)的条件下,当BE:CE=1:2,∠BEC=135°时,求sin∠BFE的值.AB[解析](1)过A作DC的垂线AM交DC于M,则AM=BC=2.又tan∠ADC=2,所以DM

(2)等腰三角形.21.即DC=BC.2F

D

C证明:因为DEDF,EDCFBC,DCBC.所以,△DEC≌△BFC

所以,CECF,ECDBCF.所以,ECFBCFBCEECDBCEBCD90

即△ECF是等腰直角三角形.(3)设BEk,则CECF

2k,所以EF.因为BEC135,又CEF45,所以BEF90.所以BF3k 所以sinBFEk1.3k32、已知:如图,在□ABCD 中,E、F分别为边AB、CD的中点,BD是对角线,AG∥DB交CB的延长线于G.

(1)求证:△ADE≌△CBF;

(2)若四边形 BEDF是菱形,则四边形AGBD是什么特殊四边形?并证明你的结论.

[解析](1)∵四边形ABCD是平行四边形,∴∠1=∠C,AD=CB,AB=CD .

∵点E、F分别是AB、CD的中点,∴AE=11AB,CF=CD . 2

2∴AE=CF

∴△ADE≌△CBF .

(2)当四边形BEDF是菱形时,四边形 AGBD是矩形.

∵四边形ABCD是平行四边形,∴AD∥BC .

∵AG∥BD,∴四边形 AGBD 是平行四边形.

∵四边形 BEDF 是菱形,∴DE=BE . ∵AE=BE,∴AE=BE=DE .

∴∠1=∠2,∠3=∠4.

∵∠1+∠2+∠3+∠4=180°,∴2∠2+2∠3=180°. ∴∠2+∠3=90°. 即∠ADB=90°.∴四边形AGBD是矩形

3、如图13-1,一等腰直角三角尺GEF的两条直角边与正方形ABCD的两条边分别重合在一起.现正方形ABCD保持不动,将三角尺GEF绕斜边EF的中点O(点O也是BD中点)按顺时针方向旋转.

(1)如图13-2,当EF与AB相交于点M,GF与BD相交于点N时,通过观察或测量BM,FN的长度,猜想BM,FN满足的数量关系,并证明你的猜想;

(2)若三角尺GEF旋转到如图13-3所示的位置时,线段FE的延长线与AB的延长线相交于点M,线段

BD的延长线与GF的延长线相交于点N,此时,(1)中的猜想还成立吗?若成立,请证明;若不成立,请说明理由.

A(B(E)

图13-1 图13-

2图13-

3[解析](1)BM=FN.

证明:∵△GEF是等腰直角三角形,四边形ABCD是正方形,∴ ∠ABD =∠F =45°,OB = OF. 又∵∠BOM=∠FON,∴ △OBM≌△OFN . ∴ BM=FN.

(2)BM=FN仍然成立.

(3)证明:∵△GEF是等腰直角三角形,四边形ABCD是正方形,∴∠DBA=∠GFE=45°,OB=OF. ∴∠MBO=∠NFO=135°.

又∵∠MOB=∠NOF,∴ △OBM≌△OFN . ∴ BM=FN.

4、如图,已知⊙O的直径AB垂直于弦CD于E,连结AD、BD、OC、OD,且OD=5。

(1)若sin∠BAD,求CD的长;

5(2)若 ∠ADO:∠EDO=4:1,求扇形OAC(阴影部分)的面积(结果保留)。

[解析](1)因为AB是⊙O的直径,OD=5

所以∠ADB=90°,AB=10

BD

AB

3BD

3,所以BD6 又sin∠BAD,所以

5105

在Rt△ABD中,sin∠BAD

AD

AB2BD22628

因为∠ADB=90°,AB⊥CD

所以DE·ABAD·BD,CEDE 所以DE1086 所以DE5

485

所以CD2DE

(2)因为AB是⊙O的直径,AB⊥CD

所以CBBD,ACAD

所以∠BAD=∠CDB,∠AOC=∠AOD 因为AO=DO,所以∠BAD=∠ADO 所以∠CDB=∠ADO

设∠ADO=4x,则∠CDB=4x

由∠ADO:∠EDO=4:1,则∠EDO=x 因为∠ADO+∠EDO+∠EDB=90° 所以4x4xx90 所以x=10°

所以∠AOD=180°-(∠OAD+∠ADO)=100° 所以∠AOC=∠AOD=100°

⌒⌒⌒⌒

S扇形OAC

100125

52360185、如图,已知:C是以AB为直径的半圆O上一点,CH⊥AB于点H,直线AC与过B点的切线相交于点D,E为CH中点,连接AE并延长交BD于点F,直线CF交直线AB于点G.

(1)求证:点F是BD中点;(2)求证:CG是⊙O的切线;(3)若FB=FE=2,求⊙O的半径.

[解析](1)证明:∵CH⊥AB,DB⊥AB,∴△AEH∽AFB,△ACE∽△ADF

EHAECE,∵HE=EC,∴BF=FD



BFAFFD

(2)方法一:连接CB、OC,∵AB是直径,∴∠ACB=90°∵F是BD中点,∴∠BCF=∠CBF=90°-∠CBA=∠CAB=∠ACO ∴∠OCF=90°,∴CG是⊙O的切线---------6′

方法二:可证明△OCF≌△OBF(参照方法一标准得分)(3)解:由FC=FB=FE得:∠FCE=∠FEC可证得:FA=FG,且AB=BG由切割线定理得:(2+FG)2=BG×AG=2BG2○2 在Rt△BGF中,由勾股定理得:BG2=FG2-BF2 ○

1、○2得:FG2-4FG-12=0 由○

解之得:FG1=6,FG2=-2(舍去)

∴AB=BG=42 ∴⊙O半径为226、如图,已知O为原点,点A的坐标为(4,3),⊙A的半径为2.过A作直线l平行于x轴,点P在直线l上运动.(1)当点P在⊙O上时,请你直接写出它的坐标;

(2)设点P的横坐标为12,试判断直线OP与⊙A的位置关系,并说明理由.[解析]

解: ⑴点P的坐标是(2,3)或(6,3)

⑵作AC⊥OP,C为垂足.∵∠ACP=∠OBP=90,∠1=∠

1∴△ACP∽△OBP

ACAP

OBOP

AC 在RtOBP中,OP又AP=12-4=8,∴ 3∴

AC=241.9

4∵1.94<

2∴OP与⊙A相交.7、如图,延长⊙O的半径OA到B,使OA=AB,DE是圆的一条切线,E是切点,过点B作DE的垂线,垂足为点C.求证:∠ACB=

∠OAC.3O

A

B

[解析]

证明:连结OE、AE,并过点A作AF⊥DE于点F,(3分)

∵DE是圆的一条切线,E是切点,∴OE⊥DC,又∵BC⊥DE,∴OE∥AF∥BC.∴∠1=∠ACB,∠2=∠

3.∵OA=OE,∴∠4=∠3.∴∠4=∠2.又∵点A是OB的中点,∴点F是EC的中点.∴AE=AC.∴∠1=∠2.∴∠4=∠2=∠1.即∠ACB=

∠OAC.3

8、如图1,一架长4米的梯子AB斜靠在与地面OM垂直的墙壁ON上,梯子与地面的倾斜角α为60. ⑴求AO与BO的长;

⑵若梯子顶端A沿NO下滑,同时底端B沿OM向右滑行.①如图2,设A点下滑到C点,B点向右滑行到D点,并且AC:BD=2:3,试计算梯子顶端A沿NO下滑多少米;

②如图3,当A点下滑到A’点,B点向右滑行到B’点时,梯子AB的中点P也随之运动到P’点.若∠POP’= 15,试求AA’的长.

[解析]

⑴RtAOB中,∠O=90,∠α=60 ∴,∠OAB=30,又AB=4米,

AB2米

.2

OAABsin604.--------------(3分)

∴OB

⑵设AC2x,BD3x,在RtCOD中,OC2x,OD23x,CD4

根据勾股定理:OC2OD2CD2

∴2x

23x2

42-------------(5分)

∴13x2

12x0 ∵x0∴13x12830

∴x-------------(7分)

即梯子顶端A沿NO

.----(8分)

⑶∵点P和点P分别是RtAOB的斜边AB与RtA'OB'的斜边A'B'的中点∴PAPO,P'

A'P'O-------------(9分)∴PAOAOP,PAOAOP-------(10分)∴PAOPAOAOPAOP

∴PAOPAOPOP15

∵PAO30

∴PAO45

-----------------------(11分)

∴AOABcos45

4

分)

∴AAOAAO米.--------(13分)

第五篇:2013年高考数学试题分类:17几何证明(理)

2013年高考理科数学试题分类汇编:17几何证明

一、填空题

错误!未指定书签。.(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))

如图,在ABC中,C900, A60,AB20,过C作ABC的外接圆的切线0

CD,BDCD,BD与外接圆交于点E,则DE的长为

__________

【答案】

5错误!未指定书签。.(2013年普通高等学校招生统一考试天津数学(理)试题(含答案))

如图, △ABC为圆的内接三角形, BD为圆的弦, 且BD//AC.过点A 做圆的切线与DB的延长线交于点E, AD与BC交于点F.若AB = AC, AE = 6, BD = 5, 则线段CF的长为

______.【答案】8

3错误!未指定书签。.(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD

版))(几何证明选讲选做题)如图,AB是圆O的直径,点C在圆O上,延长BC到D使BCCD,过C作圆O的切线交AD于E.若AB6,ED2,则BC_________.E

第15题图

【答案】错误!未指定书签。.(2013年高考四川卷(理))设P1,P2,,Pn为平面内的n个点,在平面内的所有点中,若点P到P1,P2,,Pn点的距离之和最小,则称点P为P1,P2,,Pn点的一个“中位点”.例如,线段AB上的任意点都是端点A,B的中位点.则有下列命题:

① 若A,B,C三个点共线,C在线AB上,则C是A,B,C的中位点;

② ②直角三角形斜边的点是该直角三角形三个顶点的中位点;

③若四个点A,B,C,D共线,则它们的中位点存在且唯一;

④梯形对角线的交点是该梯形四个顶点的唯一中位点.其中的真命题是____________.(写出所有真命题的序号数学社区)

【答案】①④

错误!未指定书签。.(2013年高考陕西卷(理))B.(几何证明选做题)如图, 弦AB与

CD相交于O内一点E, 过E作BC的平行线与AD的延长线相交于点P.已知PD=2DA=2, 则PE=_____.【答案】6.错误!未指定书签。.(2013年高考湖南卷(理))如图2,的O中,弦AB,CD

相交于点P,PAPB

2,PD1,则圆心O到弦CD的距离为____________.【答案】3

2错误!未指定书签。.(2013年高考湖北卷(理))如图,圆O上一点C在直线AB上的射

影为D,点D在半径OC上的射影为E.若AB3AD,则CE的值为___________.EO

C

AB

第15题图

【答案】8

错误!未指定书签。.(2013年高考北京卷(理))如图,AB为圆O的直径,PA为圆O的切

线,PB与圆O相交于D.若PA=3,PD:DB9:16,则

PD=_________;AB=___________.【答案】

二、解答题

错误!未指定书签。.(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD

版含答案))选修4—1几何证明选讲:如图,CD为△ABC外接圆的切线,AB的延长线交直线CD于点D,E,F分别为弦AB与弦AC上的点,且9;45BCAEDCAF,B,E,F,C四点共圆.(Ⅰ)证明:CA是△ABC外接圆的直径;

(Ⅱ)若DBBEEA,求过B,E,F,C四点的圆的面积与△ABC外接圆面积的比值.【答案】

错误!未指定书签。.(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD版))

选修4-1:几何证明选讲

BC垂直于如图,AB为O直径,直线CD与O相切于E.AD垂直于CD于D,CD于C,EF,垂直于F,连接AE,BE.证明:

(I)FEBCEB;(II)EF2AD

BC.【答案】

错误!未指定书签。.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对

纯WORD版含附加题))A.[选修4-1:几何证明选讲]本小题满分10分.如图,AB和BC分别与圆O相切于点D,C,AC经过圆心O,且BC2OC

求证:AC

2AD

【答案】A证明:连接OD,∵AB与BC分别与圆O相切于点D与C

∴ADOACB900,又∵AA

∴RTADO~RTACB∴BCAC又∵BC=2OC=2OD∴AC=2ADODAD

错误!未指定书签。.(2013年高考新课标1(理))选修4—1:几何证明选讲如图,直线

AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于D.(Ⅰ)证明:DB=DC;

(Ⅱ)设圆的半径为1,BC=,延长CE交AB于点F,求△BCF外接圆的半径

.【答案】(Ⅰ)连结DE,交BC与点

G.由弦切角定理得,∠ABF=∠BCE,∵∠ABE=∠CBE,∴∠CBE=∠BCE,BE=CE,又∵DB⊥BE,∴DE是直径,∠DCE=90,由勾股定理可得DB=DC.(Ⅱ)由(Ⅰ)0

知,∠CDE=∠BDE,BD=DC,故DG是BC

o.o设DE中点为O,连结BO,则∠BOG=60,∠ABE=∠BCE=∠CBE=30,∴CF⊥BF,∴Rt△BCF.

下载2010年高考数学几何证明试题分类解析(教师版)范文大全word格式文档
下载2010年高考数学几何证明试题分类解析(教师版)范文大全.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    2013年全国高考理科数学试题分类:几何证明

    2013年全国高考理科数学试题分类汇编17:几何证明一、填空题错误!未指定书签。 .(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))如图,在ABC中,C90, A600,AB20,过C作ABC的......

    2012高考数学几何证明选讲

    几何证明选讲模块点晴一、知识精要值叫做相似比(或相似系数)。由于从定义出发判断两个三角形是否相似,需考虑6个元素,即三组对应角是否分别相等,三组对应边是否分别成比例,显然比......

    江苏2013届高三数学(文)试题分类: 几何证明选讲

    广东省13大市2013届高三上期末考数学文试题分类汇编几何证明选讲1、(东莞市2013届高三上学期期末)如图,四边形ABCD内接于O,AB为O的直径,直线MN切O于D,MDA60,则BCD. 答案:1502、(佛山市......

    2013年各省高考理科数学试题分类17:几何证明

    高考最前线,努力努力2013年各省高考理科数学试题分类17:几何证明一、填空题错误!未指定书签。 错误!未指定书签。 (2013年高考陕西卷(理))B. (几何证明选做题) 如图, 弦AB与CD相交于......

    高考理科数学试题分类17:几何证明(大全五篇)

    2013 年全国高考理科数学试题分类汇编 17:几何证明 一、填空题 1 . (2013 年普通高等学校招生统一考试重庆数学(理)试题(含答案) )如图, 在  ABC 中 , C  900 , A  600 , AB  20 ,过......

    2013年全国高考理科数学试题分类17:几何证明

    2013年全国高考理科数学试题分类汇编17:几何证明一、填空题1 .(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))如图,在00ABC中,C90,A60,AB20,过C作ABC的外接圆的切线CD,B......

    初二数学几何证明

    1.已知△ABC是等边三角形,D是BC边延长线上一点,以AD为边作等边三角形ADE。连接CE.求证:CE平分∠ACDEABCD2.已知:如图,AD是△ABC的角平分线,E是AB边上的一点,AE=AC,EF∥BC交AC于点F.......

    2012高考试题分类:推理和证明

    推理和证明1. 【2011江西高考理】观察下列各式:55=3 125,56=15 625,57=78 125,…,则52 011的末四位数字为A.3125B.5625C.0625D.8125 2. 【2012高考上海文】若Snsin个数是A、16B、72C......