第一篇:2010年高考数学几何证明试题分类解析(教师版)
2010年高考数学几何证明试题分类解析
1、(2010陕西文数)15.(几何证明选做题)如图,已知Rt△ABC的两条直角边AC,BC的长分别为3cm,4cm,以AC为直径的圆与AB交于点D,则BD=
解析:CDAB,由直角三角形射影定理可得 16cm.5BC2BDBA,又BC4,BA5,所以BD16 52、(2010北京理数)(12)如图,O的弦ED,CB的延长线交于
点A。若BDAE,AB=4, BC=2, AD=3,则DE=;
CE=。
答案:
53、(2010天津文数)(11)如图,四边形ABCD是圆O的内接四边形,延长AB和DC相交于点P。若PB=1,PD=3,则
【答案】BC的值为。AD1
3【解析】本题主要考查四点共圆的性质与相似三角形的性
质,属于容易题。
因为A,B,C,D四点共圆,所以DABPCB,CDAPBC,因为P为公共角,所以 ⊿PBC∽⊿PAB,所以BCPB1== ADPD3
【温馨提示】四点共圆时四边形对角互补,圆与三角形综合问题是高考中平面几何选讲的重要内容,也是考查的热点。
4、(2010天津理数)(14)如图,四边形ABCD是圆O的内接四边形,延长AB和DC相交于点P,若PB1PC1BC=,=,则的值为。
PA2PD3AD
【解析】本题主要考查四点共圆的性质与相似三角
形的性质,属于中等题。
因为A,B,C,D四点共圆,所以DABPCB,CDAPBC,因为P为公共角,所以
⊿PBC∽⊿PAB,所以PBPCBCxy.设OB=x,PC=y,则有,所以x
PDPAAD3y2xBCx AD3y65、(2010广东理数)
14、(几何证明选讲选做题)如图3,AB,CD是半径为a的圆O的两条弦,它们相交于AB的中点P,PD=2a,∠OAP=30°,则CP=______.9 14.a.因为点P是AB的中点,由垂径定理知,OPAB.8
在RtOPA中,BPAPacos30.由相交线定理知,2BPAPCPDP92CPa,所以CPa. 836、(2010广东文数)14.(几何证明选讲选做题)如图3,在直角梯形ABCD中,DC∥AB,CBAB,AB=AD=a,CD=
点E,F分别为线段AB,AD的中点,则EF= a, 2a
2解:连结DE,可知AED为直角三角形。则EF是RtDEA斜
边上的中线,等于斜边的一半,为a.27、(2010辽宁理数)(22)(本小题满分10分)选修4-1:几何证明选讲
如图,ABC的角平分线AD的延长线交它的外接圆于点E
ADC(I)证明:ABE
(II)若ABC的面积S1ADAE,求BAC的大小。
2证明:
(Ⅰ)由已知条件,可得BAECAD
B因为AE与
AEB=ACD AC是同弧上的圆周角,所以
故△ABE∽△ADC.……5分
ABAD,即AB·AC=AD·AE.AEAC
11又S=AB·ACsinBAC,且S=AD·AE,故AB·ACsinBAC= AD·AE.22
则sinBAC=1,又BAC为三角形内角,所以BAC=90°.……10分(Ⅱ)因为△ABE∽△ADC,所以
8、(2010江苏卷)21.选修4-1:几何证明选讲(本小题满分10分)AB是圆O的直径,D为圆O上一点,过D作圆O的切线交AB延长线于点C,若DA=DC,求证:AB=2BC。
[解析] 本题主要考查三角形、圆的有关知识,考查推理论证能力。
(方法一)证明:连结OD,则:OD⊥DC,又OA=OD,DA=DC,所以∠DAO=∠ODA=∠DCO,∠DOC=∠DAO+∠ODA=2∠DCO,所以∠DCO=300,∠DOC=600,所以OC=2OD,即OB=BC=OD=OA,所以AB=2BC。
(方法二)证明:连结OD、BD。
因为AB是圆O的直径,所以∠ADB=900,AB=2 OB。
因为DC 是圆O的切线,所以∠CDO=900。
又因为DA=DC,所以∠DAC=∠DCA,于是△ADB≌△CDO,从而AB=CO。
即2OB=OB+BC,得OB=BC。
故AB=2BC。
第二篇:2010年高考数学几何证明试题分类解析(学生版)
2010年高考数学几何证明试题分类解析
1、(2010陕西文数)15.(几何证明选做题)如图,已知Rt△ABC的两条直角边AC,BC的长分别为3cm,4cm,以AC为直径的圆与AB交于点D,则BD=cm.2、(2010北京理数)(12)如图,O的弦ED,CB的延长线交于点A。若BDAE,AB=4, BC=2, AD=3,则DE=;CE=。
3、(2010天津文数)(11)如图,四边形ABCD是圆O的内接四边形,延长AB和DC相交于点P。若PB=1,PD=3,则的值为。
4、(2010天津理数)(14)如图,四边形ABCD是圆
O的内接四边形,延长AB和DC相交于点P,若
PB
PA=1PC1BC,=,则的值为。2PD3ADBCAD5、(2010广东理数)
14、(几何证明选讲选做题)
如图3,AB,CD是半径为a的圆O的两条弦,它们
相交于AB的中点P,PD=2a
3,∠OAP=30°,则CP=______.6、(2010广东文数)14.(几何证明选
做题)如图3,在直角梯形ABCD中,DC∥AB,CBAB,AB=AD=a,CD=a
2,点E,F分别为线段AB,AD的中点,则EF=
7、(2010辽宁理数)(22)(本小题满分10分)选修4-1:几何证明选讲 如图,ABC的角平分线AD的延长线交它的外接圆于点E(I)证明:ABE
ADC
(II)若ABC的面积S12ADAE,求BAC的大小。
8、(2010江苏卷)21.选修4-1:几何证明选讲 AB是圆O的直径,D为圆O上一点,过D作圆O的切线交AB延长线于点C,若DA=DC,求证:AB=2BC。
第三篇:高二文科数学几何证明试题
高二文科数学几何证明试题
经典试题:
1.(2008梅州一模文)如图所示,在四边形ABCD中,EF//BC,FG//AD,则
EFBC+FG
AD
=.
2.(2008广州一模文、理)在平行四边形ABCD中,点E在边AB上,且AE:EB=1:2,DE与AC交于 点F,若△AEF的面积为6cm2,则△ABC的面积为 cm2.
3.(2007广州一模文、理)如图所示,圆O上
一点C在直径AB上的射影为D,CD=4,BD=8,则圆O的半径等于.
4.(2007深圳二模文)如图所示,从圆O外一点P
作圆O的割线PAB、PCD,AB是圆O的直径,若PA=4,PC=5,CD=3,则∠CBD=__
5.(2008广东文、理)已知PA是圆O的切线,切点为A,PA=2.AC是圆O的直径,PC与圆O交于点B,PB=1,则圆O的半径R=_______.6.(2007广东文、理)如图所示,圆O的直径
AB=6,C圆周上一点,BC=3,过C作圆的切线l,过A作l的垂线AD,AD分别与直线l、圆交于点
D、E,则∠DAC=,线段AE的长为
三、基础训练:
1.(2008韶关一模理)如图所示,PC切⊙O于 点C,割线PAB
经过圆心O,弦CD⊥AB于 点
E,PC=4,PB=8,则CD=________.2.(2008深圳调研文)如图所示,从圆O外一点A 引圆的切线AD和割线ABC,已知
AD= AC=6,圆O的半径为3,则圆心O到AC的距 离为________.3.(2008东莞调研文、理)如图所示,圆O上一
点C在直径AB上的射影为D,CD=4,BD=8,则圆O的半径等于.
D C
B
4.(2008韶关调研理)如图所示,圆O是 △ABC的外接圆,过点C的切线交AB的延长线于点D,CD=AB=BC=3.则BD的长______,AC的长_______.5.(2007韶关二模理)如图,⊙O′和 ⊙O相交于A和B,PQ切⊙O于P,交⊙O′于Q和M,交AB的延长线于N,MN=3,NQ=15,则 PN=______.
6.(2008广州二模文、理)如图所示, 圆的内接
△ABC的∠C的平分线CD延长后交圆于点E,连接BE,已知BD=3,CE=7,BC=5,则线段.N
7.(2007湛江一模文)如图,四边形ABCD内接
于⊙O,BC是直径,MN切⊙O于A,∠MAB=250,则∠D=___.8.(2007湛江一模理)如图,在△ABC中,D D
是AC的中点,E是BD的中点,AE交BC
BF=于F,则
FC
9.(2008惠州一模理)如图:EB、EC是⊙O的两 条切线,B、C是切点,A、D是⊙O上两点,如果∠E=460,∠DCF=320,则∠A的度数是.10.(2008汕头一模理)如图,AB是圆O
直线CE和圆O相切于点C,AD⊥CE于D,若AD=1,∠ABC=300,则圆O的面积是______.11.(2008佛山一模理)如图,AB、CD是圆O的两条弦,C
且AB是线段CD的中垂线,已知AB=6,CD=25,则线段AC的长度为
.
12.已知:如图,在梯形ABCD中,AD∥BC∥EF,E是AB的中点,EF交BD于G,交AC于H.若 AD=5,BC=7,则GH=________.13.如图,圆O上一点C在直径AB上的射影为D.C
B
AD=2,AC= 2,则AB=____
14.如图,PA是圆的切线,A为切点,PBC是圆的 割线,且PB=
1PABC,则的值是________.2PB
15.如图,⊙O的割线PAB交⊙O于A、B两点,割线
PCD经过圆心O,PE是⊙O的切线。已知PA=6,AB=7,PO=12,则PE=____O的半径是_______.3(2011)
(2011年佛山一模)16.如图,在ABC中,DE//BC,EF//CD,若BC3,DE2,DF1,则AB的长为___________. 17.(湛江市)如图,圆O上一点C在直径AB上的射影为D.AD2,AC2,则AB.
18(广州)如图3,四边形ABCD内接于⊙O,BC是直径,MN与⊙O相切, 切点为A,MAB35
则D.19(广州一模)CD是圆O的切线, 切点为C,点A、B在圆O上,BC1,BCD30,则圆O的面积为
A
O
C
B
D
图
320(韶关)如图,⊙O的半径R5,P是弦BC过P点作⊙O的切线,切点为A,若PC1,PA3,则圆心O到弦BC的距离是。
P
B的点,21(深圳)如图,AB是半圆O的直径,C是半圆O上异于A,CDAB,垂足为D,已知AD2,CBCD
22(肇庆一模)如图2,PC、DA为⊙O的 切线,A、C为切点,AB为⊙O的直径,若 DA=2,CDDP=12,则AB=
B
图2C
D
23(东莞)如图,⊙O的割线
PBA过
圆心O,弦CD交PA于点F,且COF∽PDF, PBOA2,则PF
24(惠州)如图,已知⊙O的割线PAB交⊙O于A,B 两点,割线PCD经过圆心,若PA=3,AB=4,PO=5 则⊙O的半径为_____________.25(江门)如图3,PT是圆O的切线,O
D A P
PAB是圆O的割线,若PT2,PA1,P60o,则圆O的半径r.
26((2007湛江一模理)如图1,在△ABC中,D是ACF 图
1BF
E是BD的中点,AE交BC于F,则FC
27(2010天津理科)如图2,四边形ABCD是圆O的内接四边形,延长AB和DC相交于点P。若则
PB1PC1
,,PA2PD
3图
2BC的值为。AD
28如图,在△ABC中,AB=AC,∠C=720,⊙O过A、B两点且 与BC相切于点B,与AC交于点D,连结BD,若BC=51, 则AC=
29如图:PA与圆O相切于A,PCB为圆O的割线,并且不过圆心O,O
D
B
C
已知∠BPA=30,PA=PC=1,则圆O的半径等于.
B
第 28 题图
A30如图1所示,圆O的直径AB6,C为圆周上一点,BC3.
过C作圆的切线l,过A作l的垂线AD,AD分别与直线l、圆交于点D,E,则∠DAC,线段AE的长为.
A
图1
第四篇:中考数学几何证明、计算题及解析
1、如图,在梯形ABCD中,AB∥CD,∠BCD=90°,且AB=1,BC=2,tan∠ADC=2.(1)求证:DC=BC;
(2)E是梯形内一点,F是梯形外一点,且∠EDC=∠FBC,DE=BF,试判断△ECF的形状,并证明你的结论;
(3)在(2)的条件下,当BE:CE=1:2,∠BEC=135°时,求sin∠BFE的值.AB[解析](1)过A作DC的垂线AM交DC于M,则AM=BC=2.又tan∠ADC=2,所以DM
(2)等腰三角形.21.即DC=BC.2F
D
C证明:因为DEDF,EDCFBC,DCBC.所以,△DEC≌△BFC
所以,CECF,ECDBCF.所以,ECFBCFBCEECDBCEBCD90
即△ECF是等腰直角三角形.(3)设BEk,则CECF
2k,所以EF.因为BEC135,又CEF45,所以BEF90.所以BF3k 所以sinBFEk1.3k32、已知:如图,在□ABCD 中,E、F分别为边AB、CD的中点,BD是对角线,AG∥DB交CB的延长线于G.
(1)求证:△ADE≌△CBF;
(2)若四边形 BEDF是菱形,则四边形AGBD是什么特殊四边形?并证明你的结论.
[解析](1)∵四边形ABCD是平行四边形,∴∠1=∠C,AD=CB,AB=CD .
∵点E、F分别是AB、CD的中点,∴AE=11AB,CF=CD . 2
2∴AE=CF
∴△ADE≌△CBF .
(2)当四边形BEDF是菱形时,四边形 AGBD是矩形.
∵四边形ABCD是平行四边形,∴AD∥BC .
∵AG∥BD,∴四边形 AGBD 是平行四边形.
∵四边形 BEDF 是菱形,∴DE=BE . ∵AE=BE,∴AE=BE=DE .
∴∠1=∠2,∠3=∠4.
∵∠1+∠2+∠3+∠4=180°,∴2∠2+2∠3=180°. ∴∠2+∠3=90°. 即∠ADB=90°.∴四边形AGBD是矩形
3、如图13-1,一等腰直角三角尺GEF的两条直角边与正方形ABCD的两条边分别重合在一起.现正方形ABCD保持不动,将三角尺GEF绕斜边EF的中点O(点O也是BD中点)按顺时针方向旋转.
(1)如图13-2,当EF与AB相交于点M,GF与BD相交于点N时,通过观察或测量BM,FN的长度,猜想BM,FN满足的数量关系,并证明你的猜想;
(2)若三角尺GEF旋转到如图13-3所示的位置时,线段FE的延长线与AB的延长线相交于点M,线段
BD的延长线与GF的延长线相交于点N,此时,(1)中的猜想还成立吗?若成立,请证明;若不成立,请说明理由.
A(B(E)
图13-1 图13-
2图13-
3[解析](1)BM=FN.
证明:∵△GEF是等腰直角三角形,四边形ABCD是正方形,∴ ∠ABD =∠F =45°,OB = OF. 又∵∠BOM=∠FON,∴ △OBM≌△OFN . ∴ BM=FN.
(2)BM=FN仍然成立.
(3)证明:∵△GEF是等腰直角三角形,四边形ABCD是正方形,∴∠DBA=∠GFE=45°,OB=OF. ∴∠MBO=∠NFO=135°.
又∵∠MOB=∠NOF,∴ △OBM≌△OFN . ∴ BM=FN.
4、如图,已知⊙O的直径AB垂直于弦CD于E,连结AD、BD、OC、OD,且OD=5。
(1)若sin∠BAD,求CD的长;
5(2)若 ∠ADO:∠EDO=4:1,求扇形OAC(阴影部分)的面积(结果保留)。
[解析](1)因为AB是⊙O的直径,OD=5
所以∠ADB=90°,AB=10
BD
AB
3BD
3,所以BD6 又sin∠BAD,所以
5105
在Rt△ABD中,sin∠BAD
AD
AB2BD22628
因为∠ADB=90°,AB⊥CD
所以DE·ABAD·BD,CEDE 所以DE1086 所以DE5
485
所以CD2DE
(2)因为AB是⊙O的直径,AB⊥CD
所以CBBD,ACAD
所以∠BAD=∠CDB,∠AOC=∠AOD 因为AO=DO,所以∠BAD=∠ADO 所以∠CDB=∠ADO
设∠ADO=4x,则∠CDB=4x
由∠ADO:∠EDO=4:1,则∠EDO=x 因为∠ADO+∠EDO+∠EDB=90° 所以4x4xx90 所以x=10°
所以∠AOD=180°-(∠OAD+∠ADO)=100° 所以∠AOC=∠AOD=100°
⌒⌒⌒⌒
S扇形OAC
100125
52360185、如图,已知:C是以AB为直径的半圆O上一点,CH⊥AB于点H,直线AC与过B点的切线相交于点D,E为CH中点,连接AE并延长交BD于点F,直线CF交直线AB于点G.
(1)求证:点F是BD中点;(2)求证:CG是⊙O的切线;(3)若FB=FE=2,求⊙O的半径.
[解析](1)证明:∵CH⊥AB,DB⊥AB,∴△AEH∽AFB,△ACE∽△ADF
∴
EHAECE,∵HE=EC,∴BF=FD
BFAFFD
(2)方法一:连接CB、OC,∵AB是直径,∴∠ACB=90°∵F是BD中点,∴∠BCF=∠CBF=90°-∠CBA=∠CAB=∠ACO ∴∠OCF=90°,∴CG是⊙O的切线---------6′
方法二:可证明△OCF≌△OBF(参照方法一标准得分)(3)解:由FC=FB=FE得:∠FCE=∠FEC可证得:FA=FG,且AB=BG由切割线定理得:(2+FG)2=BG×AG=2BG2○2 在Rt△BGF中,由勾股定理得:BG2=FG2-BF2 ○
1、○2得:FG2-4FG-12=0 由○
解之得:FG1=6,FG2=-2(舍去)
∴AB=BG=42 ∴⊙O半径为226、如图,已知O为原点,点A的坐标为(4,3),⊙A的半径为2.过A作直线l平行于x轴,点P在直线l上运动.(1)当点P在⊙O上时,请你直接写出它的坐标;
(2)设点P的横坐标为12,试判断直线OP与⊙A的位置关系,并说明理由.[解析]
解: ⑴点P的坐标是(2,3)或(6,3)
⑵作AC⊥OP,C为垂足.∵∠ACP=∠OBP=90,∠1=∠
1∴△ACP∽△OBP
ACAP
OBOP
AC 在RtOBP中,OP又AP=12-4=8,∴ 3∴
∴
AC=241.9
4∵1.94<
2∴OP与⊙A相交.7、如图,延长⊙O的半径OA到B,使OA=AB,DE是圆的一条切线,E是切点,过点B作DE的垂线,垂足为点C.求证:∠ACB=
∠OAC.3O
A
B
[解析]
证明:连结OE、AE,并过点A作AF⊥DE于点F,(3分)
∵DE是圆的一条切线,E是切点,∴OE⊥DC,又∵BC⊥DE,∴OE∥AF∥BC.∴∠1=∠ACB,∠2=∠
3.∵OA=OE,∴∠4=∠3.∴∠4=∠2.又∵点A是OB的中点,∴点F是EC的中点.∴AE=AC.∴∠1=∠2.∴∠4=∠2=∠1.即∠ACB=
∠OAC.3
8、如图1,一架长4米的梯子AB斜靠在与地面OM垂直的墙壁ON上,梯子与地面的倾斜角α为60. ⑴求AO与BO的长;
⑵若梯子顶端A沿NO下滑,同时底端B沿OM向右滑行.①如图2,设A点下滑到C点,B点向右滑行到D点,并且AC:BD=2:3,试计算梯子顶端A沿NO下滑多少米;
②如图3,当A点下滑到A’点,B点向右滑行到B’点时,梯子AB的中点P也随之运动到P’点.若∠POP’= 15,试求AA’的长.
[解析]
⑴RtAOB中,∠O=90,∠α=60 ∴,∠OAB=30,又AB=4米,
AB2米
.2
OAABsin604.--------------(3分)
∴OB
⑵设AC2x,BD3x,在RtCOD中,OC2x,OD23x,CD4
根据勾股定理:OC2OD2CD2
∴2x
23x2
42-------------(5分)
∴13x2
12x0 ∵x0∴13x12830
∴x-------------(7分)
即梯子顶端A沿NO
.----(8分)
⑶∵点P和点P分别是RtAOB的斜边AB与RtA'OB'的斜边A'B'的中点∴PAPO,P'
A'P'O-------------(9分)∴PAOAOP,PAOAOP-------(10分)∴PAOPAOAOPAOP
∴PAOPAOPOP15
∵PAO30
∴PAO45
-----------------------(11分)
∴AOABcos45
4
分)
∴AAOAAO米.--------(13分)
第五篇:2013年高考数学试题分类:17几何证明(理)
2013年高考理科数学试题分类汇编:17几何证明
一、填空题
错误!未指定书签。.(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))
如图,在ABC中,C900, A60,AB20,过C作ABC的外接圆的切线0
CD,BDCD,BD与外接圆交于点E,则DE的长为
__________
【答案】
5错误!未指定书签。.(2013年普通高等学校招生统一考试天津数学(理)试题(含答案))
如图, △ABC为圆的内接三角形, BD为圆的弦, 且BD//AC.过点A 做圆的切线与DB的延长线交于点E, AD与BC交于点F.若AB = AC, AE = 6, BD = 5, 则线段CF的长为
______.【答案】8
3错误!未指定书签。.(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD
版))(几何证明选讲选做题)如图,AB是圆O的直径,点C在圆O上,延长BC到D使BCCD,过C作圆O的切线交AD于E.若AB6,ED2,则BC_________.E
第15题图
【答案】错误!未指定书签。.(2013年高考四川卷(理))设P1,P2,,Pn为平面内的n个点,在平面内的所有点中,若点P到P1,P2,,Pn点的距离之和最小,则称点P为P1,P2,,Pn点的一个“中位点”.例如,线段AB上的任意点都是端点A,B的中位点.则有下列命题:
① 若A,B,C三个点共线,C在线AB上,则C是A,B,C的中位点;
② ②直角三角形斜边的点是该直角三角形三个顶点的中位点;
③若四个点A,B,C,D共线,则它们的中位点存在且唯一;
④梯形对角线的交点是该梯形四个顶点的唯一中位点.其中的真命题是____________.(写出所有真命题的序号数学社区)
【答案】①④
错误!未指定书签。.(2013年高考陕西卷(理))B.(几何证明选做题)如图, 弦AB与
CD相交于O内一点E, 过E作BC的平行线与AD的延长线相交于点P.已知PD=2DA=2, 则PE=_____.【答案】6.错误!未指定书签。.(2013年高考湖南卷(理))如图2,的O中,弦AB,CD
相交于点P,PAPB
2,PD1,则圆心O到弦CD的距离为____________.【答案】3
2错误!未指定书签。.(2013年高考湖北卷(理))如图,圆O上一点C在直线AB上的射
影为D,点D在半径OC上的射影为E.若AB3AD,则CE的值为___________.EO
C
AB
第15题图
【答案】8
错误!未指定书签。.(2013年高考北京卷(理))如图,AB为圆O的直径,PA为圆O的切
线,PB与圆O相交于D.若PA=3,PD:DB9:16,则
PD=_________;AB=___________.【答案】
二、解答题
错误!未指定书签。.(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD
版含答案))选修4—1几何证明选讲:如图,CD为△ABC外接圆的切线,AB的延长线交直线CD于点D,E,F分别为弦AB与弦AC上的点,且9;45BCAEDCAF,B,E,F,C四点共圆.(Ⅰ)证明:CA是△ABC外接圆的直径;
(Ⅱ)若DBBEEA,求过B,E,F,C四点的圆的面积与△ABC外接圆面积的比值.【答案】
错误!未指定书签。.(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD版))
选修4-1:几何证明选讲
BC垂直于如图,AB为O直径,直线CD与O相切于E.AD垂直于CD于D,CD于C,EF,垂直于F,连接AE,BE.证明:
(I)FEBCEB;(II)EF2AD
BC.【答案】
错误!未指定书签。.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对
纯WORD版含附加题))A.[选修4-1:几何证明选讲]本小题满分10分.如图,AB和BC分别与圆O相切于点D,C,AC经过圆心O,且BC2OC
求证:AC
2AD
【答案】A证明:连接OD,∵AB与BC分别与圆O相切于点D与C
∴ADOACB900,又∵AA
∴RTADO~RTACB∴BCAC又∵BC=2OC=2OD∴AC=2ADODAD
错误!未指定书签。.(2013年高考新课标1(理))选修4—1:几何证明选讲如图,直线
AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于D.(Ⅰ)证明:DB=DC;
(Ⅱ)设圆的半径为1,BC=,延长CE交AB于点F,求△BCF外接圆的半径
.【答案】(Ⅰ)连结DE,交BC与点
G.由弦切角定理得,∠ABF=∠BCE,∵∠ABE=∠CBE,∴∠CBE=∠BCE,BE=CE,又∵DB⊥BE,∴DE是直径,∠DCE=90,由勾股定理可得DB=DC.(Ⅱ)由(Ⅰ)0
知,∠CDE=∠BDE,BD=DC,故DG是BC
o.o设DE中点为O,连结BO,则∠BOG=60,∠ABE=∠BCE=∠CBE=30,∴CF⊥BF,∴Rt△BCF.