2013年各省高考理科数学试题分类17:几何证明

时间:2019-05-13 13:18:03下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《2013年各省高考理科数学试题分类17:几何证明》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《2013年各省高考理科数学试题分类17:几何证明》。

第一篇:2013年各省高考理科数学试题分类17:几何证明

高考最前线,努力努力

2013年各省高考理科数学试题分类17:几何证明

一、填空题

错误!未指定书签。错误!未指定书签。(2013年高考陕西卷(理))B.(几何证明选做题)如图, 弦AB

与CD相交于O内一点E, 过E作BC的平行线与AD的延长线相交于点P.已知PD=2DA=2, 则PE=_____.【答案】 6.的O中,弦AB,CD相交于点错误!未指定书签。

(2013年高考湖南卷(理))如图2,P,PAPB

2,PD1,则圆心O到弦CD的距离为____________.【答案】

320(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))如图,在ABC中,C90,A600,AB20,过C作ABC的外接圆的切线CD,BD

CD,BD与外接圆交于点E,则DE的长为__________

【答案】

5错误!未指定书签。(2013年普通高等学校招生统一考试天津数学(理)试题(含答案))如图, △ABC为圆的内接三角形, BD为圆的弦, 且BD//AC.过点A 做圆的切线与DB的延长线交于点E, AD与BC交于点F.若AB = AC, AE = 6, BD = 5, 则线段CF的长为______.【答案】83

错误!未指定书签。(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD版))(几何证明选讲

选做题)如图,AB是圆O的直径,点C在圆O上,延长BC到D使BCCD,过C作圆O的切线交AD于E.若AB6,ED2,则BC_________.E

第15题图

【答案】

错误!未指定书签。(2013年高考四川卷(理))设P1,P2,,Pn为平面内的n个点,在平面内的所有

点中,若点P到P1,P2,,Pn点的距离之和最小,则称点P为P1,P2,,Pn点的一个“中位点”.例如,线段AB上的任意点都是端点A,B的中位点.则有下列命题:

①若A,B,C三个点共线,C在线AB上,则C是A,B,C的中位点;

②直角三角形斜边的点是该直角三角形三个顶点的中位点;

③若四个点A,B,C,D共线,则它们的中位点存在且唯一;

④梯形对角线的交点是该梯形四个顶点的唯一中位点.其中的真命题是____________.(写出所有真命题的序号数学社区)

【答案】①④

错误!未指定书签。(2013年高考湖北卷(理))如图,圆O上一点C在直线AB上的射影为D,点D在半

径OC上的射影为E.若AB3AD,则CE的值为___________.EO

C

AB

第15题图

【答案】8

错误!未指定书签。(2013年高考北京卷(理))如图,AB为圆O的直径,PA为圆O的切线,PB与圆O相交

于D.若PA=3,PD:DB9:16,则

PD=_________;AB=___________.【答案】

二、解答题

错误!未指定书签。错误!未指定书签。(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD版))9;45

选修4-1:几何证明选讲

BC垂直于CD于C,EF,如图,AB为O直径,直线CD与O相切于E.AD垂直于CD于D,垂直于F,连接AE,BE.证明:

(I)FEBCEB;(II)EF2AD

BC.【答案】

(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD版含答案))选修4—1几何证明选讲:如

图,CD为△ABC外接圆的切线,AB的延长线交直线CD于点D,E,F分别为弦AB与弦AC上的点,且BCAEDCAF,B,E,F,C四点共圆.(Ⅰ)证明:CA是△ABC外接圆的直径;

(Ⅱ)若DBBEEA,求过B,E,F,C四点的圆的面积与△ABC外接圆面积的比值.【答案】

错误!未指定书签。(2013年高考新课标1

(理))选修4—1:几何证明选讲如图,直线AB为圆的切线,切

点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于D.(Ⅰ)证明:DB=DC;

(Ⅱ)设圆的半径为1,BC=,延长CE交AB于点F,求△BCF外接圆的半径.【答案】(Ⅰ)连结DE,交BC与点

G.由弦切角定理得,∠ABF=∠BCE,∵∠ABE=∠CBE,∴∠CBE=∠BCE,BE=CE,又∵DB⊥BE,∴DE是直径,∠DCE=90,由勾股定理可得DB=DC.0

(Ⅱ)由(Ⅰ)知,∠CDE=∠BDE,BD=DC,故DG是BC

oo.设DE中点为O,连结BO,则∠BOG=60,∠ABE=∠BCE=∠CBE=30,∴CF⊥BF,∴Rt△BCF

.错误!未指定书签。(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD版含附加题))

A.[选修4-1:几何证明选讲]本小题满分10分.如图,AB和BC分别与圆O相切于点D,C,AC经过圆心O,且BC2OC

求证:AC

2AD

【答案】A证明:连接OD,∵AB与BC分别与圆O相切于点D与C

∴ADOACB900,又∵AA

∴RTADO~RTACB∴

BCAC又∵BC=2OC=2OD∴AC=2ADODAD

第二篇:高考理科数学试题分类17:几何证明

2013 年全国高考理科数学试题分类汇编 17:几何证明

一、填空题 1 .(2013 年普通高等学校招生统一考试重庆数学(理)试题(含答案))如图, 在  ABC 中 , C  900 , A  600 , AB  20 ,过 C 作  ABC 的外接圆的切线
CD , BD  CD , BD 与外接圆交于点 E ,则 DE 的长为_____ _____

【答案】 5 1 .2013 年普通高等学校招生统一考试 天津数学((理)(含答案)如图, △ABC 试题)为圆的内接三角形, BD 为圆的弦, 且 BD //AC.过点 A 做圆的切线与 DB 的延 长线交于点 E, AD 与 BC 交于点 F.若 AB = AC, AE = 6, BD = 5, 则线段 CF 的长为______.

8 3 1 .(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD版))(几何

【答案】

证明选讲选做题)如图, AB 是圆 O 的直径,点 C 在圆 O 上,延长 BC 到 D 使
BC  CD , 过 C 作 圆 O 的 切 线 交 AD 于 E.若 AB  6 , ED  2 , 则 BC  _________.

A

E D

.O
B
第 15 题图

C

【答案】 2 3 1 .(2013 年高 考四川卷(理))设 P , P2 ,, Pn 为平面  内的 n 个点,在平面  内的 1 所有点中,若点 P 到 P , P2 ,, Pn 点的距离之和最小,则称点 P 为 P , P2 ,, Pn 点 1 1 的一个“中位点”.例如,线段 AB 上的任意点都是端点 A, B 的中位点.则有 下列命题: ①若 A, B, C 三个点共线, C 在线 AB 上,则 C 是 A, B, C 的中位点;] ②直角三角形斜边的点是该直角三角 形三个顶点的中位点;③若四个点 A, B, C , D 共线,则它们的中 位点存在且唯一;④梯形对角线的交点是该梯形四个顶点的唯一中位点.其中的真命题是____________.(写出所有 真命题的序号数学社区)【答案】①④ 1 .(2013 年高考陕西卷(理))B.(几何证明选做题)如图, 弦 AB 与 CD 相交于  O 内一点 E, 过 E 作 BC 的平行线与 AD 的延长线相交于点 P.已知 PD=2DA=2, 则 PE=_____.

B

C O E D A

P

【答案】 6.1 .(2013 年高考湖南卷(理))如图 2,在半径为 7 的  O 中,弦 AB, CD 相交于 点 P, PA  PB  2 , PD  1 ,则圆心 O 到弦 CD 的距离为____________.

【答案】

3 2

1 .(2013 年高考湖北卷(理)如图,圆 O 上一点 C 在直线 AB 上的射影为 D ,点 D)CE 在半径 OC 上的射影为 E.若 AB  3 AD ,则 的值为___________.EO
C

A

E D O

B

第 15 题图

【答案】8 1 .(2013 年高考北京卷(理))如图,AB 为圆 O 的直径,PA 为圆 O 的切线,PB 与圆
DB 16 O 相交于 D.若 PA=3, PD :  9 : ,则 PD=_________;AB=___________.

9 【答案】;4 5

二、解答题

1 .(2013 年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯 WORD 版含答 案))选修 4—1 几何证明选讲:如图, CD 为△ ABC 外接圆的切线, AB 的延长 线 交 直 线 CD 于 点 D , E , F 分 别 为 弦 AB 与 弦 AC 上 的

点 , 且
BC  AE  DC  AF , B, E , F , C 四点共圆.

(Ⅰ)证明: CA 是△ ABC 外接圆的直径;(Ⅱ)若 DB  BE  EA ,求过 B, E , F , C 四点的圆的面积与△ ABC 外接圆面积的 比值.

C
F

D

B

E

A

【答案】

C
F

D

B

E

A

1.(2013 年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版)选修 4-1:)几何证明选讲
BC 如图, AB为 O直径,直线CD与  O相切于E.AD垂直于CD于D,垂直于
CD 于 C,EF ,垂直于 F ,连接 AE, BE.证明:

(I)FEB  CEB;

(II)EF 2  ADBC.

【答案】

1.(2013 年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯 WORD 版含附 加题))A.[选修 4-1:几何证明选讲]本小题满分 10 分.如图, AB 和 BC 分别与圆 O 相切于点 D , C , AC 经过圆心 O ,且 BC  2OC 求证: AC  2 AD ]

【答案】A 证明:连接 OD,∵AB 与 BC 分别与圆 O 相切于点 D 与 C ∴ ADO  ACB  900 ,又∵ A  A ∴ RTADO ~ RTACB BC AC  ∴ 又∵BC=2OC=2OD ∴AC=2AD OD AD 1.(2013 年高考新课标 1(理))选修 4—1:几何证明选讲 如图,直线 AB 为圆 的切线,切点为 B,点 C 在圆上,∠ABC 的角平分线 BE 交圆于点 E,DB 垂直 BE 交圆于 D.(Ⅰ)证明:DB=DC;(Ⅱ)设圆的半径为 1,BC= ,延长 CE 交 AB 于点 F,求△BCF 外接圆的半径.

【答案】(Ⅰ)连结 DE,交 BC 与点 G.

由弦切角定理得,∠ABF=∠BCE,∵∠ABE=∠CBE ,∴∠CBE=∠BCE,BE=CE, 又∵DB⊥BE,∴DE 是直径,∠DCE= 900 ,由勾股定理可得 DB=DC.(Ⅱ)由(Ⅰ)知,∠CDE=∠BDE,BD=DC,故 DG 是 BC 的中垂线,∴BG= 设 DE 中点为 O,连结 BO,则∠BOG= 60o , ∠ABE=∠BCE=∠CBE= 30o , ∴CF⊥BF, ∴Rt△B CF 的外接圆半径等于
3.2 3.2

]


第三篇:2013年全国高考理科数学试题分类:几何证明

2013年全国高考理科数学试题分类汇编

17:几何证明

一、填空题

错误!未指定书签。.(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))如

图,在ABC中,C90, A600,AB20,过C作ABC的外接圆的切线0

CD,BDCD,BD与外接圆交于点E,则DE的长为

__________

【答案】

5错误!未指定书签。.(2013年普通高等学校招生统一考试天津数学(理)试题(含答案))如

图, △ABC为圆的内接三角形, BD为圆的弦, 且BD//AC.过点A 做圆的切线与DB的延长线交于点E, AD与BC交于点F.若AB = AC, AE = 6, BD = 5, 则线段CF的长为

______.【答案】8

3错误!未指定书签。.(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD版))

(几何证明选讲选做题)如图,AB是圆O的直径,点C在圆O上,延长BC到D使BCCD,过C作圆O的切线交AD于E.若AB6,ED2,则BC_________.E

第15题图

【答案】

错误!未指定书签。.(2013年高考四川卷(理))设P1,P2,,Pn为平面内的n个点,在平

1P为P面内的所有点中,若点P到P1,P2,,Pn点的距离之和最小,则称点1,P2,,Pn

点的一个“中位点”.例如,线段AB上的任意点都是端点A,B的中位点.则有下列命题:

①若A,B,C三个点共线,C在线AB上,则C是A,B,C的中位点;

②直角三角形斜边的点是该直角三角形三个顶点的中位点;

③若四个点A,B,C,D共线,则它们的中位点存在且唯一;

④梯形对角线的交点是该梯形四个顶点的唯一中位点.其中的真命题是____________.(写出所有真命题的序号数学社区)

【答案】①④

错误!未指定书签。.(2013年高考陕西卷(理))B.(几何证明选做题)如图, 弦AB与CD

相交于O内一点E, 过E作BC的平行线与AD的延长线相交于点P.已知PD=2DA=2, 则PE=_____.【答案】 6.O中,弦AB,CD错误!未指定书签。.(2013年高考湖南卷(理))如图2,相交于点P,PAPB

2,PD1,则圆心O到弦CD的距离为____________.【答案】

2CE的值为___________.EO错误!未指定书签。.(2013年高考湖北卷(理))如图,圆O上一点C在直线AB上的射影为D,点D在半径OC上的射影为E.若AB3AD,则

C

AB

第15题图

【答案】8

错误!未指定书签。.(2013年高考北京卷(理))如图,AB为圆O的直径,PA为圆O的切线,PB

DB9:16,则

PD=_________;AB=___________.与圆O相交于D.若PA=3,PD:

【答案】

二、解答题

错误!未指定书签。.(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD版

含答案))选修4—1几何证明选讲:如图,CD为△ABC外接圆的切线,AB的延长线交9;45直线CD于点D,E,F分别为弦AB与弦AC上的点,且BCAEDCAF,B,E,F,C四点共圆.(Ⅰ)证明:CA是△ABC外接圆的直径;

(Ⅱ)若DBBEEA,求过B,E,F,C四点的圆的面积与△ABC外接圆面积的比值.【答案】

错误!未指定书签。.(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD版))选

修4-1:几何证明选讲

BC垂直于如图,AB为O直径,直线CD与O相切于E.AD垂直于CD于D,CD于C,EF,垂直于F,连接AE,BE.证明:

(I)FEBCEB;(II)EFAD

BC.2

【答案】

错误!未指定书签。.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯

WORD版含附加题))A.[选修4-1:几何证明选讲]本小题满分10分.如图,AB和BC分别与圆O相切于点D,C,AC经过圆心O,且BC2OC

求证:AC2AD

【答案】A证明:连接OD,∵AB与BC分别与圆O相切于点D与C

∴ADOACB90,又∵AA

∴RTADO~RTACB∴0BCAC又∵BC=2OC=2OD∴AC=2ADODAD

错误!未指定书签。.(2013年高考新课标1(理))选修4—1:几何证明选讲如图,直线AB

为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于

D.(Ⅰ)证明:DB=DC;

(Ⅱ)设圆的半径为1,BC=,延长CE交AB于点F,求△BCF外接圆的半径

.【答案】(Ⅰ)连结DE,交BC与点

G.由弦切角定理得,∠ABF=∠BCE,∵∠ABE=∠CBE,∴∠CBE=∠BCE,BE=CE,又∵DB⊥BE,∴DE是直径,∠DCE=90,由勾股定理可得DB=DC.0

(Ⅱ)由(Ⅰ)知,∠CDE=∠BDE,BD=DC,故DG是BC

oo设DE中点为O,连结BO,则∠BOG=60,∠ABE=∠BCE=∠CBE=30,∴CF⊥BF,∴Rt△BCF

.6

第四篇:2013年全国高考理科数学试题分类17:几何证明

2013年全国高考理科数学试题分类汇编17:几何证明

一、填空题.(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))如图,在00ABC中,C90,A60,AB20,过C作ABC的外接圆的切线CD,BDCD,BD与外接圆

交于点E,则DE的长为_____

_____

【答案】

.(2013年普通高等学校招生统一考试天津数学(理)试题(含答案))如图, △ABC为圆的内接三角形, BD

为圆的弦, 且BD//AC.过点A 做圆的切线与DB的延长线交于点E, AD与BC交于点F.若AB = AC, AE = 6, BD = 5, 则线段CF的长为

______.【答案】8

.(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD版))(几何证明选讲选做题)如图,AB是

圆O的直径,点C在圆O上,延长BC到D使BCCD,过C作圆O的切线交AD于E.若AB6,ED2,则BC_________.E

第15题图

【答案】.(2013年高考四川卷(理))设P1,P2,,Pn为平面内的n个点,在平面内的所有点中,若点P到

P1,P2,,Pn点的距离之和最小,则称点P为P1,P2,,Pn点的一个“中位点”.例如,线段AB上的任意点都是端点A,B的中位点.则有下列命题:

①若A,B,C三个点共线,C在线AB上,则C是A,B,C的中位点;[来源:12999数学网]

②直角三角形斜边的点是该直角三角形三个顶点的中位点;

③若四个点A,B,C,D共线,则它们的中位点存在且唯一;

④梯形对角线的交点是该梯形四个顶点的唯一中位点.其中的真命题是____________.(写出所有真命题的序号数学社区)

【答案】①④.(2013年高考陕西卷(理))B.(几何证明选做题)如图, 弦AB与CD相交于O内一点E, 过E作BC的平行线与AD的延长线相交于点P.已知PD=2DA=2, 则PE=_____.[来源:12999.Com]

【答案】6..(2013年高考湖南卷(理))如图2,的O中,弦AB,CD相交于点P,PAPB

2,PD1,则圆心O到弦CD的距离为____________.【答案】.(2013年高考湖北卷(理))如图,圆O上一点C在直线AB上的射影为D,点D在半径OC上的射影为

E.若AB3AD,则

CE的值为___________.EO

AE

B

第15题图

【答案】8.(2013年高考北京卷(理))如图,AB为圆O的直径,PA为圆O的切线,PB与圆O相交于D.若

PA=3,PD:DB9:16,则PD=_________;AB=___________.【答案】

二、解答题.(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD版含答案))选修4—1几何证明选讲:9;45

如图,CD为△ABC外接圆的切线,AB的延长线交直线CD于点D,E,F分别为弦AB与弦AC上的点,且BCAEDCAF,B,E,F,C四点共圆.(Ⅰ)证明:CA是△ABC外接圆的直径;

(Ⅱ)若DBBEEA,求过B,E,F,C四点的圆的面积与△ABC外接圆面积的比值.【答案】

10.(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD版))选修4-1:几何证明选讲

如图,AB为O直径,直线CD与O相切于E.AD垂直于CD于D,BC垂直于CD于C,EF,垂直于F,连接AE,BE.证明:

(I)FEBCEB;(II)EFADBC.2

【答案】

11.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD版含附加题))A.[选修4-1:

几何证明选讲]本小题满分10分.如图,AB和BC分别与圆O相切于点D,C,AC经过圆心O,且BC2OC

求证:AC

2AD

【答案】A证明:连接OD,∵AB与BC分别与圆O相切于点D与C

∴ADOACB90,又∵AA

∴RTADO~RTACB∴0BCAC又∵BC=2OC=2OD∴AC=2ADODAD

12.(2013年高考新课标1(理))选修4—1:几何证明选讲如图,直线AB为圆的切线,切点为B,点C在圆

上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于D.(Ⅰ)证明:DB=DC;

(Ⅱ)设圆的半径为1,BC=,延长CE交AB于点F,求△BCF外接圆的半径.【答案】(Ⅰ)连结DE,交BC与点

G.由弦切角定理得,∠ABF=∠BCE,∵∠ABE=∠CBE,∴∠CBE=∠BCE,BE=CE,又∵DB⊥BE,∴DE是直径,∠DCE=90,由勾股定理可得DB=DC.0

(Ⅱ)由(Ⅰ)知,∠CDE=∠BDE,BD=DC,故DG是BC

oo.设DE中点为O,连结BO,则∠BOG=60,∠ABE=∠BCE=∠CBE=30,∴CF⊥BF,∴Rt△BCF

第五篇:2014年全国高考理科数学试题分类17:几何证明 有答案

2014年全国高考理科数学试题分类汇编17:几何证明

一、填空题

1如图,在ABC中,C900, A600,AB20,过C作ABC的外接圆的切线

CD,BDCD,BD与外接圆交于点E,则DE的长为

__________

【答案】

52如图, △ABC为圆的内接三角形, BD为圆的弦, 且BD//AC.过点A 做圆的切线与DB的延长线交于点E,AD与BC交于点F.若AB = AC, AE = 6, BD = 5, 则线段CF的长为

______.【答案】8

33(几何证明选讲选做题)如图,AB是圆O的直径,点C在圆O上,延长BC到D使BCCD,过C作圆

O的切线交AD于E.若AB6,ED2,则BC_________.E

第15题图

【答案】4设P1,P2, ,Pn点的距离之和最小,Pn点的一个“中位点”.例如,线段AB上的任意点都是端点A,B的中位点.则,Pn为平面内的n个点,在平面内的所有点中,若点P到P1,P2,则称点P为P1,P2,有下列命题:

①若A,B,C三个点共线,C在线AB上,则C是A,B,C的中位点;②直角三角形斜边的点是该直角三角形三个顶点的中位点;

③若四个点A,B,C,D共线,则它们的中位点存在且唯一;

④梯形对角线的交点是该梯形四个顶点的唯一中位点.其中的真命题是____________.(写出所有真命题的序号数学社区)

【答案】①④B.(几何证明选做题)如图, 弦AB与CD相交于O内一点E, 过E作BC的平行线与AD的延长线相交

于点P.已知PD=2DA=2, 则PE=_____.【答案】 6.的O中,弦AB,CD相交于点P,PAPB2,PD1,则圆心O到弦CD的距离6如图2,为____________.【答案】

27如图,圆O上一点C在直线AB上的射影为D,点D在半径OC上的射影为E.若AB3AD,则CE的EO

值为___________.C

AB

第15题图

【答案】8

8如图,AB为圆O的直径,PA为圆O的切线,PB与圆O相交于D.若PA=3,PD:DB9:16,则

PD=_________;AB=___________.【答案】

二、解答题

1选修4—1几何证明选讲:如图,CD为△ABC外接圆的切线,AB的延长线交直线CD于点D,E,F分9;45

别为弦AB与弦AC上的点,且BCAEDCAF,B,E,F,C四点共圆.(Ⅰ)证明:CA是△ABC外接圆的直径;

(Ⅱ)若DBBEEA,求过B,E,F,C四点的圆的面积与△ABC外接圆面积的比值.【答案】

2选修4-1:几何证明选讲

如图,AB为O直径,直线CD与BC垂直于CD于C,EF,O相切于E.AD垂直于CD于D,垂直于F,连接AE,BE.证明:

(I)FEBCEB;(II)EF2

ADBC.【答案】A.[选修4-1:几何证明选讲]本小题满分10分.如图,AB和BC分别与圆O相切于点D,C,AC经过圆心O,且BC2OC 求证:AC

2AD

【答案】A证明:连接OD,∵AB与BC分别与圆O相切于点D与C

∴ADOACB900,又∵AA

∴RTADO~RTACB∴BCAC又∵BC=2OC=2OD∴AC=2ADODAD选修4—1:几何证明选讲如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆

于点E,DB垂直BE交圆于D.(Ⅰ)证明:DB=DC;

(Ⅱ)设圆的半径为1,BC=,延长CE交AB于点F,求△BCF外接圆的半径.【答案】(Ⅰ)连结DE,交BC与点

G.由弦切角定理得,∠ABF=∠BCE,∵∠ABE=∠CBE,∴∠CBE=∠BCE,BE=CE,又∵DB⊥BE,∴DE是直径,∠DCE=90,由勾股定理可得DB=DC.0

(Ⅱ)由(Ⅰ)知,∠CDE=∠BDE,BD=DC,故DG是BC

oo.设DE中点为O,连结BO,则∠BOG=60,∠ABE=∠BCE=∠CBE=30,∴CF⊥BF,∴Rt△BCF.

下载2013年各省高考理科数学试题分类17:几何证明word格式文档
下载2013年各省高考理科数学试题分类17:几何证明.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    2013-2014年各省高考理科数学试题:集合

    2013-2014年各省高考理科数学试题:集合1.错误!未指定书签。 2013(重庆)已知全集U1,2,3,4,集合A=1,2,B=2,3,则ðUAA.13,,4B.3,4C. 3D. 4错误!未指定书签。 2.(辽宁)已知集合Ax|0log4x1,Bx......

    2013年高考数学试题分类:17几何证明(理)

    2013年高考理科数学试题分类汇编:17几何证明一、填空题错误!未指定书签。 .(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))如图,在ABC中,C900, A60,AB20,过C作ABC的外接......

    2011年高考数学试题分类_专题几何证明选讲_理

    杨荣清老师工作室(高三数学),TEL:***2011年高考试题数学(理科)选修系列:几何证明选讲一、选择题:1.(2011年高考北京卷理科5)如图,AD,AE,BC分别与圆O切于点D,E,F,延长AF与圆O交于另......

    2013年全国高考理科数学试题分类:排列组合(精选5篇)

    2013年全国高考理科数学试题分类汇编10:排列、组合及二项式定理一、选择题 错误!未指定书签。 .(2013年普通高等学校招生统一考试山东数学(理)试题)用0,1,,9十个数字,可以 组成有重......

    2010年福建高考理科数学试题(推荐)

    2010年福建省高考数学试卷(理科) 收藏试卷试卷分析显示答案下载试卷 一、选择题(共10小题,每小题5分,满分50分) 1.计算sin137°cos13°+cos103°cos43°的值等于 A.12 B. 33 C. 22 D. 3......

    _2013年山西高考理科数学试题

    绝密★启用前 2013年普通高等学校招生全国统一考试(新课标Ⅰ卷) 数学(理科) 第Ⅰ卷(选择题 共50分) 一、 选择题:本大题共10小题。每小题5分,共50分。在每个小题给出的四个选项......

    2014年广东高考理科数学试题

    2014年普通高等学校招生全国统一考试(广东卷)数学(理科)试卷类型:B一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合M{1,......

    高考文科数学试题分类—推理与证明

    高中数学高考文科试题解析分类汇编:推理和证明1.【高考全国文12】正方形ABCD的边长为1,点E在边AB上,点F在边BC上,1AEBF。动点P从E出发沿直线向F运动,每当碰到正方形的边时反弹,反......