2013年全国高考理科数学试题分类:排列组合(精选5篇)

时间:2019-05-12 06:01:02下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《2013年全国高考理科数学试题分类:排列组合》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《2013年全国高考理科数学试题分类:排列组合》。

第一篇:2013年全国高考理科数学试题分类:排列组合

2013年全国高考理科数学试题分类汇编10:排列、组合及二项式定理

一、选择题

错误!未指定书签。.(2013年普通高等学校招生统一考试山东数学(理)试题)用0,1,9十个数字,可以

组成有重复数字的三位数的个数为

A.243 B.252

【答案】B()C.261 D.279

错误!未指定书签。.(2013年普通高等学校招生统一考试福建数学(理)试题)满足a,b1,0,1,2,且

关于x的方程ax22xb0有实数解的有序数对(a,b)的个数为

A.14

【答案】B()B.13 C.12 D.10

错误!未指定书签。.(2013年高考四川卷(理))从1,3,5,7,9这五个数中,每次取出两个不同的数分别为a,b,共可得到lgalgb的不同值的个数是

A.9

二、填空题()C.18 D.20 B.10 【答案】C错误!未指定书签。

错误!未指定书签。.(2013年上海市春季高考数学试卷)从4名男同学和6名女同学中随机选取3人参加某

社团活动,选出的3人中男女同学都有的概率为________(结果用数值表示).【答案】45

错误!未指定书签。.(2013年普通高等学校招生统一考试浙江数学(理)试题)将A,B,C,D,E,F六个字母

排成一排,且A,B均在C的同侧,则不同的排法共有________种(用数字作答)

【答案】480

错误!未指定书签。.(2013年普通高等学校招生统一考试重庆数学(理)试题)从3名骨科.4名脑外科和5名

内科医生中选派5人组成一个抗震救灾医疗小组,则骨科.脑外科和内科医生都至少有人的选派方法种数是___________(用数字作答)

【答案】590

错误!未指定书签。.(2013年高考北京卷(理))将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人

至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是_________.【答案】96

错误!未指定书签。.(2013年普通高等学校招生统一考试大纲版数学(理))6个人排成一行,其中甲、乙两

人不相邻的不同排法共有____________种.(用数字作答).【答案】480

第二篇:2013年全国高考理科数学试题分类:几何证明

2013年全国高考理科数学试题分类汇编

17:几何证明

一、填空题

错误!未指定书签。.(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))如

图,在ABC中,C90, A600,AB20,过C作ABC的外接圆的切线0

CD,BDCD,BD与外接圆交于点E,则DE的长为

__________

【答案】

5错误!未指定书签。.(2013年普通高等学校招生统一考试天津数学(理)试题(含答案))如

图, △ABC为圆的内接三角形, BD为圆的弦, 且BD//AC.过点A 做圆的切线与DB的延长线交于点E, AD与BC交于点F.若AB = AC, AE = 6, BD = 5, 则线段CF的长为

______.【答案】8

3错误!未指定书签。.(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD版))

(几何证明选讲选做题)如图,AB是圆O的直径,点C在圆O上,延长BC到D使BCCD,过C作圆O的切线交AD于E.若AB6,ED2,则BC_________.E

第15题图

【答案】

错误!未指定书签。.(2013年高考四川卷(理))设P1,P2,,Pn为平面内的n个点,在平

1P为P面内的所有点中,若点P到P1,P2,,Pn点的距离之和最小,则称点1,P2,,Pn

点的一个“中位点”.例如,线段AB上的任意点都是端点A,B的中位点.则有下列命题:

①若A,B,C三个点共线,C在线AB上,则C是A,B,C的中位点;

②直角三角形斜边的点是该直角三角形三个顶点的中位点;

③若四个点A,B,C,D共线,则它们的中位点存在且唯一;

④梯形对角线的交点是该梯形四个顶点的唯一中位点.其中的真命题是____________.(写出所有真命题的序号数学社区)

【答案】①④

错误!未指定书签。.(2013年高考陕西卷(理))B.(几何证明选做题)如图, 弦AB与CD

相交于O内一点E, 过E作BC的平行线与AD的延长线相交于点P.已知PD=2DA=2, 则PE=_____.【答案】 6.O中,弦AB,CD错误!未指定书签。.(2013年高考湖南卷(理))如图2,相交于点P,PAPB

2,PD1,则圆心O到弦CD的距离为____________.【答案】

2CE的值为___________.EO错误!未指定书签。.(2013年高考湖北卷(理))如图,圆O上一点C在直线AB上的射影为D,点D在半径OC上的射影为E.若AB3AD,则

C

AB

第15题图

【答案】8

错误!未指定书签。.(2013年高考北京卷(理))如图,AB为圆O的直径,PA为圆O的切线,PB

DB9:16,则

PD=_________;AB=___________.与圆O相交于D.若PA=3,PD:

【答案】

二、解答题

错误!未指定书签。.(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD版

含答案))选修4—1几何证明选讲:如图,CD为△ABC外接圆的切线,AB的延长线交9;45直线CD于点D,E,F分别为弦AB与弦AC上的点,且BCAEDCAF,B,E,F,C四点共圆.(Ⅰ)证明:CA是△ABC外接圆的直径;

(Ⅱ)若DBBEEA,求过B,E,F,C四点的圆的面积与△ABC外接圆面积的比值.【答案】

错误!未指定书签。.(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD版))选

修4-1:几何证明选讲

BC垂直于如图,AB为O直径,直线CD与O相切于E.AD垂直于CD于D,CD于C,EF,垂直于F,连接AE,BE.证明:

(I)FEBCEB;(II)EFAD

BC.2

【答案】

错误!未指定书签。.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯

WORD版含附加题))A.[选修4-1:几何证明选讲]本小题满分10分.如图,AB和BC分别与圆O相切于点D,C,AC经过圆心O,且BC2OC

求证:AC2AD

【答案】A证明:连接OD,∵AB与BC分别与圆O相切于点D与C

∴ADOACB90,又∵AA

∴RTADO~RTACB∴0BCAC又∵BC=2OC=2OD∴AC=2ADODAD

错误!未指定书签。.(2013年高考新课标1(理))选修4—1:几何证明选讲如图,直线AB

为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于

D.(Ⅰ)证明:DB=DC;

(Ⅱ)设圆的半径为1,BC=,延长CE交AB于点F,求△BCF外接圆的半径

.【答案】(Ⅰ)连结DE,交BC与点

G.由弦切角定理得,∠ABF=∠BCE,∵∠ABE=∠CBE,∴∠CBE=∠BCE,BE=CE,又∵DB⊥BE,∴DE是直径,∠DCE=90,由勾股定理可得DB=DC.0

(Ⅱ)由(Ⅰ)知,∠CDE=∠BDE,BD=DC,故DG是BC

oo设DE中点为O,连结BO,则∠BOG=60,∠ABE=∠BCE=∠CBE=30,∴CF⊥BF,∴Rt△BCF

.6

第三篇:2013年全国高考理科数学试题分类17:几何证明

2013年全国高考理科数学试题分类汇编17:几何证明

一、填空题.(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))如图,在00ABC中,C90,A60,AB20,过C作ABC的外接圆的切线CD,BDCD,BD与外接圆

交于点E,则DE的长为_____

_____

【答案】

.(2013年普通高等学校招生统一考试天津数学(理)试题(含答案))如图, △ABC为圆的内接三角形, BD

为圆的弦, 且BD//AC.过点A 做圆的切线与DB的延长线交于点E, AD与BC交于点F.若AB = AC, AE = 6, BD = 5, 则线段CF的长为

______.【答案】8

.(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD版))(几何证明选讲选做题)如图,AB是

圆O的直径,点C在圆O上,延长BC到D使BCCD,过C作圆O的切线交AD于E.若AB6,ED2,则BC_________.E

第15题图

【答案】.(2013年高考四川卷(理))设P1,P2,,Pn为平面内的n个点,在平面内的所有点中,若点P到

P1,P2,,Pn点的距离之和最小,则称点P为P1,P2,,Pn点的一个“中位点”.例如,线段AB上的任意点都是端点A,B的中位点.则有下列命题:

①若A,B,C三个点共线,C在线AB上,则C是A,B,C的中位点;[来源:12999数学网]

②直角三角形斜边的点是该直角三角形三个顶点的中位点;

③若四个点A,B,C,D共线,则它们的中位点存在且唯一;

④梯形对角线的交点是该梯形四个顶点的唯一中位点.其中的真命题是____________.(写出所有真命题的序号数学社区)

【答案】①④.(2013年高考陕西卷(理))B.(几何证明选做题)如图, 弦AB与CD相交于O内一点E, 过E作BC的平行线与AD的延长线相交于点P.已知PD=2DA=2, 则PE=_____.[来源:12999.Com]

【答案】6..(2013年高考湖南卷(理))如图2,的O中,弦AB,CD相交于点P,PAPB

2,PD1,则圆心O到弦CD的距离为____________.【答案】.(2013年高考湖北卷(理))如图,圆O上一点C在直线AB上的射影为D,点D在半径OC上的射影为

E.若AB3AD,则

CE的值为___________.EO

AE

B

第15题图

【答案】8.(2013年高考北京卷(理))如图,AB为圆O的直径,PA为圆O的切线,PB与圆O相交于D.若

PA=3,PD:DB9:16,则PD=_________;AB=___________.【答案】

二、解答题.(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD版含答案))选修4—1几何证明选讲:9;45

如图,CD为△ABC外接圆的切线,AB的延长线交直线CD于点D,E,F分别为弦AB与弦AC上的点,且BCAEDCAF,B,E,F,C四点共圆.(Ⅰ)证明:CA是△ABC外接圆的直径;

(Ⅱ)若DBBEEA,求过B,E,F,C四点的圆的面积与△ABC外接圆面积的比值.【答案】

10.(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD版))选修4-1:几何证明选讲

如图,AB为O直径,直线CD与O相切于E.AD垂直于CD于D,BC垂直于CD于C,EF,垂直于F,连接AE,BE.证明:

(I)FEBCEB;(II)EFADBC.2

【答案】

11.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD版含附加题))A.[选修4-1:

几何证明选讲]本小题满分10分.如图,AB和BC分别与圆O相切于点D,C,AC经过圆心O,且BC2OC

求证:AC

2AD

【答案】A证明:连接OD,∵AB与BC分别与圆O相切于点D与C

∴ADOACB90,又∵AA

∴RTADO~RTACB∴0BCAC又∵BC=2OC=2OD∴AC=2ADODAD

12.(2013年高考新课标1(理))选修4—1:几何证明选讲如图,直线AB为圆的切线,切点为B,点C在圆

上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于D.(Ⅰ)证明:DB=DC;

(Ⅱ)设圆的半径为1,BC=,延长CE交AB于点F,求△BCF外接圆的半径.【答案】(Ⅰ)连结DE,交BC与点

G.由弦切角定理得,∠ABF=∠BCE,∵∠ABE=∠CBE,∴∠CBE=∠BCE,BE=CE,又∵DB⊥BE,∴DE是直径,∠DCE=90,由勾股定理可得DB=DC.0

(Ⅱ)由(Ⅰ)知,∠CDE=∠BDE,BD=DC,故DG是BC

oo.设DE中点为O,连结BO,则∠BOG=60,∠ABE=∠BCE=∠CBE=30,∴CF⊥BF,∴Rt△BCF

第四篇:2013年全国高考理科数学试题分类16:不等式选讲

2013年全国高考理科数学试题分类汇编16:不等式选讲

一、填空题.(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))若关于实数x的不等式

x5x3a无解,则实数a的取值范围是_________

【答案】,8.(2013年高考陕西卷(理))(不等式选做题)已知a, b, m, n均为正数, 且a+b=1, mn=2, 则

(am+bn)(bm+an)的最小值为_______.【答案】.(2013年高考江西卷(理))(不等式选做题)在实数范围内,不等式x211的解集为_________

【答案】0,4

x,y,zR,且满足:x2y2z2

1,x2y3z,则4 .(2013年高考湖北卷(理))设

xyz_______.二、解答题.(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD版含答案))选修4—5;不等式选讲设a,b,c均为正数,且abc1,证明: a2b2c21(Ⅰ)abbcca;(Ⅱ)1.bca

3【答案】.(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD版))选修4-5:不等式选讲

已知函数fxxa,其中a1.(I)当a=2时,求不等式fx4x4的解集;

(II)已知关于x的不等式f2xa2fx2的解集为x|1x2,求a的值.

【答案】.(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD版))不等式选讲:设不等式

31x2a(aN*)的解集为A,且A,A.2

2(1)求a的值;

(2)求函数f(x)xax2的最小值.【答案】解:(Ⅰ)因为3131A,且A,所以2a,且2a2222

解得13a,又因为aN*,所以a122

(Ⅱ)因为|x1||x2||(x1)(x2)|3

当且仅当(x1)(x2)0,即1x2时取得等号,所以f(x)的最小值为3.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD版含附加题))D.[选修4-5:

不定式选讲]本小题满分10分.已知ab>0,求证:2a3b32ab2a2b

[必做题]第22、23题,每题10分,共20分.请在相应的答题区域内作答,若多做,解答时应写出文字说明、证明过程或演算步骤.【答案】D证明:∵2ab2abab33222a32ab2(a2bb3)2aa2b2b(a2b2)

a2b2(2ab)(ab)(ab)(2ab)

又∵ab>0,∴ab>0,ab02ab0,∴(ab)(ab)(2ab)0

∴2a3b32ab2a2b0

∴2a3b32ab2a2b.(2013年高考新课标1(理))选修4—5:不等式选讲 

已知函数f(x)=|2x1||2xa|,g(x)=x3.(Ⅰ)当a=2时,求不等式f(x)

(Ⅱ)设a>-1,且当x∈[a1,)时,f(x)≤g(x),求a的取值范围.2

2【答案】当a=-2时,不等式f(x)

其图像如图所示

从图像可知,当且仅当x(0,2)时,y<0,∴原不等式解集是{x|0x2}.(Ⅱ)当x∈[a1,)时,f(x)=1a,不等式f(x)≤g(x)化为1ax3,22

4a1a,)都成立,故a2,即a≤,3222

4].3∴xa2对x∈[∴a的取值范围为(-1,10.(2013年高考湖南卷(理))在平面直角坐标系xOy中,将从点M出发沿纵、横方向到达点N的任一路径

成为M到N的一条“L路径”.如图6所示的路径MM1M2M3N与路径MN1N都是M到N的“L路径”.某地有三个新建的居民区,分别位于平面xOy内三点A(3,20),B(10,0),C(14,0)处.现计划在x轴上方区域(包含x轴)内的某一点P处修建一个文化中心

.(I)写出点P到居民区A的“L路径”长度最小值的表达式(不要求证明);

(II)若以原点O为圆心,半径为1的圆的内部是保护区,“L路径”不能进入保护区,请确定点P的位置,使其到三个居民区的“L路径”长度值和最小.【答案】解: 设点P(x,y),且y0.(Ⅰ)点P到点A(3,20)的“L路径”的最短距离d,等于水平距离垂直距离,即d|x20|,其中y0,xR.(Ⅱ)本问考查分析解决应用问题的能力,以及绝对值的基本知识.点P到A,B,C三点的“L路径”长度之和的最小值d = 水平距离之和的最小值h + 垂直距离之和的最小值v.且h和v互不影响.显然当y=1时,v = 20+1=21;显然当x[10,14]时,水平距离之和h=x –(-10)+ 14 – x + |x-3| 24,且当x=3时, h=24.因此,当P(3,1)时,d=21+24=45.所以,当点P(x,y)满足P(3,1)时,点P到A,B,C三点的“L路径”长度之和d的最小值为45.

第五篇:2013年全国高考理科数学试题分类16:不等式选讲 2

2013年全国高考理科数学试题分类汇编16:不等式选讲

一、填空题

错误!未指定书签。.(2013年普通高等学校招生统一考试重庆数学(理)试题)若关于实数x的不等式

x5x3a无解,则实数a的取值范围是_________

【答案】,8

错误!未指定书签。.(2013年高考陕西卷(理))(不等式选做题)已知a, b, m, n均为正数, 且a+b=1,mn=2, 则(am+bn)(bm+an)的最小值为_______.【答案】

2错误!未指定书签。.(2013年高考江西卷(理))(不等式选做题)在实数范围内,不等式x211的解

集为_________

【答案】0,4

2错误!未指定书签。.(2013年高考湖北卷(理))设x,y,zR,且满足:xy2z2

1,x2y3z则xyz_______.【答案】

二、解答题

错误!未指定书签。.(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理))选修4—5;不等式选讲7

设a,b,c均为正数,且abc1,证明: a2b2c21(Ⅰ)abbcca;(Ⅱ)1.bca

3【答案】

错误!未指定书签。.(2013年普通高等学校招生统一考试辽宁数学(理)试题)选修4-5:不等式选讲

已知函数fxxa,其中a1.(I)当a=2时,求不等式fx4x4的解集;

(II)已知关于x的不等式f2xa2fx2的解集为x|1x2,求a的值.【答案】



错误!未指定书签。.(2013年普通高等学校招生统一考试福建数学(理)试题)不等式选讲:设不等式

31x2a(aN*)的解集为A,且A,A.2

2(1)求a的值;

(2)求函数f(x)xax2的最小值.【答案】解:(Ⅰ)因为3131A,且A,所以2a,且2a2222

解得13a,又因为aN*,所以a1 [来源:] 22

(Ⅱ)因为|x1||x2||(x1)(x2)|3

当且仅当(x1)(x2)0,即1x2时取得等号,所以f(x)的最小值为3

错误!未指定书签。.(2013年普通高等学校招生全国统一招生考试江苏卷(数学))D.[选修4-5:不定式选

讲]本小题满分10分.3322已知ab>0,求证:2ab2abab

[必做题]第22、23题,每题10分,共20分.请在相应的答题区域内作答,若多做,解答时应写出文字说

明、证明过程或演算步骤.【答案】D证明:∵2ab2abab33222a32ab2(a2bb3)2aa2b2b(a2b2)

a2b2(2ab)(ab)(ab)(2ab)

又∵ab>0,∴ab>0,ab02ab0,∴(ab)(ab)(2ab)0

∴2ab2abab0

∴2ab2abab

错误!未指定书签。.(2013年高考新课标1(理))选修4—5:不等式选讲 33223322

已知函数f(x)=|2x1||2xa|,g(x)=x3.(Ⅰ)当a=2时,求不等式f(x)

(Ⅱ)设a>-1,且当x∈[a1,)时,f(x)≤g(x),求a的取值范围.2

2【答案】当a=-2时,不等式f(x)

其图像如图所示

从图像可知,当且仅当x(0,2)时,y<0,∴原不等式解集是{x|0x2}.(Ⅱ)当x∈[a1,)时,f(x)=1a,不等式f(x)≤g(x)化为1ax3,22

4a1a,)都成立,故a2,即a≤,3222

4].3∴xa2对x∈[∴a的取值范围为(-1,错误!未指定书签。.(2013年高考湖南卷(理))在平面直角坐标系xOy中,将从点M出发沿纵、横方向到达

点N的任一路径成为M到N的一条“L路径”.如图6所示的路径MM1M2M3N与路径MN1N都是M到N的“L路径”.某地有三个新建的居民区,分别位于平面xOy内三点A(3,20),B(10,0),C(14,0)处.现计划在x轴上方区域(包含x轴)内的某一点P处修建一个文化中心

.(I)写出点P到居民区A的“L路径”长度最小值的表达式(不要求证明);

(II)若以原点O为圆心,半径为1的圆的内部是保护区,“L路径”不能进入保护区,请确定点P的位置,使其到三个居民区的“L路径”长度值和最小.【答案】解: 设点P(x,y),且y0.(Ⅰ)点P到点A(3,20)的“L路径”的最短距离d,等于水平距离垂直距离,即d|x20|,其中y0,xR.(Ⅱ)本问考查分析解决应用问题的能力,以及绝对值的基本知识.点P到A,B,C三点的“L路径”长度之和的最小值d = 水平距离之和的最小值h + 垂直距离之和的最小值v.且h和v互不影响.显然当y=1时,v = 20+1=21;显然当x[10,14]时,水平距离之和h=x –(-10)+ 14 – x + |x-3| 24,且当x=3时, h=24.因此,当P(3,1)时,d=21+24=45.所以,当点P(x,y)满足P(3,1)时,点P到A,B,C三点的“L路径”长度之和d的最小值为45.

下载2013年全国高考理科数学试题分类:排列组合(精选5篇)word格式文档
下载2013年全国高考理科数学试题分类:排列组合(精选5篇).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    2014年全国高考理科数学试题分类17:几何证明 有答案

    2014年全国高考理科数学试题分类汇编17:几何证明一、填空题1如图,在ABC中,C900, A600,AB20,过C作ABC的外接圆的切线CD,BDCD,BD与外接圆交于点E,则DE的长为__________【答案】......

    高考理科数学试题分类17:几何证明(大全五篇)

    2013 年全国高考理科数学试题分类汇编 17:几何证明 一、填空题 1 . (2013 年普通高等学校招生统一考试重庆数学(理)试题(含答案) )如图, 在  ABC 中 , C  900 , A  600 , AB  20 ,过......

    2010年福建高考理科数学试题(推荐)

    2010年福建省高考数学试卷(理科) 收藏试卷试卷分析显示答案下载试卷 一、选择题(共10小题,每小题5分,满分50分) 1.计算sin137°cos13°+cos103°cos43°的值等于 A.12 B. 33 C. 22 D. 3......

    _2013年山西高考理科数学试题

    绝密★启用前 2013年普通高等学校招生全国统一考试(新课标Ⅰ卷) 数学(理科) 第Ⅰ卷(选择题 共50分) 一、 选择题:本大题共10小题。每小题5分,共50分。在每个小题给出的四个选项......

    2014年广东高考理科数学试题

    2014年普通高等学校招生全国统一考试(广东卷)数学(理科)试卷类型:B一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合M{1,......

    2013年各省高考理科数学试题分类17:几何证明

    高考最前线,努力努力2013年各省高考理科数学试题分类17:几何证明一、填空题错误!未指定书签。 错误!未指定书签。 (2013年高考陕西卷(理))B. (几何证明选做题) 如图, 弦AB与CD相交于......

    全国理科专业分类及大学排名

    全国理科专业分类及大学排名 1.数学: 1 北京大学 2 复旦大学 3 南开大学 4 浙江大学 5 中国科技大学 6 北京师范大学 7 清华大学8 吉林大学 9 山东大学 10 西安交通大学 2.......

    2008年高考理科数学试题(辽宁卷)

    2012年度注册会计师全国统一考试辽宁考区报名简章 根据《注册会计师全国统一考试办法》的规定,现将2012年度注册会计师全国统一考试专业阶段考试和综合阶段考试辽宁考区报名......