高考数学空间图形位置的几何证明测试(含答案)

时间:2019-05-12 17:22:34下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《高考数学空间图形位置的几何证明测试(含答案)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《高考数学空间图形位置的几何证明测试(含答案)》。

第一篇:高考数学空间图形位置的几何证明测试(含答案)

高考攻略 黄冈第二轮复习新思维数学

专题八空间图形位置的几何证明命题人;董德松易赏

一、选择题

1.若a、b是异面直线,则以下命题正确的是

A.至多有一条直线与a、b都垂直

C.过a至少有一个平面平行与bB.至多有一个平面分别与a、b平行D.过a至少有一个平面垂直与b

2.直线a与平面a成角,a是平面a的斜线,b是平面a内与a异面的任意直线,则a与b所成的角

A.最小值为,最大值为

C.最小值为,无最大值

A.mn,m∥,n∥

C.m∥n,n,m

上的动点,则直线PO、AE的位置关系

A.平行

B.最小值为2 D.23.对于直线m、n和平面、,的一个充分条件是B.mn,m,nD.m∥n,m,n4.如图28,正方体ABCDA1B1C1D1中,O是底面正方形ABCD的中心,E是D1D的中点,P是A1B1B.垂直C.相交但不垂直D.异面但不垂直

5.如图直线l、m与平面、、满足:l,l∥,m和m,那么必有

A.且lmB.且m∥C.m∥且lm

D.∥且6.若平面,l,且点P,Pl,则下列命题中的假命题是

A.过点P且垂直于的直线平行于

C.过点P且垂直于的直线在内的一个条件是

A.a∥且b ∥B.a∥且bC.a且b∥D.a且bB.过点P且垂直于l的直线在内D.过点P且垂直与l的平面垂直与

7.已知l是大小确定的一个二面角,若a,b是空间两条直线,则能是a、b所成的角为定值

8.设a、b是两条不同的直线,、是两个不同的平面,则下列四个命题

①若ab,a,则b∥

③a,,则a∥

其中正确的命题个数是

A.0个B.1个C.2个D.3个

9.在下列命题中,真命题是

A.若直线m,n都平行于平面,则m∥n

B.若直线m,n在平面内的射影依次是一个点和一条直线,且mn,则n在内或与平面平行

C.设二面角l是直二面角,若直线ml,则m

D.设m,n是异面直线,若m与平面平行,则n与相交

10.已知a,b是异面直线,直线c平行于直线a,那么c与b

A.一定是异面直线

C.不可能是平行直线

二、填空题

11.在ABC中,C90,AB8,ABC30,PC面ABC,PC4,P'是AB上一动点,则PP'的最小值为

12.如图30所示,已知三棱锥PABC中,PAPC,BC平面PAC,下列五个结论正确的是

①平面PAB平面PBC

③平面PAC平面ABC

⑤平面PBC平面ABC

13.如图31.正方体ABCDA1B1C1D1中过点A做截面,使正方体的12条棱所在直线与截面所成角相等,试写出满足这样条件的一个截面

(只需写出一个截面即可)

②若a∥,,则④若ab,a,b,则B.一定是相交直线D.不可能是相交直线②平面PAB平面ABC④平面PAC平面PAB

三、解答题

14.已知矩形ABCD中,AB1,BCa(a0),PA平面ABCD,且PA

1(1)问BC边上是否存在一点Q,使得PQQD,并说明理由

(2)若BC边上有且只有一个点Q,使得PQQD,求这时二面角QPDA的大小

15.直三棱柱ABCA1B1C1中,底面是以ABC为直角的等腰直角三角形,AC2a,BB13a,D为A1C1的中点,E为B1C的中点,在线段AA1上是否存在点F,使CF平面B1DF,若存在,求出|AF|若不存在,说明理由

16.已知棱长为1的正方体ABCDA1B1C1D1中,E为AB中点,如图3

4(1)求证:A1CBD

(2)设P为正方体对角线A1C上任意一点,问A1C与平面PEB1所成的角是否有最大值和最小值,若有,请求出;若没有,请说明理由

专题八空间图形位置的几何证明(答案)

一、1.C2.B3.C4.B5.A6.B7.D8.B9.B10.C

二、11.2三、12.①③13.平面AD1C或平面AB1D1或平面AB1C

14.解:(1)设BQx.则QCax,QPQBBAAP,QDQCCD

由((x(ax)1x2ax10欲使这个方程有解,必须a240

因此,当a2时,点Q存在;当a2时,只存在一个点

当0a2时,这样的点不存在(2)当存在唯一点Q时,a2.此时,由x22x10得x1,即Q点恰为BC之中点,由于平面PAD法向量是,设平面PQD的法向量为nn()(QCCD)120

及n()()40

11解得,2,n2,记二面角为2

2则cos

1146

615.解析:以B为坐标原点,以BA、BC、BB1分别为x轴,y轴,z轴,建立空间直角坐标系AC2a,ABC90,ABBC2a

B(0,0,0),C(0,2a,0),A(2a,0,0),A1(2a,0,3a),C1(0,2a,3a),B1(0,0,3a)

假设存在点F,要使CF平面B1DF,只要CFB1F,且CFB1D,不妨设|AF|b,则F(2a,0,b),CF(2a,2a,b),B1F(2a,0,b3a),B1D(B1a2a20,B1恒成立

B12a2b(b3a)0ba或b2a

故当|AF|a或2a时,CF平面B1DF

16.解:(1)证明:以D为坐标原点,以DA、DC、DD1分别为x轴,y轴,z轴,建立空间直角坐标系,则:

1A1(1,0,0),B1(1,1,0),C(0,1,0),B1(1,1,1)E(1,0)2

A1C(1,1,1),BD(1,1,0)

A1CBD(1,1,1),BD(1,1,0)

A1CBD

22a,a,0)22

(2)令A1PA1C,[0,1]

11BE1(0,1),EA1(0,,1),A1(1,1,1)22

1EA1A1(,,1)2

平面PEB1的法向量n(23,2,)

设A1C与平面PEB1所成角为,则sin|ACn|

123103()277

3210210当时,sin最大值为,的最大值为arcsin71515

22当1时,sin最小为,的最小值为arcsin。33

最大值与最小值均存在

第二篇:黄冈二轮8 空间图形位置的几何证明

数学

专题八

空间图形位置的几何证明

一、选择题1.若a、b是异面直线,则以下命题正确的是A.至多有一条直线与a、b都垂直C.过a至少有一个平面平行与bB.至多有一个平面分别与a、b平行D.过a至少有一个平面垂直与b2.直线a与平面a成角,a是平面a的斜线,b是平面a内与a异面的任意直线,则a与b所成的角A.最小值为,最大值为C.最小值为,无最大值A.mn,m∥,n∥C.m∥n,n,m上的动点,则直线PO、AE的位置关系A.平行B.垂直C.相交但不垂直D.异面但不垂直B.最小值为,最大值为D.无最小值,最大值为22

3.对于直线m、n和平面、,的一个充分条件是B.mn,m,nD.m∥n,m,n4.如图28,正方体ABCDA1B1C1D1中,O是底面正方形ABCD的中心,E是D1D的中点,P是A1B15.如图直线l、m与平面、、满足:l,l∥,m和m,那么必有A.且lmB.且m∥C.m∥且lmD.∥且6.若平面,l,且点P,Pl,则下列命题中的假命题是A.过点P且垂直于的直线平行于C.过点P且垂直于的直线在内的一个条件是A.a∥且b ∥B.a∥且bC.a且b∥D.a且bB.过点P且垂直于l的直线在内D.过点P且垂直与l的平面垂直与

7.已知l是大小确定的一个二面角,若a,b是空间两条直线,则能是a、b所成的角为定值8.设a、b是两条不同的直线,、是两个不同的平面,则下列四个命题①若ab,a,则b∥③a,,则a∥其中正确的命题个数是A.0个B.1个C.2个D.3个9.在下列命题中,真命题是A.若直线m,n都平行于平面,则m∥nB.若直线m,n在平面内的射影依次是一个点和一条直线,且mn,则n在内或与平面平行C.设二面角l是直二面角,若直线ml,则mD.设m,n是异面直线,若m与平面平行,则n与相交10.已知a,b是异面直线,直线c平行于直线a,那么c与bA.一定是异面直线C.不可能是平行直线

二、填空题11.在ABC中,C90,AB8,ABC30,PC面ABC,PC4,P'是AB上一动点,则PP' 的最小值为12.如图30所示,已知三棱锥PABC中,PAPC,BC平面PAC,下列五个结论正确的是①平面PAB平面PBC③平面PAC平面ABC⑤平面PBC平面ABC13.如图31.正方体ABCDA1B1C1D1中过点A做截面,使正方体的12条棱所在直线与截面所成角相等,试写出满足这样条件的一个截面(只需写出一个截面即可)②平面PAB平面ABC④平面PAC平面PABB.一定是相交直线D.不可能是相交直线②若a∥,,则④若ab,a,b,则

三、解答题14.已知矩形ABCD中,AB1,BCa(a0),PA平面ABCD,且PA1(1)问BC边上是否存在一点Q,使得PQQD,并说明理由

(2)若BC边上有且只有一个点Q,使得PQQD,求这时二面角QPDA的大小

15.直三棱柱ABCA1B1C1中,底面是以ABC为直角的等腰直角三角形,AC2a,BB13a,D为A1C1的中点,E为B1C的中点,在线段AA1上是否存在点F,使CF平面B1DF,若存在,求出|AF| 若不存在,说明理由

16.已知棱长为1的正方体ABCDA1B1C1D1中,E为AB中点,如图34(1)求证:A1CBD

(2)设P为正方体对角线A1C上任意一点,问A1C与平面PEB1所成的角是否有最大值和最小值,若有,请求出;若没有,请说明理由

专题八

空间图形位置的几何证明(答案)

一、1.C

2.B

3.C

4.B

5.A

6.B

7.D

8.B

9.B

10.C

二、11.2712.①③13.平面AD1C或平面AB1D1或平面AB1C

14.解:(1)设BQx.则QCax,QPQBBAAP,QDQCCD由QPQD(QBBAAP)(QCCD)QBQCBCCDx(ax)1x2ax10欲使这个方程有解,必须a240因此,当a2时,点Q存在;当a2时,只存在一个点当0a2时,这样的点不存在(2)当存在唯一点Q时,a2.此时,由x22x10得x1,即Q点恰为BC之中点,由于平面PAD法向量是AB,设平面PQD的法向量为nABADAP,则由nQD(ABADAP)(QCCD)120及nPD(ABADAP)(ADAP)4011解得,2,nABAD2AP,记二面角为22则cosABn|AB||n|arccos1114666615.解析:以B为坐标原点,以BA、BC、BB1分别为x轴,y轴,z轴,建立空间直角坐标系AC2a,ABC90,ABBC2aB(0,0,0),C(0,2a,0),A(2a,0,0),A1(2a,0,3a),C1(0,2a,3a),B1(0,0,3a)假设存在点F,要使CF平面B1DF,只要CFB1F,且CFB1D,不妨设|AF|b,则F(2a,0,b),CF(2a,2a,b),B1F(2a,0,b3a),B1D(CFB1Da2a20,CFB1D恒成立B1FCF2a2b(b3a)0ba或b2a故当|AF|a或2a时,CF平面B1DF16.解:(1)证明:以D为坐标原点,以DA、DC、DD1分别为x轴,y轴,z轴,建立空间直角坐标系,则:A1(1,0,0),B1(1,1,0),C(0,1,0),B1(1,1,1)E(1,A1C(1,1,1),BD(1,1,0)A1CBD(1,1,1),BD(1,1,0)A1CBD(2)令A1PA1C,[0,1]BE1(0,11,1),EA1(0,,1),A1C(1,1,1)221EPEA1A1P(,,1)2平面PEB1的法向量n(23,2,)设A1C与平面PEB1所成角为,则sin|A1Cn||A1C||n|23314(210153210)7722a,a,0)22

1,0)2当3时,sin最大值为7210,的最大值为arcsin15

22,的最小值为arcsin。33最大值与最小值均存在当1时,sin最小为

第三篇:2012高考数学几何证明选讲

几何证明选讲

模块点晴

一、知识精要

值叫做相似比(或相似系数)。

由于从定义出发判断两个三角形是否相似,需考虑

6个元素,即三组对应角是否分别相等,三组对应边是否分别成比例,显然比较麻烦。所以我们曾经给出过如下几个判定两个三角形相似的简单方法:

(1)两角对应相等,两三角形相似;

(2)两边对应成比例且夹角相等,两三角形相似;

(3)三边对应成比例,两三角形相似。

形与三角形相似。

对于任意两个三角形,如果一个三角形的两个角与另一个三角形的两个角对应

对于任意两个三角形,如果一个三角形的两边和另一个三角形的两边对应成比例,并且夹角相等,那么这两个三角形相似。简述为:两边对应成比例且夹角相等,两三角形相似。

对于任意两个三角形,如果一个三角形的三条边和另一个三角形的三条边对应

条直线平行于三角形的第三边。

1)如果两个直角三角形有一个锐角对应相等,那么它们相似;

(2)如果两个直角三角形的两条直角边对应成比例,那么它们相似。

(1)相似三角形对应高的比、对应中线的比和对应平分线的比都等于相似比;

(2)相似三角形周长的比等于相似比;

(3)相似三角形面积的比等于相似比的平方。

相似三角形外接圆的直径比、周长比等于相似比,外接圆的面积比等于相似比的平方。

它们在斜边上射影与斜边的比例中项。

°的圆周角所对的弦是直径。

圆内接四边形判定定理:如果一个四边形的对角互补,那么这个四边形的四个顶点共圆。

切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线。的比例中项。

两条切线的夹角。

二、方法秘笈

⒈几何证明选讲内容的考点虽多,主要还是集中在对圆的相关内容的考查,而圆中又主要以与切线有关的性质、圆幂定理、四点共圆这几个内容的考查为主。

⒉虽然本书内容主要是由原初三内容改编过来,而在初中,相关内容也已经删去,似乎教师教与学生学都有一定难度,但是由于学生经过两年的高中学习,逻辑性、严密性都有了较大的提高,只要教学得法,学生对这部分的学习应该并不会感到困难。

⒊紧扣课本中的例习题进行学习,重视各个定理的来龙去脉,理解其中渗透的重要的数学思想方法,因为高考试题中所采取的一些方法多来自课本中定理的证明方法及例习题的证明方法;

试题解析

一、选择题

例1.(2012北京、理科)如图.∠ACB=90º,CD⊥AB于点D,以BD为直径的圆与BC交于

点E.则()

A.CE·CB=AD·DBB.CE·CB=AD·AB C.AD·AB=CD ²D.CE·EB=CD ²

【解析】A。在ACB中,∠ACB=90º,CD⊥AB于点D,所以CD理的CD

二、填空题

例1.(2012全国、文科)如图,已知AB和AC是圆的两条弦,过点B作圆的切线与AC的延长线相交于D.过点C作BD的平行线与圆交于点E,与AB相交于点

F,AF3,FB1,EF

ADDB,由切割线定

CECB,所以CE·CB=AD·DB。

32,则线段CD的长为

【解析】如图连结BC,BE,则∠1=∠2,∠2=∠A

A1,又∠B=∠B,CBF∽ABC,CBBFCBCF,,代入数值得BC=2,ABBCABAC

AC=4,又由平行线等分线段定理得解得CD=

ACCD

AFFB,.【答案】

例2.(2012湖南、理科)如图2,过点P的直线与圆O相交于A,B两点.若PA=1,AB=2,PO=3,则圆O的半径等于

_______.PO交圆O于C,D,如图,设圆的半径为R,由割线定理知

PAPBPCPD,即1(12)(3-r)(3r),r

P

例3.(2012天津、理科)如图,已知AB和AC是圆的两条弦.过点B作圆的切线与AC的延长线相交于点D,过点C作BD的平行线与圆相交于点E,与AB相交于点F,AF=3,FB=1,EF=

32,则线段CD的长为

【解析】∵AF=3,FB=1,EF=

432

ABAF,由相交弦定理得AFFB=EFFC,所以FC=2,FC=83

又∵BD∥CE,∴

AFAB

=

FCBD,BD=

2=

83,设CD=x,则AD=4x,再由切

割线定理得BD=CDAD,即x4x=(练习题

1.(2012湖北、理科)),解得x=,故CD=

43.如图,点D在⊙O的弦AB上移动,AB=4,连接OD,过点D作OD的垂线交⊙O于点C,则CD的最大值为_____________。

答案:

22.(2012陕西、文理科)如图,在圆O中,直径AB与弦CD垂直,垂足为E,EFDB,垂足为F,若AB6,AE1,则DFDB5。

三、解答题

例1(2012年全国新课标卷)如图,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC的外接圆于F,G两点,若CF//AB,证明:

G

F

(Ⅰ)CD=BC;

(Ⅱ)△BCD∽△GBD

【解析】(1)CF//AB,DF//BCCF//BD//ADCDBFCF//ABAFBCBCCD

(2)BC//GFBGFCBD

BC//GFGDEBGDDBCBDCBCDGBD

O相交例2.(2012辽宁、文理科)如图,⊙O和⊙

/

于A,B两点,过A作两圆的切线分别交两圆于C,D

两点,连接DB并延长交⊙O于点E。

证明

(Ⅰ)ACBDADAB;(Ⅱ)ACAE。

例3.(2012江苏、理科)如图,AB是圆O的直径,D,E为圆上位于AB异侧的两点,连结

BD并延长至点C,使BD = DC,连结AC,AE,DE.

求证:EC.

【解析】

21-A题)

第四篇:初二数学几何证明

1.已知△ABC是等边三角形,D是BC边延长线上一点,以AD为边作等边三角形ADE。连接CE.求证:CE平分∠ACD

E

A

BCD

2.已知:如图,AD是△ABC的角平分线,E是AB边上的一点,AE=AC,EF∥BC交AC于点F.求证:∠DEC=∠FEC

.3.已知△ABC、△DBE、△CEF是等边三角形,求证:四边形ADEF是平行四边形.A

D

F

BC

4.如图,已知在△ABC中,∠A=90°,AB=AC, ∠B的平分线与AC交于点D,过点C作CH⊥BD,H为垂足。试说明BD=2CH。

A

21C

5.在△ABC中,∠C=90°,AC=BC,过C点在△ABC形外作直线MN,AM⊥MN于M,BN⊥MN于N.

(1)求证:

MN=AM+BN

(2)△ABC内,∠ACB=90°,AC=BC若过C点在△ABC内作直线MN,当MN位于何位置时,AM,BN和MN满足MN=AM-BN,并证明之.

6.“等腰三角形两腰上的高相等”

(1)根据上述命题,画出相关图形,并写出“已知’’“求证”,不必证明.(2)写出上述命题的逆命题,并加以证明.

7.已知:如图,在Rt△ABC中,∠ACB=900,D、E、F分别是AB、BC、AC上的点,DE、DC、DF将△ABC分成四个全等的三角形,△ABC的周长是1 2厘米,求由DF、CD、DE所分成的各个小三角形的周长.

8.如图,∠ABC=∠ADC=90°,E是AC的中点,EF⊥BD,垂足为F.求证:BF=DF.

B

FA

D

C

9.已知,如图正方形ABCD中,E、F分别是AB、BC的中点,AF和DE交于点P. 求证:

CP=CD

10.如图△ABC中,BD⊥AC,CE⊥ AB,垂足分别为D、E,BD、CE相交于H,∠A=60°.DH =2,EH=1(1)求BD和CE的长.

(2)若∠ACB= 45°,求△ABC的面积.

11.如图,△ABC中,AD是∠BAC内的一条射线,BE⊥AD于E,CF⊥AD于F,点M 是BC的中点.求证:EM=FM

A

B

E

C

12.中国古代的数学家们不仅很早就发现并应用勾股定理,最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽。赵爽创制了一幅“勾股圆方图”,用形数结合的方法,给出了勾股定理的详细证明。你能根据这幅“勾股圆方图”证明勾股定理吗?(图中4个直角三角形全等)

13.如图甲是第七届国际数学教育大会(简称ICME~7)的会徽,会徽的主体图案是由如图乙的一连串直角三角形演化而成的其中OA1A1A2A2A3A7A81,如果把图乙中的直角三角形继续作下去,细心观察图形,认真分析各式,然后解答问题:

A8

A

3ICME-7

21图甲图乙

()12,S1

;(2)13,S2

;(3)14,S3

;„„

(1)请用含有n(n是正整数)的等式表示上述变化规律;(2)推算出OA10的长;

2222

(3)求出S1S2S3S10的值。

1.如图,在△ABC中,∠

A=90°,ABAC,BD平分∠ABC交AC于点D,若AB2cm.求:AD的长,2.在Rt△ABC中,∠C=90°,中线AD的长为7,中线BE的长为4.求:AB的长 3.四边形中,∠A=60

°,∠B=∠D=90°,AB2,CD1.(1)求BC、AD的长(2)

求四边形ABCD的面积.

第五篇:中考数学几何证明题「含答案」

重庆中考(往届)数学24题专题练习

1、如图,等腰梯形ABCD中,AD∥BC,AB=DC,E为AD中点,连接BE,CE

(1)求证:BE=CE;

(2)若∠BEC=90°,过点B作BF⊥CD,垂足为点F,交CE于点G,连接DG,求证:BG=DG+CD.

在BG上取BH=AB=CD,连EH,显然△ABE与△CDE全等,则∠ABE=∠DCE,∠AEB=∠DEC

又∠BEC=90°=∠BFC,对顶角∠BGE=∠CGF,故∠FBE=∠DCE,所以∠ABE=∠FBE

在BF上取BH=AB,连接EH,由BH=AB,∠ABE=∠FBE,BE=BE,故△ABE与△HBE全等

故∠AEB=∠HEB,AE=EH

而∠AEB+∠DEC+∠BEC=180°,∠AEB=∠DEC,∠BEC=90°

所以∠AEB=∠DEC=45°=∠HEB

故∠AEH=∠AEB+∠HEB=90°=∠HED

同理,∠DEG=45°=∠HEG

EH=AE=ED,EG=EG

故△HEG与△FEG全等,所以HG=DG

即BG=BH+HG=AB+DG=DG+CD2、如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,E为AB延长线上一点,连接ED,与BC交于点H.过E作CD的垂线,垂足为CD上的一点F,并与BC交于点G.已知G为CH的中点.

(1)若HE=HG,求证:△EBH≌△GFC;

(2)若CD=4,BH=1,求AD的长.

3、如图,梯形ABCD中,AB∥CD,AD=DC=BC,∠DAB=60°,E是对角线AC延长线上一点,F是AD延长线上的一点,且EB⊥AB,EF⊥AF.

(1)当CE=1时,求△BCE的面积;

(2)求证:BD=EF+CE.

4、如图.在平行四边形ABCD中,O为对角线的交点,点E为线段BC延长线上的一点,且.过点E

EF∥CA,交CD于点F,连接OF.

(1)求证:OF∥BC;

(2)如果梯形OBEF是等腰梯形,判断四边形ABCD的形状,并给出证明.

5、如图,梯形ABCD中,AD∥BC,∠ABC=90°,BF⊥CD于F,延长BF交AD的延长线于E,延长CD交BA的延长线于G,且DG=DE,AB=,CF=6.

(1)求线段CD的长;

(2)H在边BF上,且∠HDF=∠E,连接CH,求证:∠BCH=45°﹣∠EBC.

6、如图,直角梯形ABCD中,AD∥BC,∠B=90°,∠D=45°.

(1)若AB=6cm,求梯形ABCD的面积;

(2)若E、F、G、H分别是梯形ABCD的边AB、BC、CD、DA上一点,且满足EF=GH,∠EFH=∠FHG,求证:HD=BE+BF.

7、已知:如图,ABCD中,对角线AC,BD相交于点O,延长CD至F,使DF=CD,连接BF交AD于点E.

(1)求证:AE=ED;

(2)若AB=BC,求∠CAF的度数.

8、已知:如图,在正方形ABCD中,点G是BC延长线上一点,连接AG,分别交BD、CD于点E、F.

(1)求证:∠DAE=∠DCE;

(2)当CG=CE时,试判断CF与EG之间有怎样的数量关系?并证明你的结论.

9、如图,已知正方形ABCD,点E是BC上一点,点F是CD延长线上一点,连接EF,若BE=DF,点P是EF的中点.

(1)求证:DP平分∠ADC;

(2)若∠AEB=75°,AB=2,求△DFP的面积.

10、如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,BD=BC,E为CD的中点,交BC的延长线于F;

(1)证明:EF=EA;

(2)过D作DG⊥BC于G,连接EG,试证明:EG⊥AF.

11、如图,直角梯形ABCD中,∠DAB=90°,AB∥CD,AB=AD,∠ABC=60度.以AD为边在直角梯形ABCD外作等边三角形ADF,点E是直角梯形ABCD内一点,且∠EAD=∠EDA=15°,连接EB、EF.

(1)求证:EB=EF;

(2)延长FE交BC于点G,点G恰好是BC的中点,若AB=6,求BC的长.

12、如图,在梯形ABCD中,AD∥BC,AB=DC=AD,∠C=60°,AE⊥BD于点E,F是CD的中点,DG是梯形ABCD的高.

(1)求证:AE=GF;

(2)设AE=1,求四边形DEGF的面积.

13、已知,如图在直角梯形ABCD中,AD∥BC,∠ABC=90°,DE⊥AC于点F,交BC于点G,交AB的延长线于点E,且AE=AC,连AG.

(1)求证:FC=BE;

(2)若AD=DC=2,求AG的长.

14、如图,直角梯形ABCD中,AD∥BC,∠ABC=90°,点E是AB边上一点,AE=BC,DE⊥EC,取DC的中点F,连接AF、BF.

(1)求证:AD=BE;

(2)试判断△ABF的形状,并说明理由.

15、如图,在直角梯形ABCD中,AB∥CD,AD⊥DC,AB=BC,且AE⊥BC.

(1)求证:AD=AE;

(2)若AD=8,DC=4,求AB的长.

16、如图,已知梯形ABCD中,AD∥CB,E,F分别是BD,AC的中点,BD平分∠ABC.

(1)求证:AE⊥BD;

(2)若AD=4,BC=14,求EF的长.

17、如图,在梯形ABCD中,AD∥BC,∠D=90°,BE⊥AC,E为垂足,AC=BC.

(1)求证:CD=BE;

(2)若AD=3,DC=4,求AE.

18、如图,在梯形ABCD中,AD∥BC,AB⊥AC,∠B=45°,AD=1,BC=4,求DC的长.

19、已知梯形ABCD中,AD∥BC,AB=BC=DC,点E、F分别在AD、AB上,且.

(1)求证:BF=EF﹣ED;

(2)连接AC,若∠B=80°,∠DEC=70°,求∠ACF的度数.

20、如图,梯形ABCD中,AD∥BC,点E在BC上,AE=BE,且AF⊥AB,连接EF.

(1)若EF⊥AF,AF=4,AB=6,求

AE的长.

(2)若点F是CD的中点,求证:CE=BE﹣AD.

21、如图,四边形ABCD为等腰梯形,AD∥BC,AB=CD,对角线AC、BD交于点O,且AC⊥BD,DH⊥BC.

(1)求证:DH=(AD+BC);

(2)若AC=6,求梯形ABCD的面积.

22、已知,如图,△ABC是等边三角形,过AC边上的点D作DG∥BC,交AB于点G,在GD的延长线上取点E,使DE=DC,连接AE,BD.

(1)求证:△AGE≌△DAB;

(2)过点E作EF∥DB,交BC于点F,连AF,求∠AFE的度数.

23、如图,梯形ABCD中,AD∥BC,DE=EC,EF∥AB交BC于点F,EF=EC,连接DF.

(1)试说明梯形ABCD是等腰梯形;

(2)若AD=1,BC=3,DC=,试判断△DCF的形状;

(3)在条件(2)下,射线BC上是否存在一点P,使△PCD是等腰三角形,若存在,请直接写出PB的长;若不存在,请说明理由.

24、如图,在梯形ABCD中,AD∥BC,∠ABC=∠BCD=60°,AD=DC,E、F分别在AD、DC的延长线上,且DE=CF.AF交BE于P.

(1)证明:△ABE≌△DAF;

(2)求∠BPF的度数.

25、如图,在梯形ABCD中,AD∥BC,AB=AD=DC,BD⊥DC,将BC延长至点F,使CF=CD.

(1)求∠ABC的度数;

(2)如果BC=8,求△DBF的面积?

26、如图,梯形ABCD中,AD∥BC,AB=DC=10cm,AC交BD于G,且∠AGD=60°,E、F分别为CG、AB的中点.

(1)求证:△AGD为正三角形;

(2)求EF的长度.

27、已知,如图,AD∥BC,∠ABC=90°,AB=BC,点E是AB上的点,∠ECD=45°,连接ED,过D作DF⊥BC于F.

(1)若∠BEC=75°,FC=3,求梯形ABCD的周长.

(2)求证:ED=BE+FC.

28、已知:如图,梯形ABCD中,AD∥BC,E是AB的中点,直线CE交DA的延长线于点F.

(1)求证:△BCE≌△AFE;

(2)若AB⊥BC且BC=4,AB=6,求EF的长.

29、已知:如图,在梯形ABCD中,AD∥BC,BC=DC,CF平分∠BCD,DF∥AB,BF的延长线交DC于点E.

求证:

(1)△BFC≌△DFC;

(2)AD=DE;

(3)若△DEF的周长为6,AD=2,BC=5,求梯形ABCD的面积.

30、如图,梯形ABCD中,AD∥BC.∠C=90°,且AB=AD.连接BD,过A点作BD的垂线,交BC于E.

(1)求证:四边形ABED是菱形;

(2)如果EC=3cm,CD=4cm,求梯形ABCD的面积.

参考答案

1、如图,等腰梯形ABCD中,AD∥BC,AB=DC,E为AD中点,连接BE,CE

(1)求证:BE=CE;

(2)若∠BEC=90°,过点B作BF⊥CD,垂足为点F,交CE于点G,连接DG,求证:BG=DG+CD.

证明:(1)已知等腰梯形ABCD中,AD∥BC,AB=DC,E为AD中点,∴AB=DC,∠BAE=∠CDE,AE=DE,∴△BAE≌△CDE,∴BE=CE;

(2)延长CD和BE的延长线交于H,∵BF⊥CD,∠HEC=90°,∴∠EBF+∠H=∠ECH+∠H=90°

∴∠EBF=∠ECH,又∠BEC=∠CEH=90°,BE=CE(已证),∴△BEG≌△CEH,∴EG=EH,BG=CH=DH+CD,∵△BAE≌△CDE(已证),∴∠AEB=∠GED,∠HED=∠AEB,∴∠GED=∠HED,又EG=EH(已证),ED=ED,∴△GED≌△HED,∴DG=DH,∴BG=DG+CD.

2、如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,E为AB延长线上一点,连接ED,与BC交于点H.过E作CD的垂线,垂足为CD上的一点F,并与BC交于点G.已知G为CH的中点.

(1)若HE=HG,求证:△EBH≌△GFC;

(2)若CD=4,BH=1,求AD的长.

(1)证明:∵HE=HG,∴∠HEG=∠HGE,∵∠HGE=∠FGC,∠BEH=∠HEG,∴∠BEH=∠FGC,∵G是HC的中点,∴HG=GC,∴HE=GC,∵∠HBE=∠CFG=90°.

∴△EBH≌△GFC;

(2)解:∵ED平分∠AEF,∠A=∠DFE=90°,∴AD=DF,∵DF=DC﹣FC,∵△EBH≌△GFC,∴FC=BH=1,∴AD=4﹣1=3.

3、如图,梯形ABCD中,AB∥CD,AD=DC=BC,∠DAB=60°,E是对角线AC延长线上一点,F是AD延长线上的一点,且EB⊥AB,EF⊥AF.

(1)当CE=1时,求△BCE的面积;

(2)求证:BD=EF+CE.

(2)过E点作EM⊥DB于点M,四边形FDME是矩形,FE=DM,∠BME=∠BCE=90°,∠BEC=∠MBE=60°,△BME≌△ECB,BM=CE,继而可证明BD=DM+BM=EF+CE.

(1)解:∵AD=CD,∴∠DAC=∠DCA,∵DC∥AB,∴∠DCA=∠CAB,∴,∵DC∥AB,AD=BC,∴∠DAB=∠CBA=60°,∴∠ACB=180°﹣(∠CAB+∠CBA)=90°,∴∠BCE=180°﹣∠ACB=90°,∵BE⊥AB,∴∠ABE=90°,∴∠CBE=∠ABE﹣∠ABC=30°,在Rt△BCE中,BE=2CE=2,∴…(5分)

(2)证明:过E点作EM⊥DB于点M,∴四边形FDME是矩形,∴FE=DM,∵∠BME=∠BCE=90°,∠BEC=∠MBE=60°,∴△BME≌△ECB,∴BM=CE,∴BD=DM+BM=EF+CE…(10分)

4、如图.在平行四边形ABCD中,O为对角线的交点,点E为线段BC延长线上的一点,且.过点E作EF∥CA,交CD于点F,连接OF.

(1)求证:OF∥BC;

(2)如果梯形OBEF是等腰梯形,判断四边形ABCD的形状,并给出证明.

解答:(1)证明:延长EF交AD于G(如图),在平行四边形ABCD中,AD∥BC,AD=BC,∵EF∥CA,EG∥CA,∴四边形ACEG是平行四边形,∴AG=CE,又∵,AD=BC,∴,∵AD∥BC,∴∠ADC=∠ECF,在△CEF和△DGF中,∵∠CFE=∠DFG,∠ADC=∠ECF,CE=DG,∴△CEF≌△DGF(AAS),∴CF=DF,∵四边形ABCD是平行四边形,∴OB=OD,∴OF∥BE.

(2)解:如果梯形OBEF是等腰梯形,那么四边形ABCD是矩形.

证明:∵OF∥CE,EF∥CO,∴四边形OCEF是平行四边形,∴EF=OC,又∵梯形OBEF是等腰梯形,∴BO=EF,∴OB=OC,∵四边形ABCD是平行四边形,∴AC=2OC,BD=2BO.

∴AC=BD,∴平行四边形ABCD是矩形.

5、如图,梯形ABCD中,AD∥BC,∠ABC=90°,BF⊥CD于F,延长BF交AD的延长线于E,延长CD交BA的延长线于G,且DG=DE,AB=,CF=6.

(1)求线段CD的长;

(2)H在边BF上,且∠HDF=∠E,连接CH,求证:∠BCH=45°﹣∠EBC.

(1)解:连接BD,由∠ABC=90°,AD∥BC得∠GAD=90°,又∵BF⊥CD,∴∠DFE=90°

又∵DG=DE,∠GDA=∠EDF,∴△GAD≌△EFD,∴DA=DF,又∵BD=BD,∴Rt△BAD≌Rt△BFD(HL),∴BF=BA=,∠ADB=∠BDF

又∵CF=6,∴BC=,又∵AD∥BC,∴∠ADB=∠CBD,∴∠BDF=∠CBD,∴CD=CB=8.

(2)证明:∵AD∥BC,∴∠E=∠CBF,∵∠HDF=∠E,∴∠HDF=∠CBF,由(1)得,∠ADB=∠CBD,∴∠HDB=∠HBD,∴HD=HB,由(1)得CD=CB,∴△CDH≌△CBH,∴∠DCH=∠BCH,∴∠BCH=∠BCD==.

6、如图,直角梯形ABCD中,AD∥BC,∠B=90°,∠D=45°.

(1)若AB=6cm,求梯形ABCD的面积;

(2)若E、F、G、H分别是梯形ABCD的边AB、BC、CD、DA上一点,且满足EF=GH,∠EFH=∠FHG,求证:HD=BE+BF.

解:(1)连AC,过C作CM⊥AD于M,如图,在Rt△ABC中,AB=6,sin∠ACB==,∴AC=10,∴BC=8,在Rt△CDM中,∠D=45°,∴DM=CM=AB=6,∴AD=6+8=14,∴梯形ABCD的面积=•(8+14)•6=66(cm2);

(2)证明:过G作GN⊥AD,如图,∵∠D=45°,∴△DNG为等腰直角三角形,∴DN=GN,又∵AD∥BC,∴∠BFH=∠FHN,而∠EFH=∠FHG,∴∠BFE=∠GHN,∵EF=GH,∴Rt△BEF≌Rt△NGH,∴BE=GN,BF=HN,∴DA=AN+DN=AN+DG=BF+BE.

7、已知:如图,▱ABCD中,对角线AC,BD相交于点O,延长CD至F,使DF=CD,连接BF交AD于点E.

(1)求证:AE=ED;

(2)若AB=BC,求∠CAF的度数.

(1)证明:如图.

∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.

∵DF=CD,∴AB∥DF.

∵DF=CD,∴AB=DF.

∴四边形ABDF是平行四边形,∴AE=DE.

(2)解:∵四边形ABCD是平行四边形,且AB=BC,∴四边形ABCD是菱形.

∴AC⊥BD.

∴∠COD=90°.

∵四边形ABDF是平行四边形,∴AF∥BD.

∴∠CAF=∠COD=90°.

8、已知:如图,在正方形ABCD中,点G是BC延长线上一点,连接AG,分别交BD、CD于点E、F.

(1)求证:∠DAE=∠DCE;

(2)当CG=CE时,试判断CF与EG之间有怎样的数量关系?并证明你的结论.

(1)证明:在△DAE和△DCE中,∠ADE=∠CDE(正方形的对角线平分对角),ED=DE(公共边),AE=CE(正方形的四条边长相等),∴△DAE≌△DCE

(SAS),∴∠DAE=∠DCE(全等三角形的对应角相等);

(2)解:如图,由(1)知,△DAE≌△DCE,∴AE=EC,∴∠EAC=∠ECA(等边对等角);

又∵CG=CE(已知),∴∠G=∠CEG(等边对等角);

而∠CEG=2∠EAC(外角定理),∠ECB=2∠CEG(外角定理),∴4∠EAC﹣∠ECA=∠ACB=45°,∴∠G=∠CEG=30°;

过点C作CH⊥AG于点H,∴∠FCH=30°,∴在直角△ECH中,EH=CH,EG=2CH,在直角△FCH中,CH=CF,∴EG=2×CF=3CF.

9、如图,已知正方形ABCD,点E是BC上一点,点F是CD延长线上一点,连接EF,若BE=DF,点P是EF的中点.

(1)求证:DP平分∠ADC;

(2)若∠AEB=75°,AB=2,求△DFP的面积.

(1)证明:连接PC.

∵ABCD是正方形,∴∠ABE=∠ADF=90°,AB=AD.

∵BE=DF,∴△ABE≌△ADF.(SAS)

∴∠BAE=∠DAF,AE=AF.

∴∠EAF=∠BAD=90°.

∵P是EF的中点,∴PA=EF,PC=EF,∴PA=PC.

AD=CD,PD公共,∴△PAD≌△PCD,(SSS)

∴∠ADP=∠CDP,即DP平分∠ADC;

(2)作PH⊥CF于H点.

∵P是EF的中点,∴PH=EC.

设EC=x.

由(1)知△EAF是等腰直角三角形,∴∠AEF=45°,∴∠FEC=180°﹣45°﹣75°=60°,∴EF=2x,FC=x,BE=2﹣x.

在Rt△ABE中,22+(2﹣x)2=(x)2解得

x1=﹣2﹣2(舍去),x2=﹣2+2.

∴PH=﹣1+,FD=(﹣2+2)﹣2=﹣2+4.

∴S△DPF=(﹣2+4)×=3﹣5.

10、如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,BD=BC,E为CD的中点,交BC的延长线于F;

(1)证明:EF=EA;

(2)过D作DG⊥BC于G,连接EG,试证明:EG⊥AF.

(1)证明:

∵AD∥BC,∴∠DAE=∠F,∠ADE=∠FCE.

∵E为CD的中点,∴ED=EC.

∴△ADE≌△FCE.

∴EF=EA.(5分)

(2)解:连接GA,∵AD∥BC,∠ABC=90°,∴∠DAB=90°.

∵DG⊥BC,∴四边形ABGD是矩形.

∴BG=AD,GA=BD.

∵BD=BC,∴GA=BC.

由(1)得△ADE≌△FCE,∴AD=FC.

∴GF=GC+FC=GC+AD=GC+BG=BC=GA.

∵由(1)得EF=EA,∴EG⊥AF.(5分)

11、如图,直角梯形ABCD中,∠DAB=90°,AB∥CD,AB=AD,∠ABC=60度.以AD为边在直角梯形ABCD外作等边三角形ADF,点E是直角梯形ABCD内一点,且∠EAD=∠EDA=15°,连接EB、EF.

(1)求证:EB=EF;

(2)延长FE交BC于点G,点G恰好是BC的中点,若AB=6,求BC的长.

(1)证明:∵△ADF为等边三角形,∴AF=AD,∠FAD=60°(1分)

∵∠DAB=90°,∠EAD=15°,AD=AB(2分)

∴∠FAE=∠BAE=75°,AB=AF,(3分)

∵AE为公共边

∴△FAE≌△BAE(4分)

∴EF=EB(5分)

(2)解:如图,连接EC.(6分)

∵在等边三角形△ADF中,∴FD=FA,∵∠EAD=∠EDA=15°,∴ED=EA,∴EF是AD的垂直平分线,则∠EFA=∠EFD=30°.(7分)

由(1)△FAE≌△BAE知∠EBA=∠EFA=30°.

∵∠FAE=∠BAE=75°,∴∠BEA=∠BAE=∠FEA=75°,∴BE=BA=6.

∵∠FEA+∠BEA+∠GEB=180°,∴∠GEB=30°,∵∠ABC=60°,∴∠GBE=30°

∴GE=GB.(8分)

∵点G是BC的中点,∴EG=CG

∵∠CGE=∠GEB+∠GBE=60°,∴△CEG为等边三角形,∴∠CEG=60°,∴∠CEB=∠CEG+∠GEB=90°(9分)

∴在Rt△CEB中,BC=2CE,BC2=CE2+BE2

∴CE=,∴BC=(10分);

解法二:过C作CQ⊥AB于Q,∵CQ=AB=AD=6,∵∠ABC=60°,∴BC=6÷=4.

12、如图,在梯形ABCD中,AD∥BC,AB=DC=AD,∠C=60°,AE⊥BD于点E,F是CD的中点,DG是梯形ABCD的高.

(1)求证:AE=GF;

(2)设AE=1,求四边形DEGF的面积.

(1)证明:∵AB=DC,∴梯形ABCD为等腰梯形.

∵∠C=60°,∴∠BAD=∠ADC=120°,又∵AB=AD,∴∠ABD=∠ADB=30°.

∴∠DBC=∠ADB=30°.

∴∠BDC=90°.(1分)

由已知AE⊥BD,∴AE∥DC.(2分)

又∵AE为等腰三角形ABD的高,∴E是BD的中点,∵F是DC的中点,∴EF∥BC.

∴EF∥AD.

∴四边形AEFD是平行四边形.(3分)

∴AE=DF(4分)

∵F是DC的中点,DG是梯形ABCD的高,∴GF=DF,(5分)

∴AE=GF.(6分)

(2)解:在Rt△AED中,∠ADB=30°,∵AE=1,∴AD=2.

在Rt△DGC中∠C=60°,并且DC=AD=2,∴DG=.(8分)

由(1)知:在平行四边形AEFD中EF=AD=2,又∵DG⊥BC,∴DG⊥EF,∴四边形DEGF的面积=EF•DG=.(10分)

13、已知,如图在直角梯形ABCD中,AD∥BC,∠ABC=90°,DE⊥AC于点F,交BC于点G,交AB的延长线于点E,且AE=AC,连AG.

(1)求证:FC=BE;

(2)若AD=DC=2,求AG的长.

解答:(1)证明:∵∠ABC=90°,DE⊥AC于点F,∴∠ABC=∠AFE.

∵AC=AE,∠EAF=∠CAB,∴△ABC≌△AFE,∴AB=AF.

∴AE﹣AB=AC﹣AF,即FC=BE;

(2)解:∵AD=DC=2,DF⊥AC,∴AF=AC=AE.

∴AG=CG,∴∠E=30°.

∵∠EAD=90°,∴∠ADE=60°,∴∠FAD=∠E=30°,∴FC=,∵AD∥BC,∴∠ACG=∠FAD=30°,∴CG=2,∴AG=2.

14、如图,直角梯形ABCD中,AD∥BC,∠ABC=90°,点E是AB边上一点,AE=BC,DE⊥EC,取DC的中点F,连接AF、BF.

(1)求证:AD=BE;

(2)试判断△ABF的形状,并说明理由.

(1)证明:∵AD∥BC,∴∠BAD+∠ABC=180°,∵∠ABC=90°,∴∠BAD=∠ABC=90°,∵DE⊥EC,∴∠AED+∠BEC=90°

∵∠AED+∠ADE=90°,∴∠BEC=∠ADE,∵∠DAE=∠EBC,AE=BC,∴△EAD≌△EBC,∴AD=BE.

(2)答:△ABF是等腰直角三角形.

理由是:延长AF交BC的延长线于M,∵AD∥BM,∴∠DAF=∠M,∵∠AFD=∠CFM,DF=FC,∴△ADF≌△MFC,∴AD=CM,∵AD=BE,∴BE=CM,∵AE=BC,∴AB=BM,∴△ABM是等腰直角三角形,∵△ADF≌△MFC,∴AF=FM,∴∠ABC=90°,∴BF⊥AM,BF=AM=AF,∴△AFB是等腰直角三角形.

15、(2011•潼南县)如图,在直角梯形ABCD中,AB∥CD,AD⊥DC,AB=BC,且AE⊥BC.

(1)求证:AD=AE;

(2)若AD=8,DC=4,求AB的长.

解答:(1)证明:连接AC,∵AB∥CD,∴∠ACD=∠BAC,∵AB=BC,∴∠ACB=∠BAC,∴∠ACD=∠ACB,∵AD⊥DC,AE⊥BC,∴∠D=∠AEC=90°,∵AC=AC,∴,∴△ADC≌△AEC,(AAS)

∴AD=AE;

(2)解:由(1)知:AD=AE,DC=EC,设AB=x,则BE=x﹣4,AE=8,在Rt△ABE中∠AEB=90°,由勾股定理得:82+(x﹣4)2=x2,解得:x=10,∴AB=10.

说明:依据此评分标准,其它方法如:过点C作CF⊥AB用来证明和计算均可得分.

16、如图,已知梯形ABCD中,AD∥CB,E,F分别是BD,AC的中点,BD平分∠ABC.

(1)求证:AE⊥BD;

(2)若AD=4,BC=14,求EF的长.

(1)证明:∵AD∥CB,∴∠ADB=∠CBD,又BD平分∠ABC,∴∠ABD=∠CBD,∴∠ADB=∠ABD,∴AB=AD,∴△ABD是等腰三角形,已知E是BD的中点,∴AE⊥BD.

(2)解:延长AE交BC于G,∵BD平分∠ABC,∴∠ABE=∠GBE,又∵AE⊥BD(已证),∴∠AEB=∠GEB,BE=BE,∴△ABE≌△GBE,∴AE=GE,BG=AB=AD,又F是AC的中点(已知),所以由三角形中位线定理得:

EF=CG=(BC﹣BG)=(BC﹣AD)

=×(14﹣4)=5.

答:EF的长为5.

17、如图,在梯形ABCD中,AD∥BC,∠D=90°,BE⊥AC,E为垂足,AC=BC.

(1)求证:CD=BE;

(2)若AD=3,DC=4,求AE.

(1)证明:∵AD∥BC,∴∠DAC=∠BCE,而BE⊥AC,∴∠D=∠BEC=90°,AC=BC,∴△BCE≌△CAD.

∴CD=BE.

(2)解:在Rt△ADC中,根据勾股定理得AC==5,∵△BCE≌△CAD,∴CE=AD=3.

∴AE=AC﹣CE=2.

18、如图,在梯形ABCD中,AD∥BC,AB⊥AC,∠B=45°,AD=1,BC=4,求DC的长.

解:如图,过点D作DF∥AB,分别交AC,BC于点E,F.(1分)

∵AB⊥AC,∴∠AED=∠BAC=90度.

∵AD∥BC,∴∠DAE=180°﹣∠B﹣∠BAC=45度.

在Rt△ABC中,∠BAC=90°,∠B=45°,BC=4,∴AC=BC•sin45°=4×=2(2分)

在Rt△ADE中,∠AED=90°,∠DAE=45°,AD=1,∴DE=AE=.∴CE=AC﹣AE=.(4分)

在Rt△DEC中,∠CED=90°,∴DC==.(5分)

19、已知梯形ABCD中,AD∥BC,AB=BC=DC,点E、F分别在AD、AB上,且.

(1)求证:BF=EF﹣ED;

(2)连接AC,若∠B=80°,∠DEC=70°,求∠ACF的度数.

证明:∵FC=F′C,EC=EC,∠ECF'=∠BCF+∠DCE=∠ECF,∴△FCE≌△F′CE,∴EF′=EF=DF′+ED,∴BF=EF﹣ED;

(2)解:∵AB=BC,∠B=80°,∴∠ACB=50°,由(1)得∠FEC=∠DEC=70°,∴∠ECB=70°,而∠B=∠BCD=80°,∴∠DCE=10°,∴∠BCF=30°,∴∠ACF=∠BCA﹣∠BCF=20°.

20、如图,梯形ABCD中,AD∥BC,点E在BC上,AE=BE,且AF⊥AB,连接EF.

(1)若EF⊥AF,AF=4,AB=6,求

AE的长.

(2)若点F是CD的中点,求证:CE=BE﹣AD.

解:(1)作EM⊥AB,交AB于点M.∵AE=BE,EM⊥AB,∴AM=BM=×6=3;

∵∠AME=∠MAF=∠AFE=90°,∴四边形AMEF是矩形,∴EF=AM=3;

在Rt△AFE中,AE==5;

(2)延长AF、BC交于点N.

∵AD∥EN,∴∠DAF=∠N;

∵∠AFD=∠NFC,DF=FC,∴△ADF≌△NCF(AAS),∴AD=CN;

∵∠B+∠N=90°,∠BAE+∠EAN=90°,又AE=BE,∠B=∠BAE,∴∠N=∠EAN,AE=EN,∴BE=EN=EC+CN=EC+AD,∴CE=BE﹣AD.

.21、如图,四边形ABCD为等腰梯形,AD∥BC,AB=CD,对角线AC、BD交于点O,且AC⊥BD,DH⊥BC.

(1)求证:DH=(AD+BC);

(2)若AC=6,求梯形ABCD的面积.

解:(1)证明:过D作DE∥AC交BC延长线于E,(1分)

∵AD∥BC,∴四边形ACED为平行四边形.(2分)

∴CE=AD,DE=AC.

∵四边形ABCD为等腰梯形,∴BD=AC=DE.

∵AC⊥BD,∴DE⊥BD.

∴△DBE为等腰直角三角形.(4分)

∵DH⊥BC,∴DH=BE=(CE+BC)=(AD+BC).(5分)

(2)∵AD=CE,∴.(7分)

∵△DBE为等腰直角三角形BD=DE=6,∴.

∴梯形ABCD的面积为18.(8分)

注:此题解题方法并不唯一.

22、已知,如图,△ABC是等边三角形,过AC边上的点D作DG∥BC,交AB于点G,在GD的延长线上取点E,使DE=DC,连接AE,BD.

(1)求证:△AGE≌△DAB;

(2)过点E作EF∥DB,交BC于点F,连AF,求∠AFE的度数.

(1)证明:∵△ABC是等边三角形,DG∥BC,∴∠AGD=∠ABC=60°,∠ADG=∠ACB=60°,且∠BAC=60°,∴△AGD是等边三角形,AG=GD=AD,∠AGD=60°.

∵DE=DC,∴GE=GD+DE=AD+DC=AC=AB,∵∠AGD=∠BAD,AG=AD,∴△AGE≌△DAB;

(2)解:由(1)知AE=BD,∠ABD=∠AEG.

∵EF∥DB,DG∥BC,∴四边形BFED是平行四边形.

∴EF=BD,∴EF=AE.

∵∠DBC=∠DEF,∴∠ABD+∠DBC=∠AEG+∠DEF,即∠AEF=∠ABC=60°.

∴△AFE是等边三角形,∠AFE=60°.

23、如图,梯形ABCD中,AD∥BC,DE=EC,EF∥AB交BC于点F,EF=EC,连接DF.

(1)试说明梯形ABCD是等腰梯形;

(2)若AD=1,BC=3,DC=,试判断△DCF的形状;

(3)在条件(2)下,射线BC上是否存在一点P,使△PCD是等腰三角形,若存在,请直接写出PB的长;若不存在,请说明理由.

解:(1)证明:∵EF=EC,∴∠EFC=∠ECF,∵EF∥AB,∴∠B=∠EFC,∴∠B=∠ECF,∴梯形ABCD是等腰梯形;

(2)△DCF是等腰直角三角形,证明:∵DE=EC,EF=EC,∴EF=CD,∴△CDF是直角三角形(如果一个三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形),∵梯形ABCD是等腰梯形,∴CF=(BC﹣AD)=1,∵DC=,∴由勾股定理得:DF=1,∴△DCF是等腰直角三角形;

(3)共四种情况:

∵DF⊥BC,∴当PF=CF时,△PCD是等腰三角形,即PF=1,∴PB=1;

当P与F重合时,△PCD是等腰三角形,∴PB=2;

当PC=CD=(P在点C的左侧)时,△PCD是等腰三角形,∴PB=3﹣;

当PC=CD=(P在点C的右侧)时,△PCD是等腰三角形,∴PB=3+.

故共四种情况:PB=1,PB=2,PB=3﹣,PB=3+.(每个1分)

24、如图,在梯形ABCD中,AD∥BC,∠ABC=∠BCD=60°,AD=DC,E、F分别在AD、DC的延长线上,且DE=CF.AF交BE于P.

(1)证明:△ABE≌△DAF;

(2)求∠BPF的度数.

解答:(1)证明:∵在梯形ABCD中,AD∥BC,∠ABC=∠BCD=60°,∴AB=CD,∵AD=DC,∴BA=AD,∠BAE=∠ADF=120°,∵DE=CF,∴AE=DF,在△BAE和△ADF中,∴△ABE≌△DAF(SAS).

(2)解:∵由(1)△BAE≌△ADF,∴∠ABE=∠DAF.

∴∠BPF=∠ABE+∠BAP=∠BAE.

而AD∥BC,∠C=∠ABC=60°,∴∠BPF=120°.

25、如图,在梯形ABCD中,AD∥BC,AB=AD=DC,BD⊥DC,将BC延长至点F,使CF=CD.

(1)求∠ABC的度数;

(2)如果BC=8,求△DBF的面积?

解答:解:(1)∵AD∥BC,∴∠ADB=∠DBC,∵AB=AD,∴∠ADB=∠ABD,∴∠DBC=∠ABD,∵在梯形ABCD中AB=DC,∴∠ABC=∠DCB=2∠DBC,∵BD⊥DC,∴∠DBC+2∠DBC=90°

∴∠DBC=30°

∴∠ABC=60°

(2)过点D作DH⊥BC,垂足为H,∵∠DBC=30°,BC=8,∴DC=4,∵CF=CD∴CF=4,∴BF=12,∵∠F+∠FDC=∠DCB=60°,∠F=∠FDC

∴∠F=30°,∵∠DBC=30°,∴∠F=∠DBC,∴DB=DF,∴,在直角三角形DBH中,∴,∴,∴,即△DBF的面积为.

26、如图,梯形ABCD中,AD∥BC,AB=DC=10cm,AC交BD于G,且∠AGD=60°,E、F分别为CG、AB的中点.

(1)求证:△AGD为正三角形;

(2)求EF的长度.

(1)证明:连接BE,∵梯形ABCD中,AB=DC,∴AC=BD,可证△ABC≌△DCB,∴∠GCB=∠GBC,又∵∠BGC=∠AGD=60°

∴△AGD为等边三角形,(2)解:∵BE为△BCG的中线,∴BE⊥AC,在Rt△ABE中,EF为斜边AB上的中线,∴EF=AB=5cm.

27、已知,如图,AD∥BC,∠ABC=90°,AB=BC,点E是AB上的点,∠ECD=45°,连接ED,过D作DF⊥BC于F.

(1)若∠BEC=75°,FC=3,求梯形ABCD的周长.

(2)求证:ED=BE+FC.

解:(1)∵∠BEC=75°,∠ABC=90°,∴∠ECB=15°,∵∠ECD=45°,∴∠DCF=60°,在Rt△DFC中:∠DCF=60°,FC=3,∴DF=3,DC=6,由题得,四边形ABFD是矩形,∴AB=DF=3,∵AB=BC,∴BC=3,∴BF=BC﹣FC=3﹣3,∴AD=DF=3﹣3,∴C梯形ABCD=3×2+6+3﹣3=9+3,答:梯形ABCD的周长是9+3.

其实也还有一种方法的啦。

(2)过点C作CM垂直AD的延长线于M,再延长DM到N,使MN=BE,∴CN=CE,可证∠NCD=∠DCE,∵CD=CD,∴△DEC≌△DNC,∴ED=EN,∴ED=BE+FC.

28、已知:如图,梯形ABCD中,AD∥BC,E是AB的中点,直线CE交DA的延长线于点F.

(1)求证:△BCE≌△AFE;

(2)若AB⊥BC且BC=4,AB=6,求EF的长.

(1)证明:∵AD∥BC,E是AB的中点,∴AE=BE,∠B=∠EAF,∠BCE=∠F.

∴△BCE≌△AFE(AAS).

(2)解:∵AD∥BC,∴∠DAB=∠ABC=90°.

∵AE=BE,∠AEF=∠BEC,∴△BCE≌△AFE.

∴AF=BC=4.

∵EF2=AF2+AE2=9+16=25,∴EF=5.

29、已知:如图,在梯形ABCD中,AD∥BC,BC=DC,CF平分∠BCD,DF∥AB,BF的延长线交DC于点E.

求证:

(1)△BFC≌△DFC;

(2)AD=DE;

(3)若△DEF的周长为6,AD=2,BC=5,求梯形ABCD的面积.

(1)∵DC=BC,∠1=∠2,CF=CF,∴△DCF≌△BCF.

(2)延长DF交BC于G,∵AD∥BG,AB∥DG,∴四边形ABGD为平行四边形.

∴AD=BG.

∵△DFC≌△BFC,∴∠EDF=∠GBF,DF=BF.

又∵∠3=∠4,∴△DFE≌△BFG.

∴DE=BG,EF=GF.

∴AD=DE.

(3)∵EF=GF,DF=BF,∴EF+BF=GF+DF,即:BE=DG.

∵DG=AB,∴BE=AB.

∵C△DFE=DF+FE+DE=6,∴BF+FE+DE=6,即:EB+DE=6.

∴AB+AD=6.

又∵AD=2,∴AB=4.

∴DG=AB=4.

∵BG=AD=2,∴GC=BC﹣BG=5﹣2=3.

又∵DC=BC=5,在△DGC中∵42+32=52

∴DG2+GC2=DC2

∴∠DGC=90°.

∴S梯形ABCD=(AD+BC)•DG

=(2+5)×4

=14.

30、如图,梯形ABCD中,AD∥BC.∠C=90°,且AB=AD.连接BD,过A点作BD的垂线,交BC于E.

(1)求证:四边形ABED是菱形;

(2)如果EC=3cm,CD=4cm,求梯形ABCD的面积.

解答:解:(1)证明:∵AD∥BC,DE2=CD2+CE2=42+32=25,∴∠OAD=∠OEB,∴DE=5

又∵AB=AD,AO⊥BD,∴AD=BE=5,∴OB=OD,∴S梯形ABCD=.

又∵∠AOD=∠EOB,∴△ADO≌△EBO(AAS),∴AD=EB,又∵AD∥BE,∴四边形ABCD是平行四边形,又∵AB=AD

∴四边形ABCD是菱形.

(2)∵四边形ABCD是菱形,∴AD=DE=BE,

下载高考数学空间图形位置的几何证明测试(含答案)word格式文档
下载高考数学空间图形位置的几何证明测试(含答案).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    中考热点几何证明题在线测试(含答案)

    中考热点几何证明题一、证明题(共2道,每道50分)1.如图,在梯形ABCD中,DC∥AB,AD=BC,BD平分∠ABC,∠A=60°.过点D作DE⊥AB,过点C作CF⊥BD,垂足分别为E、F,连接EF,求证:△DEF为等边三角形.......

    初三数学几何证明[精选5篇]

    一、精心选一选1、△ABC中,AB=AC,BD平分∠ABC交AC边于点D,∠BDC=75°,则∠A的度数为A35°B40°C70°D110°2、三角形的三个内角中,锐角的个数不少于A1 个B2 个C3个D不确定3、适合......

    几何证明方法(初中数学)

    初中数学几何证明题技巧,归类 一、证明两线段相等 1.两全等三角形中对应边相等。 2.同一三角形中等角对等边。 3.等腰三角形顶角的平分线或底边的高平分底边。(三线合一) 4.平......

    中考数学几何证明复习题

    几何证明练习1.如图13-1,一等腰直角三角尺GEF的两条直角边与正方形ABCD的两条边分别重合在一起.现正方形ABCD保持不动,将三角尺GEF绕斜边EF的中点O(点O也是BD中点)按顺时针方向旋......

    中考数学几何证明经典难题

    经典难题(一)1、已知:如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO. 求证:CD=GF.(初二)EA BD O F2、已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=150.A D求证:△PBC是正三角形.(初二)C B......

    初中数学几何证明步骤规范性初步基础题(含答案)

    初中数学几何证明步骤规范性初步基础题 一、单选题(共4道,每道25分) 1.如图,已知线段AB=18cm,C是线段AB的中点,则AC的长是多少? 解:如图, ∵ ∴ 又∵ ∴ 即AC的长为9cm. ①⑥;②C是......

    2010年高考数学几何证明试题分类解析(教师版)范文大全

    2010年高考数学几何证明试题分类解析1、(2010陕西文数)15.(几何证明选做题)如图,已知Rt△ABC的两条直角边AC,BC的长分别为3cm,4cm,以AC为直径的圆与AB交于点D,则BD=解析:CDAB,由直角三......

    高考几何证明选讲分析

    几何证明选讲1.(2010·陕西高考理科·T15)如图,已知RtABC的两条直角边AC,BC 的长分别为3cm,4cm,以AC为直径的圆与AB交于点D, 则BDDA【命题立意】本题考查几何证明选做题的解法,属......