第一篇:初三数学几何证明
一、精心选一选
1、△ABC中,AB=AC,BD平分∠ABC交AC边于点D,∠BDC=75°,则∠A的度数为()
A35°B40°C70°D110°
2、三角形的三个内角中,锐角的个数不少于()
A1 个B2 个C3个D不确定
3、适合条件∠A =∠B =1∠C的三角形一定是()
3A锐角三角形B钝角三角形C直角三角形D任意三角形
4、用两个全等的直角三角形拼下列图形:①平行四边形(不包含菱形、矩形、正方形);②矩形;③正方形;④等腰三角形,一定可以拼成的图形是()
A①②④B②④C①④D②③
5、如图,D在AB上,E在AC上,且∠B=∠C,那么补充下列一个条件后,仍无法判定△ABE≌△ACD的是()
AAD=AEB∠AEB=∠ADC CBE=CDDAB=AC
E
A(第5题图)(第6题图)
6、如图,⊿ABC⊿FED,那么下列结论正确的是()
AEC = BDBEF∥AB
CDE = BDDAC∥ED7、等腰三角形的一边为4,另一边为9,则这个三角形的周长为()
A17B22C13D17或228、有两个角和其中一个角的对边对应相等的两个三角形()
A必定全等B必定不全等C不一定全等D以上答案都不对
9、以下命题中,真命题的是()
A两条直线相交只有一个交点B同位角相等
C两边和一角对应相等的两个三角形全等D等腰三角形底边中点到两腰相等
10、面积相等的两个三角形()
A必定全等B必定不全等C不一定全等D以上答案都不对
二、耐心填一填:
11、如果等腰三角形的一个底角是80°,那么顶角是.12、⊿ABC中,∠A是∠B的2倍,∠C比∠A + ∠
B还大12,那么∠B =度
13、在方格纸上有一三角形ABC,它的顶点位置如图所示,则这个三角形是三角形
.(第12题图)(第13题图)
第 19页
14、如图:△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,请你添加一个适当的条件:,使△AEH≌△CEB。
15、等腰直角三角形一条直角边的长为1cm,那么它斜边长上的高是cm.16、在△ABC和△ADC中,下列论断:①AB=AD;②∠BAC=∠DAC;③BC=DC,把其中两个论断作为条件,另一个论断作为结论,写出一个真命题:
17、在△ABC中,边AB、BC、AC的垂直平分线相交于P,则PA、PB、PC的大小关系是.18、已知⊿ABC中,∠A = 90,角平分线BE、CF交于点O,则∠BOC =
三、细心做一做:(本大题共5小题,每小题6分,共30分)
19、如图,在△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于F,若BF=AC,求∠ABC的度数是
20、如图,△ABC中,∠C=Rt∠,AD平分∠BAC交BC于点D,BD
∶
DC=
2∶1,BC=7.8cm,求D到AB的距离
21、已知:如图,∠A=∠D=90°,AC=BD.求证:OB=OC
第 20页 022、已知:如图,P、Q是△ABC边BC上两点,且BP=PQ=QC=AP=AQ,求∠BAC的度数.23、已知:如图,等腰梯形ABCD中,AD∥BC,AB=CD,点E为梯形外一点,且AE=DE.求证:BE=CE.
四、勇敢闯一闯:(本大题共 2小题,每小题
8分,共
16分)
24、已知:如图,CE⊥AB,BF⊥AC,CE与BF相交于D,且BD=CD.求证:D在∠BAC的平分线上.第 21页
25、已知:如图,D是等腰ABC底边BC上一点,它到两腰AB、AC的距离分别为DE、DF。当D点在什么位置时,DE=DF?并加以证明.26、如图1,点C为线段AB上一点,△ACM,△CBN是等边三角形,直线AN,MC交于点F。
(1)求证:AN=BM;
(2)求证: △CEF
为等边三角形;
(3)将△ACM绕点C按逆时针方向旋转900,其他条件不变,在图2中补出符合要求的图形,并判断第(1)、(2)两小题的结论是否仍然成立(不要求证明)
第 22页
第二篇:初三数学专题复习(几何证明、计算)
几何证明、计算
解题方法指导
平面几何是研究平面图形性质的一门学科,研究平面图形的形状、大小及位置关系,除了常见的计算、证明外,从目前素质教育的要求来看,必须培养学生动手、动脑、分析、观察、和逻辑思维能力,所以新颖的几何题,往往具有操作性、运动性,需要观察、猜想与证明,需要有较强的综合解题能力。其次要求有观察复杂图形的能力。然后去推理、证明和计算。我们经常用的等量关系有已知的等量、勾股定理的等式、平行线推导的比例式,相似三角形对应边成比例的等式、相似三角形的性质等时,面积等式等。
第一课时
一、出示例题
1、例1:如图在△ABC中,∠C=90,点D在BC上,BD=4,AD=BC,cos∠ADC=
(1)求DC的长;(2)sinB的值
(老师引导学生分析后再做)
2、例2:已知如图在△ABC中,AD是高,CE是中线,DC=BE,DG⊥CE,G是垂足。
求证(1)G是CE的中点;(2)∠B=2∠BCE
(师生共同分析后,学生独立完成)
BEGDCA3。5ABC3、例3:如图已知在△ABC中,∠A=90.(1)在所给出的图形基础上,按题意操作:先画BC边上中线AM,设H是线段BM上任一点,再过H,C分别画AB,AM的平行线,相交于点D,连接AD,AH;
(2)求证△ABM∽△DHC;(3)求证AD=AH
A
B
C
分析:第(1)题是按题意画图,考查操作实践能力。第(2)题是考察对直角三角形性质、相似三角形判定掌握情况。第(3)题的证法较多,如果注意到问题之间的相关性、层次性或者抓住基本图形的特征,就容易解决了。
说明:近几年的中考试卷中看,有关几何的证明题基本上是题目新颖、难度不大,涉及重要的知识点较多,且要求证明过程逻辑严密,言必有据,重点考察分析能力及推理能力,本题设计新型,又有一定的操作能力,是一道很好的中考模拟试题。
二、小结
三、作业
1、将两块三角形如图(1)放置,其中∠C=∠EDB=90, ∠A=45, ∠E=30,AB=DE=6,求重叠部分四边形DBCF 的面积。
2、如图(2)Rt △ ABC中,∠B=90,∠A的平分线交BC于点D,E为AB上的一点,DE=DC,以D为圆心,DB长为半径作⊙D。
求证:(1)AC是⊙D的切线;(2)AB+EB=AC
EB
C
A
A
FEC
DB
D3、如图(3)矩形ABCD中,AB=8cm,BC=4cm,将矩形折叠,使A点与C点重合(1)画出图形;(2)求折叠后矩形分成的两直角梯形不重叠部分的面积和。
4、如图(4)△ ABC中,AB=AC,∠A=36,BD平分∠ABC交AC于D,CD=2cm,△ ABC的周长是19cm,求BC的长。
DA
A
B
D
C5、如图(5),BE平分∠ABC,D是AB的中点,DE∥BC。求证BE⊥AE。
A
BC
DE
B
C
第三篇:初三数学几何综合题
Xupeisen110初三数学
初三数学几何综合题
Ⅰ、综合问题精讲:
几何综合题是中考试卷中常见的题型,大致可分为几何计算型综合题与几何论证型综合题,它主要考查学生综合运用几何知识的能力,这类题往往图形较复杂,涉及的知识点较多,题设和结论之间的关系较隐蔽,常常需要添加辅助线来解答.解几何综合题,一要注意图形的直观提示;二要注意分析挖掘题目的隐含条件、发展条件,为解题创造条件打好基础;同时,也要由未知想需要,选择已知条件,转化结论来探求思路,找到解决问题的关键.解几何综合题,还应注意以下几点:
⑴ 基本图形.
⑵ 掌握常规的证题方法和思路.
⑶ 数学思想方法伯数形结合、分类讨论等).
Ⅱ、典型例题剖析
【例1】(南充,10分)⊿ABC中,ABAC与AB相交于点E,点F是BE的中点.
(1)求证:DF是⊙O,BC=12,求BF的长.
解:(1)证明:连接OD,∴ AD⊥BC.AC,∴
又∠BED的外角,∴∠C=∠BED.
故∠B=∠BED,即DE=DB.
点F是BE的中点,DF⊥AB且OA和OD是半径,即∠DAC=∠BAD=∠ODA.
故OD⊥DF,DF是⊙O的切线.
(2)设BF=x,BE=2BF=2x.
又 BD=CD=2BC=6,根据BEABBDBC,2x(2x14)612.
2化简,得 x7x180,解得 x12,x29(不合题意,舍去).
1则 BF的长为2.
点拨:过半径的外端且垂直于半径的直线才是切线,所以要证明一条直线是否是此圆的切线,应满足这两个条件才行.
【例2】
点D在AEBD=CD。
证明所以在△ADB所以 点拨:要想证明BD=CD,应首先观察它们所在的图形之间有什么联系,经观察可得它们所在的三角形有可能全等.所以应从证明两个三角形全等的角度得出,当然此题还可以采用“AAS”来证明.
【例3】(内江,10分)如图⊙O半径为2,弦BD=23C,A为弧
BD的中点,E为弦AC的中点,且在BD上。求:四边形ABCD的面积。
解:连结OA、OB,OA交BD于F。
A为弧BD的中点OFBD,BFFD3 OB2
OF1AF1 SABD12BDAFAECESADESCDE,SABESCBE
S四边形2SABD23 ABCD
【例4】(博兴模拟,10分)国家电力总公司为了改善农村用电电费过高的现状,目前正在全国各地农村进行电网改造.莲花村六组有四个村庄A、B、CD正好位于一个正方形的四个顶点.现计划在四个村庄联合架一条线路,他们设计了四种架设方案,如图2-4-4中的实线部分.请你帮助计算一下,哪种架设方案最省电线.
解3. 图2-4-图2-4-显然图2-4点拨:路长,然后通过比较,得出结论.
【例5】(绍兴)如图矩形ABCD中,过A,B两点的⊙O切CD于E,交BC于F,AH⊥BE于H,连结EF。
⑴求证:∠CEF=∠BAH,⑵若BC=2CE=6,求BF的长。
⑴证明:∵CE切⊙O于E,∴∠CEF=∠EBC,∵四边形ABCD是矩形,∴∠ABC=90°
Xupeisen110初三数学
∴∠ABE+∠EBC=90°,∵AH丄BE,∴∠ABE+∠BAH=90°
∴∠BAH=∠EBC,∴∠CEF=∠BAH
⑵解: ∵CE切⊙O于E
∴CE2=CF·BC,BC=2CE=6
339∴CE2=CF·6,所以CF=∴BF=BC-CF=6- =22
2点拨:熟练掌握切线的性质及切线长定理是解决此题的关键.
Ⅲ、综合巩固练习:(100分;90分钟)
一、选择题(每题3分,共21分)
1.如图2-4-6的直径为1.2米,桌面距离地面13地面上阴影部分的面积为()
A.0.036π平方米;B.0.C.2π平方米;D、3.2.同学们设计出正三角形、正方形和圆图案是()
A.正三角形.圆;D.不能确定
3.下列说法:1:2,那么这两个三角形的面积之比是1:4;中错误是()
A.4个B.3个C.2个D.1个
4.等腰三角形的一个内角为70°,则这个三角形其余的内角可能为()
A.700,400B.700,550
C.700,400或550,550D.无法确定
5.如图2-4-7所示,周长为68的矩形被分成了7个全等的矩
形,则矩形ABCD的面积为()
A.98B.196;C.280D.28
4Xupeisen110初三数学
6.在△ABC
中,若|sinA1|2cosB)0,则∠C2的度数为()
A.60oB.30 oC.90 oD.45 o
7.下列命题中是真命题的个数有()
⑴直角三角形的面积为2,两直角边的比为1。2,则它的斜边长为10 ;⑵直角三角形的最大边长为,最短边长为l,则另一边长为2 ;(3)在直角三角形中,若两条直角边为n-1和2n,则斜边长为n+1;⑸等腰三角形面积为12,底边上的高为4,则腰长为5.
A.1个B.2个C.3个D.4个
二、填空题(每题3分,共27分)
8.如图2-4-8所示,在Rt△ABC中,∠C=90°,∠A=60°,AC=.将△ABC绕点B旋转至△A′BC使点A、B、C′三点在一条直线上,则点A线的长度是_____.
9.若正三角形、正方形、正六边形的积分别记为S3,S4,S6,则S3,S4,S6,2210若菱形的一个内角为60__________.已知数4,6是________12一油桶高 0.8m1m,从桶盖小口(小口靠近上壁)斜插入桶内,0.87m,则桶内油面的高度为13 等腰三角形底边中点与一腰的距离为5cm,则腰上的高为__________cm.在平坦的草地上有 A、B、C三个小球,若已知 A球和 B球相距3米,A球与C球相距1米,则B球与C球可能相距________米.(球的半径可忽略不计,只要求填出一个符合条件的数)如果圆的半径为3cm,那么60°的圆心角所对的弧长为____cm.如图2-4-9所示,在正方形 ABCD中,AO⊥BD、OE、FG、HI都
垂直于 AD,EF、GH、IJ都垂直于AO,若已知 SΔAIJ=1,则S
ABCD正方形=______.Xupeisen110初三数学
三、解答题(每题13分,52分)
17.已知:如图 2-4-10所示,在 Rt△ABC中,AB=AC,∠A=90°,点D为BA上任一点,DF⊥AB于F,DE⊥AC于E,M为BC的中点.试判断△MEF是什么形状的三角形,并证明你的结论.
18.今有一片正方形土地,要在其上修筑两条笔直的道路,使道路把这片土地分成形状相同且面积相等的4并简述步骤.
19.如图2-4-11所示,已知测速站P到公路lPO米,一辆汽车在公路l上行驶,测得此车从点A行驶到点BAPO=60○,∠BPO=30○,计算此车从A到B过了每秒22米的限制速度.
20.如图2-4-12为梯形ABCD的中位线.AH平分∠DA B交EF于M,延长DM交AB于N.求证:AADN是等腰三角形.
第四篇:初二数学几何证明
1.已知△ABC是等边三角形,D是BC边延长线上一点,以AD为边作等边三角形ADE。连接CE.求证:CE平分∠ACD
E
A
BCD
2.已知:如图,AD是△ABC的角平分线,E是AB边上的一点,AE=AC,EF∥BC交AC于点F.求证:∠DEC=∠FEC
.3.已知△ABC、△DBE、△CEF是等边三角形,求证:四边形ADEF是平行四边形.A
D
F
BC
4.如图,已知在△ABC中,∠A=90°,AB=AC, ∠B的平分线与AC交于点D,过点C作CH⊥BD,H为垂足。试说明BD=2CH。
A
21C
5.在△ABC中,∠C=90°,AC=BC,过C点在△ABC形外作直线MN,AM⊥MN于M,BN⊥MN于N.
(1)求证:
MN=AM+BN
(2)△ABC内,∠ACB=90°,AC=BC若过C点在△ABC内作直线MN,当MN位于何位置时,AM,BN和MN满足MN=AM-BN,并证明之.
6.“等腰三角形两腰上的高相等”
(1)根据上述命题,画出相关图形,并写出“已知’’“求证”,不必证明.(2)写出上述命题的逆命题,并加以证明.
7.已知:如图,在Rt△ABC中,∠ACB=900,D、E、F分别是AB、BC、AC上的点,DE、DC、DF将△ABC分成四个全等的三角形,△ABC的周长是1 2厘米,求由DF、CD、DE所分成的各个小三角形的周长.
8.如图,∠ABC=∠ADC=90°,E是AC的中点,EF⊥BD,垂足为F.求证:BF=DF.
B
FA
D
C
9.已知,如图正方形ABCD中,E、F分别是AB、BC的中点,AF和DE交于点P. 求证:
CP=CD
10.如图△ABC中,BD⊥AC,CE⊥ AB,垂足分别为D、E,BD、CE相交于H,∠A=60°.DH =2,EH=1(1)求BD和CE的长.
(2)若∠ACB= 45°,求△ABC的面积.
11.如图,△ABC中,AD是∠BAC内的一条射线,BE⊥AD于E,CF⊥AD于F,点M 是BC的中点.求证:EM=FM
A
B
E
C
12.中国古代的数学家们不仅很早就发现并应用勾股定理,最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽。赵爽创制了一幅“勾股圆方图”,用形数结合的方法,给出了勾股定理的详细证明。你能根据这幅“勾股圆方图”证明勾股定理吗?(图中4个直角三角形全等)
13.如图甲是第七届国际数学教育大会(简称ICME~7)的会徽,会徽的主体图案是由如图乙的一连串直角三角形演化而成的其中OA1A1A2A2A3A7A81,如果把图乙中的直角三角形继续作下去,细心观察图形,认真分析各式,然后解答问题:
A8
A
3ICME-7
21图甲图乙
()12,S1
;(2)13,S2
;(3)14,S3
;„„
(1)请用含有n(n是正整数)的等式表示上述变化规律;(2)推算出OA10的长;
2222
(3)求出S1S2S3S10的值。
1.如图,在△ABC中,∠
A=90°,ABAC,BD平分∠ABC交AC于点D,若AB2cm.求:AD的长,2.在Rt△ABC中,∠C=90°,中线AD的长为7,中线BE的长为4.求:AB的长 3.四边形中,∠A=60
°,∠B=∠D=90°,AB2,CD1.(1)求BC、AD的长(2)
求四边形ABCD的面积.
第五篇:中考数学几何证明复习题
几何证明练习
1.如图13-1,一等腰直角三角尺GEF的两条直角边与正方形ABCD的两条边分别重合在一起.现正方形ABCD保持不动,将三角尺GEF绕斜边EF的中点O(点O也是BD中点)按顺时针方向旋转.
(1)如图13-2,当EF与AB相交于点M,GF与BD相交于点N时,通过观察或测量BM,FN的长度,猜想BM,FN满足的数量关系,并证明你的猜想;
(2)若三角尺GEF旋转到如图13-3所示的位置时,线段FE的延长线与AB的延长线相交于点M,线
段BD的延长线与GF的延长线相交于点N,此时,(1)中的猜想还成立吗?若成立,请证明;若
不成立,请说明理由.
A(E)图13-1 图13-
2图13-
32.将两块全等的含30°角的三角尺如图(1)摆放在一起,它们的较短直角边长为3.(1)将△ECD沿直线l向左平移到图(2)的位置,使E点落在AB上,则CC′=______;
(2)将△ECD绕点C逆时针旋转到图(3)的位置,使点E落在AB上,则△ECD绕点C旋转的度数=______;
(3)将△ECD沿直线AC翻折到图(4)的位置,ED′与AB相交于点F,求证AF=FD′
A A A A
E E’ E’D’ F’
l B(2)
(3)D’(4)
3.填空或解答:点B、C、E在同一直线上,点A、D在直线CE的同侧,AB=AC,EC=ED,∠BAC=∠CED,直线AE、BD交于点F。
(1)如图①,若∠BAC=60°,则∠AFB=_________;如图②,若∠BAC=90°,则∠AFB=_________;(2)如图③,若∠BAC=α,则∠AFB=_________(用含α的式子表示);
(3)将图③中的△ABC绕点C旋转(点F不与点A、B重合),得图④或图⑤。在图④中,∠AFB与∠α的数量关系是________________;在图⑤中,∠AFB与∠α的数量关系是________________。请你任选其中一个结论证明。
D
4.用两个全等的正方形ABCD和CDFE拼成一个矩形ABEF,把一个足够大的直角三角尺的直角顶点与这个矩形的边AF的中点D重合,且将直角三角尺绕点D按逆时针方向旋转.
(1)当直角三角尺的两直角边分别与矩形ABEF的两边BE,EF相交于点G,H时,如图甲,通过观察或测量BG与EH的长度,你能得到什么结论?并证明你的结论.
(2)当直角三角尺的两直角边分别与BE的延长线,EF的延长线相交于点G,H时(如图乙),你在图甲中得到的结论还成立吗?简要说明理由.
图②(第5题图)
图①
A图③
B图④
(第5题图)
图⑤
H
A B
F A B
F E
G
C 图甲
C 图乙
5.已知∠AOB=90,在∠AOB的平分线OM上有一点C,将一个三角板的直角顶点与C重合,它的两条直角边分别与OA、OB(或它们的反向延长线)相交于点D、E.
当三角板绕点C旋转到CD与OA垂直时(如图1),易证:2OC.
当三角板绕点C旋转到CD与OA不垂直时,在图
2、图3这两种情况下,上述结论是否还成立?若成立,请
给予证明;若不成立,线段OD、OE、OC之间又有怎样的数量关系?请写出你的猜想,不需证明。
6.把一副三角板如图甲放置,其中∠ACB∠DEC90,∠A45,∠D30,斜边AB6cm,DC7cm.把三角板DCE绕点C顺时针旋转15°得到△D1CE1(如图乙).这时AB与CD1相交于点O,与
D1E1相交于点F.
(1)求∠OFE1的度数;(2)求线段AD1的长;
(3)若把三角形D1CE1绕着点C顺时针再旋转30°得△D2CE2,这时点B在△D2CE2的内部、外部、还是边上?说明理由.
A
C
(甲)
E(乙)
1B
D
A
D
17.如图,在△ABC 中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的角平分线于点E,交∠BCA的外角平分线于点F.(1)求证:EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.
MB
E
OC
FN
(第19题图)
8.如图甲,在△ABC中,∠ACB为锐角.点D为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF. 解答下列问题:
(1)如果AB=AC,∠BAC=90º.
①当点D在线段BC上时(与点B不重合),如图乙,线段CF、BD之间的位置关系为,数量关系为.
②当点D在线段BC的延长线上时,如图丙,①中的结论是否仍然成立,为什么?
(2)如果AB≠AC,∠BAC≠90º,点D在线段BC上运动.
试探究:当△ABC满足一个什么条件时,CF⊥BC(点C、F重合除外)?画出相应图形,并说明理由.(画图不写作法)
(3)若AC
=BC=3,在(2)的条件下,设正方形ADEF的边DE与线段CF相交于点P,求线段CP
F
长的最大值.
E
A F
CBBECE
图甲 图乙 图丙
第8题图
9.如图,矩形纸片ABCD中,AB8,将纸片折叠,使顶点B落在边AD的E点上,折痕的一端G点在边
BC上,BG10.
(1)当折痕的另一端F在AB边上时,如图(1),求△EFG的面积;(2)当折痕的另一端F在AD边上时,如图(2),证明四边形BGEF为菱形,并求出折痕GF的长.
H(A)
E(B)E(B)D
A D
C B C
G
图(1)图(2)
10.如图,在边长为4的正方形ABCD中,点P在AB上从A向B运动,连接DP交AC于点Q.(1)试证明:无论点P运动到AB上何处时,都有△ADQ≌△ABQ;(2)当点P在AB上运动到什么位置时,△ADQ的面积是正方形ABCD面积的1; 6
(3)若点P从点A运动到点B,再继续在BC上运动到点C,在整个运动过程中,当点P 运动到什么
位置时,△ADQ恰为等腰三角形.
11.如图15,平行四边形ABCD中,ABAC,AB
1,BC.对角线AC,BD相交于点O,将直线AC绕点O顺时针旋转,分别交BC,AD于点E,F.(1)证明:当旋转角为90时,四边形ABEF是平行四边形;
(2)试说明在旋转过程中,线段AF与EC总保持相等;
(3)在旋转过程中,四边形BEDF可能是菱形吗?如果不能,请说明理由;如果能,说明理由并求出此时AC绕点O顺时针旋转的度数.
FD
B C图15
12.已知∠MAN,AC平分∠MAN。
⑴在图1中,若∠MAN=120°,∠ABC=∠ADC=90°,求证:AB+AD=AC;
⑵在图2中,若∠MAN=120°,∠ABC+∠ADC=180°,则⑴中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;⑶在图3中:
①若∠MAN=60°,∠ABC+∠ADC=180°,则AB+AD=____AC;②若∠MAN=α(0°<α<180°),∠ABC+∠ADC=180°,则AB+AD=____AC(用含α的三角函数表示),并给出证明。
M
MM
CCC
DDD
ABNABABN N
13.已知,将两块等腰直角三角板ABC和ADE如图放置,再以CE,CB为边作平行四边形CEHB,连DC,CH。a)如图1,连接DH,请你判断△DHC的形状,猜想CH与CD之间有何数量关系?请说明理由。b)将图1中的△ADE绕A点逆时针旋转45°得图2,请你猜想CH与CD之间的数量关
系。
c)将图1中的△ADE绕A点顺时针旋转a(0°<a<45°)得图3,(2)中的猜想是否还成立,若
成立,请给出证明;不成立,说明理由。
14.如图13—1,以△ABC的边AB,AC为直角边作等腰△ABE和△ACD,M是BC的中点.(1)若∠BAC=90°,如图13—1.请你猜想线段DE,AM的数量关系,并证明你的结论;(2)若∠BAC≠
90°.
①如图13—2.请你猜想线段DE,AM的数量关系,并证明你的结论; ②如图13—3.请你判断线段DE,AM的数量关系.A D
B
D
E图13—3图13—1 图13—2