§5.6几何证明举例

时间:2019-05-15 07:59:50下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《§5.6几何证明举例》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《§5.6几何证明举例》。

第一篇:§5.6几何证明举例

年级八年级学科数学第五 单元第 8课时总计课时2013年 11月 4日

§5.6几何证明举例(2)

课程标准:掌握等腰三角形的性质和判定定理,了解等边三角形的概念并探索其性质。学习目标:

1.学生会根据三角形全等推导等腰三角形的性质。

2.熟练掌握应用等腰三角形的性质定理。

3.掌握等边三角形的性质,并会运用判定等边三角形。

学习重点难点:

等腰三角形的性质定理和判定定理。

我的目标以及突破重难点的设想:

学前准备:

学情分析:

学案使用说明以及学法指导:

预习案

一、教材助读

1、等腰三角形的性质是什么?判定是什么?

2、等边三角形的性质和判定是什么?

探究案

探究一:等腰三角形的性质

(1)“等腰三角形的两个底角相等”是真命题吗?怎样证明。

(2)在右图等腰△ABC中,AB=AC.AD为BC边上的高

∠1与∠2有什么关系?BD与CD有什么关系?

你能得出什么结论?试着总结一下。

探究二:等腰三角形的判定(合作交流)

(3)说出命题“等腰三角形的两个底角相等”的逆命题?

(4)这个逆命题是真命题吗?怎样证明它的正确性?

课型:新授执笔:马海丽审核: 滕广福韩增美

(5)求证:如果一个三角形有两个角相等,那么这个三角形是等腰三角形

已知:

求证:

点拨:注意条件中为什么是两个“角”,不是两个“底角”。

三、精讲点拨:

1、等腰三角形的性质:

性质1:

性质2:

2、数学语言叙述:

性质1:性质2:

∵AB=AC∵AB=AC

∴∠B= ∠C① AD平分∠BAC

(等边对等角)

(①,② ,③均可作为一个条件,推出其他两项)

(三线合一)

3、总结等边三角形的性质以及判定(学生小组讨论,写出他们的证明过程)

四、应用新知

2、已知,如图,在△ABC中,AB=AC,D是AB上的一点,DE⊥BC,交BC于点E,交CA的延长线于点F。

求证:AD=AF。

点拨:以后证明线段相等或角相等时,除利用三角形全等外,还可以利用等腰三角形的性质和判定。

五、课堂小结:

训练案

课本180页 练习1,2题

我的反思:

第二篇:5.6几何的证明举例

5.6几何证明举例

(二)诸冯学校 备课组

学习目标:

1、进一步学习几何证明的思路和步骤;

2、牢固掌握等腰三角形的性质及判定,等边三角形的性质及判定,并

能够熟练地应用它们进行相关的证明与计算。

重点:等腰三角形的性质及判定

难点:等腰三角形的性质地应用。

学习过程:

一、温故知新:等腰三角形的对称轴是,由轴对称的性质,你认为等腰三角形两个底角大小有什么关系?

二、创设情境:你会用所学的知识证明你的结论吗?自主学习课本P177——179内容,独立完成课后练习1、2后,与小组同学交流.通过学习等腰三角形的性质,请思考以下问题:

1、等腰三角形的顶角是45゜,则底角是()。

2、三角形的一个外角平分线平行于三角形的一边,则这个三角形一定是()。

三、挑战自我:自学课本180页挑战自我,小组讨论,展示。

四、巩固提升:

1.等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为()

(A)60°(B)120°(C)60°或150°(D)60°或120

2.已知等腰三角形的两边长分别为2和5,则它的周长为()

(A)12或9(B)12(C)9(D)7

3.如图,等腰三角形ABC中,AB=AC,∠A=44°,CD⊥AB于D,则∠DCB等于()

(A)44°(B)68°(C)46°(D)22°

4、如图,在△ABC中,∠ABC=2∠ACB,BD平分∠ABC,AD∥BC,则图中等腰三角形共有个.(第4题)

四、课堂小结:同学们本节课的学习,你收获吗?

五、达标检测

1、如图,△ABC是等边三角形,AD是高,并且AB恰好是DE的垂直平分线,则下列结论正确的是()

(A)△ABC≌△AED(B)△AED是等边三角形(C)∠EAB=60°(D)AD>DE2、如图,△ABC是等边三角形,BD是中线,延长BC到E,使CE=CD,则下列结论正确的是()

(A)△CDE是等边三角形(B)DE=AB(C)点D在线段BE的垂直平分线上(D)点D在AB的垂直平分线上

3、已知:如图,△ABC是等边三角形,DE∥BC,分别交AB、AC于点D、E。

求证:△ADE是等边三角形。

六、布置作业

七、教学反思

C

D(第1题)

(第2题)E E

第三篇:沪教版_初二数学几何证明举例

1.已知:如图1,AD是BC上的中线,且BE∥CF.求证:DF=DE.2.已知:如图2,AD、BC相交于点O,OA=OD,OB=OC,点E、F

在AD上,∠ABE=∠DCF.求证:BE∥CF.3.已知:如图3,在△ABC中,EF∥BC,∠1=∠2,D是EF中点。

求证:AE=AF.4.已知:如图1,AB∥CD,BE、DE分别是∠ABD、∠BDC的平分线.求证:BE⊥

DE.5.已知:如图2,在△ABC中,AB=AC,O是△ABC内一点,且OB=OC.求证:AO⊥BC.6.如图3,在△ABC中,AB=AC,DE是过点A的直线,BD⊥DE于D,CE⊥DE于E.1)若BC在DE的同侧(如图①)且AD=CE,求证:BA⊥AC.2)若BC在DE的两侧(如图②)其他条件不变,问AB与AC仍垂直吗?若是,请予证明,若不是请说明理由.7.已知:如图1,AB=CD,AD=BC,AE=CF.B、A、E三点

共线,D、C、F三点共线.求证:∠E=∠F.8.已知:如图2,AB=AC,∠A=90°,AE=BF,BD=DC.求证:FD⊥ED.9.已知:如图3,AC=BD,AD⊥AC于A,BC⊥BD于B.求证:AD=BC.10.已知:如图1,在△ABC中,∠C=2∠B,AD⊥BC.求证:AC=BD-DC

11.已知:如图2,AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF.求证:AC=BF.12.已知:如图3,正方形ABCD中,点F在DC上,E在BC上,∠EAF=45°.求证:EF=BE+DF.

第四篇:几何证明

1.平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段_________.推论1: 经过三角形一边的中点与另一边平行的直线必______________.推论2: 经过梯形一腰的中点,且与底边平行的直线________________.2.平行线分线段成比例定理:三条平行线截两条直线,所得的________________成比例.推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段___________.3.相似三角形的性质定理:相似三角形对应高的比、对应中线的比、对应角平分线的比都等于______;相似三角形周长的比、外接圆的直径比、外接圆的周长比都等于

_________________;

相似三角形面积的比、外接圆的面积比都等于____________________;

4.直角三角形的射影定理:直角三角形斜边上的高是______________________的比例中项;两直角边分别是它们在斜边上_______与_________的比例中项.5.圆周角定理:圆上一条弧所对的圆周角等于它所对的____________的一半.圆心角定理:圆心角的度数等于_______________的度数.推论1:同弧或等弧所对的圆周角_________;同圆或等圆中,相等的圆周角所对的弧_______.o推论2:半圆(或直径)所对的圆周角是____;90的圆周角所对的弦是________.弦切角定理:弦切角等于它所夹的弧所对的______________.6.圆内接四边形的性质定理与判定定理:

圆的内接四边形的对角______;圆内接四边形的外角等于它的内角的_____.如果一个四边形的对角互补,那么这个四边形的四个顶点______;如果四边形的一个外角等于它的内角的对角,那么这个四边形的四个顶点_________.7.切线的性质定理:圆的切线垂直于经过切点的__________.推论:经过圆心且垂直于切线的直线必经过_______;经过切点且垂直于切线的直线必经过______.切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的________.8.相交弦定理:圆内两条相交弦,_____________________的积相等.割线定理:从圆外一点引圆的两条割线,_____________的两条线段长的积相等.切割线定理:从圆外一点引圆的切线和割线,切线长是__________的比例中项.切线长定理:从圆外一点引圆的两条切线,它们的切线长____;

圆心和这点的连线平分_____的夹角.

第五篇:几何证明

龙文教育浦东分校学生个性化教案

学生:钱寒松教师:周亚新时间:2010-11-27

学生评价◇特别满意◇满意◇一般◇不满意

【教材研学】

一、命题

1.概念:对事情进行判断的句子叫做命题.

2.组成部分:命题由题设和结论两部分组成.每个命题都可以写成“如果„„,那么„„”的形式,“如果”的内容部分是题设,“那么”的内容部分是结论.

3.分类:命题分为真命题和假命题两种.判断正确的命题称为真命题,反之称为假命题.验证一个命题是真命题,要经过证明;验证一个命题是假命题,可以举出一个反例.

二、互逆命题

1.概念:在两个命题中,如果第一个命题的题设是第二个命题的结论,而第一个

命题的结论是第二个命题的题设,那么这两个命题叫做互逆命题,其中一个叫做原命题,则另一个就叫做它的逆命题.

2.说明:

(1)任何一个命题都有逆命题,它们互为逆命题,“互逆”是指两个命题之间的关系;

(2)把一个命题的题设和结论交换,就得到它的逆命题;

(3)原命题成立,它的逆命题不一定成立,反之亦然.

三、互逆定理

1.概念:如果一个定理的逆命题也是定理(即真命题),那么这两个定理叫做互逆定理,其中一个定理叫做另一个定理的逆定理.

2.说明:

(1)不是所有的定理都有逆定理,如“对顶角相等”的逆命题是“如果两个角相等,那么这两个角是对顶角”,这是一个假命题,所以“对顶角相等”没有逆定理.

(2)互逆定理和互逆命题的关系:互逆定理首先是互逆命题,是互逆命题中要求更为严谨的一类,即互逆命题包含互逆定理.

所以∠C=∠C’=90°,即△ABC是直角三角形.

【点石成金】

例1. 指出下列命题的题设和结论,并写出它们的逆命题.

(1)两直线平行,同旁内角互补;

(2)直角三角形的两个锐角互余;

(3)对顶角相等.

分析:解题的关键是找出原命题的题设和结论,然后再利用互逆命题的特征写出它们的逆命题.

(1)题设是“两条平行线被第三条直线所截”,结论是“同旁内角互补”;逆命题是“如果两条直线被第三条直线所截,同旁内角互补,那么这两条直线平行”.

(2)题设是“如果一个三角形是直角三角形”,结论是“那么这个三角形的两个锐角互余”;逆命题是“如果一个三角形中两个锐角互余,那么这个三角形是直角三角形”.

(3)题设是“如果两个角是对顶角”,结论是“那么这两个角相等”;逆命题是“如果有两个角相等,那么它们是课题:几何证明

对顶角”.

名师点金:当一个命题的逆命题不容易写时,可以先把这个命题写成“如果„„,那么„„”的形式,然后再把题设和结论倒过来即可.

例2.某同学写出命题“直角三角形斜边上的中线等于斜边的一半”的逆命题是“如果一个三角形斜边上的中线等于斜边的一半,那么这个三角形是直角三角形”,你认为他写得对吗?

分析:写出一个命题的逆命题,是把原命题的题设和结论互换,但有时需要适当的变通,例如“等腰三角形的两底角相等”的逆命题不能写成“两底角相等的三角形是等腰三角形”,因为我们还没有判断出是等腰三角形,所以不能有“底角”这个概念.

解:上面的写法不对.原命题条件是直角三角形,斜边是直角三角形的边的特有称呼,该同学写的逆命题的条件中提到了斜边,就已经承认了直角三角形,就不需要再得这个结论了.因此,逆命题应写成“如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形”.

名师点金:在写一个命题的逆命题时,千万要注意一些专用词的用法.

例3.如图,在△ABD和△ACE中,有下列四个等式:① AB=AC;②AD=AE;③ ∠1=∠2;④BD=CE.请你以其中三个等式作为题设,余下的作为结论,写出一个真命题(要求写出已知,求证及证明过程)

解:选①②③作为题设,④作为结论.

已知:如图19—4—103,AB=AC,AD=AE,∠1=∠2.

求证:BD=CE,证明:∵∠1=∠2,∴∠1+∠CAD=∠2+∠CAD.

即∠BAD=∠CAE.

在△BAD和△CAE中,AB=AC.∠BAD=∠CAE,AD=AE,∴△BAD≌△CAE(S.A.S.)∴BD=CE.

名师点金:本题考查的是证明三角形的全等,但条件较为开放.当然,此题的条件还可以任选其他三个.

【练习】

1.“两直线平行,内错角相等”的题设是____________________,结论是_________________________

2.判断:(1)任何一个命题都有逆命题.()

(2)任何一个定理都有逆定理.()

【升级演练】

一、基础巩固

1.下列语言是命题的是()

A.画两条相等的线段B.等于同一个角的两个角相等吗

C.延长线段AD到C,使OC=OAD.两直线平行,内错角相等

2.下列命题的逆命题是真命题的是()

A.直角都相等B.钝角都小于180。

龙文教育浦东分校个性化教案ABDEC.cn

C.如果x+y=0,那么x=y=0D.对顶角相等

3.下列说法中,正确的是()

A.一个定理的逆命题是正确的B.命题“如果x<0,y>0,那么xy<0”的逆命题是正确的C.任何命题都有逆命题

D.定理、公理都应经过证明后才能用

4.下列这些真命题中,其逆命题也真的是()

A.全等三角形的对应角相等

B.两个图形关于轴对称,则这两个图形是全等形

C.等边三角形是锐角三角形

D.直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半

5.证明一个命题是假命题的方法有__________.

6.将命题“所有直角都相等”改写成“如果„„那么„”的形式为___________。

7.举例说明“两个锐角的和是锐角”是假命题。

二、探究提高

8.下列说法中,正确的是()

A.每个命题不一定都有逆命题B.每个定理都有逆定理

c.真命题的逆命题仍是真命题D.假命题的逆命题未必是假命题

9.下列定理中,没有逆定理的是()

A.内错角相等,两直线平行B.直角三角形中两锐角互余

c.相反数的绝对值相等D.同位角相等,两直线平行

三、拓展延伸

10.下列命题中的真命题是()

A.锐角大于它的余角B.锐角大于它的补角

c.钝角大于它的补角D.锐角与钝角之和等于平角

11.已知下列命题:①相等的角是对顶角;②互补的角就是平角;③互补的两个角一定是一个锐角,另一个为钝角;④平行于同一条直线的两直线平行;⑤邻补角的平分线互相垂直.其中,正确命题的个数为()

A.0个B.1个C.2个D.3个

龙文教育浦东分校个性化教案

下载§5.6几何证明举例word格式文档
下载§5.6几何证明举例.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    几何证明

    几何证明1.如图,AD是∠EAC的平分线,AD∥BC,∠B=30 o,求∠EAD、∠DAC、∠C的度数2.已知∠BED=∠B+∠D,试说明AB与CD的位置关系3.如图,EB∥DC,∠C=∠E,请你说出∠A=∠ADE的理由。4.如......

    空间几何证明

    立体几何中平行、垂直关系证明的思路平行垂直的证明主要利用线面关系的转化: 线∥线线∥面面∥面性质判定线⊥线线⊥面面⊥面 线∥线线⊥面面∥面线面平行的判定: a∥b,b面,aa......

    几何证明定理

    几何证明定理一.直线与平面平行的(判定)1.判定定理.平面外一条直线如果平行于平面内的一条直线,那么这条直线与这个平面平行.2.应用:反证法(证明直线不平行于平面)二.平面与......

    浅谈几何证明

    西华师范大学文献信息检索课综合实习报告检索课题(中英文):浅谈几何证明 On the geometric proof 一、课题分析 几何是研究空间结构及性质的一门学学科。它是数学中最基本的研......

    几何证明测试题(★)

    第一章测试题1. 半径为1的圆中,长度为1的弦所对的圆周角度数为:2. ⊙O半径为5,弦AB=8,CD=6,且AB∥CD,则AB、CD间的距离是.3. 过⊙O内一点P,的最长弦是10,最短的弦是6,那么OP的长为___......

    几何证明计算题

    几何证明与综合应用1、 如图1,四边形ABCD是正方形,G是BC上任意一点(点G与B、C不重合),AE⊥DG于E,2、 CF∥AE交DG于F.(1)在图中找出一对全等三角形,并加以证明;(2)求证:AE=FC+EF.2、如图2,......

    2013几何证明

    2013几何证明1.(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))如图,在ABC中,C900,A600,AB20,过C作ABC的外接圆的切线CD,BDCD,BD与外接圆交于点E,则DE的长为__________......

    高中几何证明

    高中几何证明一、已知平行四边形ABCD,过ABC三点的圆O1,分别交AD.BD于E.F、过CDF三点的圆O2交AD于G。设圆O1.O2半径分别为R,r。1.求证AC^2=AG*AD2.AD:EG=R^2:r^2连接AC、GC。利......