初一几何证明题答案

时间:2019-05-15 07:59:21下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《初一几何证明题答案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《初一几何证明题答案》。

第一篇:初一几何证明题答案

初一几何证明题答案

图片发不上来,看参考资料里的1如图,AB⊥BC于B,EF⊥AC于G,DF⊥AC于D,BC=DF。求证:AC=EF。

2已知AC平分角BAD,CE垂直AB于E,CF垂直AD于F,且BC=CD

(1)求证:△BCE全等△DCF

3.如图所示,过三角形ABC的顶点A分别作两底角角B和角C的平分线的垂线,AD垂直于BD于D,AE垂直于CE于E,求证:ED||BC.4.已知,如图,pB、pC分别是△ABC的外角平分线,且相交于点p。

求证:点p在∠A的平分线上。

回答人的补充2010-07-1900:101.在三角形ABC中,角ABC为60度,AD、CE分别平分角BAC角ACB,试猜想,AC、AE、CD有怎么样的数量关系

2.把等边三角形每边三等分,经其向外长出一个边长为原来三分之一的小等边三角形,称为一次生长,如生长三次,得到的多边形面积是原三角形面积的几倍

求证:同一三角形的重心、垂心、三条边的中垂线的交点三点共线。(这条线叫欧拉线)求证:同一三角形的三边的中点、三垂线的垂足、各顶点到垂心的线段的中点这9点共圆。~~(这个圆叫九点圆)

3.证明:对于任意三角形,一定存在两边a、b,满足a比b大于等于1,小于2分之根5加

14.已知△ABC的三条高交于垂心O,其中AB=a,AC=b,∠BAC=α。请用只含a、b、α三个字母的式子表示AO的长(三个字母不一定全部用完,但一定不能用其它字母)。

5.设所求直线为y=kx+b(k,b为常数.k不等于0).则其必过x-y+2=0与x+2y-1=0的交点(-1,1).所以b=k+1,即所求直线为y=kx+k+1(1)过直线x-y+2=0与Y轴的交点(0,2)且垂直于x-y+2=0的直线为y=-x+2(2).直线(2)与直线(1)的交点为A,直线(2)与直线x+2y-1=0的交点为B,则AB的中点为(0,2),由线段中点公式可求k.6.在三角形ABC中,角ABC=60,点p是三角ABC内的一点,使得角ApB=角BpC=角CpA,且pA=8pC=6则pB=2p是矩形ABCD内一点,pA=3pB=4pC=5则pD=3三角形ABC是等腰直角三角形,角C=90O是三角形内一点,O点到三角形各边的距离都等于1,将三角形ABC饶点O顺时针旋转45度得三角形A1B1C1两三角形的公共部分为多边形KLMNpQ,1)证明:三角形AKL三角形BMN三角形CpQ都是等腰直角三角形2)求三角形ABC与三角形A1B1C1公共部分的面积。

已知三角形ABC,a,b,c分别为三边.求证:三角形三边的平方和大于等于16倍的根号3(即:a2+b2+c2大于等于16倍的根号3)

初一几何单元练习题

一.选择题

1.如果α和β是同旁内角,且α=55°,则β等于()

(A)55°(B)125°(C)55°或125°(D)无法确定

2.如图19-2-(2)

AB‖CD若∠2是∠1的2倍,则∠2等于()

(A)60°(B)90°(C)120°(D)150

3.如图19-2-(3)

∠1+∠2=180°,∠3=110°,则∠4度数()

(A)等于∠1(B)110°

(C)70°(D)不能确定

4.如图19-2-(3)

∠1+∠2=180°,∠3=110°,则∠1的度数是()

(A)70°(B)110°

(C)180°-∠2(D)以上都不对

5.如图19-2(5),已知∠1=∠2,若要使∠3=∠4,则需()

(A)∠1=∠2(B)∠2=∠

3(C)∠1=∠4(D)AB‖CD

6.如图19-2-(6),AB‖CD,∠1=∠B,∠2=∠D,则∠BED为()

(A)锐角(B)直角

(C)钝角(D)无法确定

7.若两个角的一边在同一条直线上,另一边相互平行,那么这两个角的关系是()

(A)相等(B)互补(C)相等且互补(D)相等或互补

8.如图19-2-(8)AB‖CD,∠α=()

(A)50°(B)80°(C)85°

答案:1.D2.C3.C4.C5.D6.B7.D8.B

初一几何第二学期期末试题

1.两个角的和与这两角的差互补,则这两个角()

A.一个是锐角,一个是钝角B.都是钝角

C.都是直角D.必有一个直角

2.如果∠1和∠2是邻补角,且∠1>∠2,那么∠2的余角是()

3.下列说法正确的是()

A.一条直线的垂线有且只有一条

B.过射线端点与射线垂直的直线只有一条

C.如果两个角互为补角,那么这两个角一定是邻补角

D.过直线外和直线上的两个已知点,做已知直线的垂线

4.在同一平面内,两条不重合直线的位置关系可能有()

A.平行或相交B.垂直或平行

C.垂直或相交D.平行、垂直或相交

5.不相邻的两个直角,如果它们有一条公共边,那么另一边互相()

A.平行B.垂直

C.在同一条直线上D.或平行、或垂直、或在同一条直线上

答案:1.D2.C3.B4.A5.A回答人的补充2010-07-1900:211.如图所示,一只老鼠沿着长方形逃跑,一只花猫同时从A点朝另一个方向沿着长方形去捕捉,结果在距B点30cm的C点处捉住了老鼠。已知老鼠与猫的速度之比为11:14,求长方形的周长。设周长为X.则A到B的距离为X/2;X/2-30:X/2+30=11:14X=500cm如图,梯形ABCD中,AD平行BC,∠A=2∠C,AD=10cm,BC=25cm,求AB的长解:过点A作AB‖DE。∵AB‖DE,AD‖BC∴四边形ADEB是平信四边形∴AB=DE,AD=BE∵∠DEB是三角形DEC的外角∴∠DEB=∠CDE+∠C∵四边形ADEB是平信四边形∴∠A=∠DEB又∵∠A=2∠C,∠DEB=∠CDE+∠C∴∠CDE+∠C∴DE=CE∵AD=10,BC=25,AD=BE∴CE=15=DE=AB如图:等腰三角形ABCD中,AD平行BC,BD⊥DC,且∠1=∠2,梯形的周长为30CM,求AB、BC的长。因为等腰梯形ABCD,所以角ABC=角C,AB=CD,AD//BC所以角ADB=角2,又角1=角2,所以角1=角2=角ADB,而角ABC=角C=角1+角2且角2=角ADB所以角ADB+角C=90度,所以有角1+角2+角ADB=90度所以角2=30度因此BC=2CD=2AB所以周长为5AB=30所以AB=6,BC=12回答人的补充2010-07-0311:25如图:正方形ABCD的边长为4,G、F分别在DC、CB边上,DG=GC=2,CF=1.求证:∠1=∠2(要两种解法提示一种思路:连接并延长FG交AD的延长线于K)

1.连接并延长FG交AD的延长线于K∠KGD=∠FGC∠GDK=∠GCFBG=CG△CGF≌△DGKGF=GKAB=4BF=3AF=5AB=4+1=5AB=AFAG=AG△AGF≌△AGK∠1=∠

22.延长AC交BC延长线与E∠ADG=∠ECG∠AGD=∠EGCDG=GC△ADG≌△EGF∠1=∠EAD=CEAF=5EF=1+4=5∠2=∠E所以∠1=∠2如图,四边形ABCD是平行四边形,BE平行DF,分别交AC于E、F连接ED、BF求证∠1=∠2

答案:证三角形BFE全等三角形DEF。因为FE=EF,角BEF=90度=角DFE,DF=BE(全等三角形的对应高相等)。所以三角形BFE全等三角形DEF。所以∠1等于∠2(全等三角形对应角相等)

就给这么多吧~~N累~!回答人的补充2010-07-1900:341已知ΔABC,AD是BC边上的中线。E在AB边上,ED平分∠ADB。F在AC边上,FD平分∠ADC。求证:BE+CF>EF。

2已知ΔABC,BD是AC边上的高,CE是AB边上的高。F在BD上,BF=AC。G在CE延长线上,CG=AB。求证:AG=AF,AG⊥AF。

3已知ΔABC,AD是BC边上的高,AD=BD,CE是AB边上的高。AD交CE于H,连接BH。求证:BH=AC,BH⊥AC。

4已知ΔABC,AD是BC边上的中线,AB=2,AC=4,求AD的取值范围。

5已知ΔABC,AB>AC,AD是角平分线,p是AD上任意一点。求证:AB-AC>pB-pC。

6已知ΔABC,AB>AC,AE是外角平分线,p是AE上任意一点。求证:pB+pC>AB+AC。

7已知ΔABC,AB>AC,AD是角平分线。求证:BD>DC。

8已知ΔABD是直角三角形,AB=AD。ΔACE是直角三角形,AC=AE。连接CD,BE。求证:CD=BE,CD⊥BE。

9已知ΔABC,D是AB中点,E是AC中点,连接DE。求证:DE‖BC,2DE=BC。

10已知ΔABC是直角三角形,AB=AC。过A作直线AN,BD⊥AN于D,CE⊥AN于E。求证:DE=BD-CE。

等形2

1已知四边形ABCD,AB=BC,AB⊥BC,DC⊥BC。E在BC边上,BE=CD。AE交BD于F。求证:AE⊥BD。

2已知ΔABC,AB>AC,BD是AC边上的中线,CE⊥BD于E,AF⊥BD延长线于F。求证:BE+BF=2BD。

3已知四边形ABCD,AB‖CD,E在BC上,AE平分∠BAD,DE平分∠ADC,若AB=2,CD=3,求AD。

4已知ΔABC是直角三角形,AC=BC,BE是角平分线,AF⊥BE延长线于F。求证:BE=2AF。

5已知ΔABC,∠ACB=90°,AD是角平分线,CE是AB边上的高,CE交AD于F,FG‖AB交BC于G。求证:CD=BG。

6已知ΔABC,∠ACB=90°,AD是角平分线,CE是AB边上的高,CE交AD于F,FG‖BC交AB于G。求证:AC=AG。

7已知四边形ABCD,AB‖CD,∠D=2∠B,若AD=m,DC=n,求AB。

8已知ΔABC,AC=BC,CD是角平分线,M为CD上一点,AM交BC于E,BM交AC于F。求证:ΔCME≌ΔCMF,AE=BF。

9已知ΔABC,AC=2AB,∠A=2∠C,求证:AB⊥BC。

10已知ΔABC,∠B=60°。AD,CE是角平分线,求证:AE+CD=AC

全等形4

1已知ΔABC是直角三角形,AB=AC,ΔADE是直角三角形,AD=AE,连接CD,BE,M是BE中点,求证:AM⊥CD。

2已知ΔABC,AD,BE是高,AD交BE于H,且BH=AC,求∠ABC。

3已知∠AOB,p为角平分线上一点,pC⊥OA于C,∠OAp+∠OBp=180°,求证:AO+BO=2CO。

4已知ΔABC是直角三角形,AB=AC,M是AC中点,AD⊥BM于D,延长AD交BC于E,连接EM,求证:∠AMB=∠EMC。

5已知ΔABC,AD是角平分线,DE⊥AB于E,DF⊥AC于F,求证:AD⊥EF。

6已知ΔABC,∠B=90°,AD是角平分线,DE⊥AC于E,F在AB上,BF=CE,求证:DF=DC。

7已知ΔABC,∠A与∠C的外角平分线交于p,连接pB,求证:pB平分∠B。

8已知ΔABC,到三边AB,BC,CA的距离相等的点有几个?

9已知四边形ABCD,AD‖BC,AD⊥DC,E为CD中点,连接AE,AE平分∠BAD,求证:AD+BC=AB。

10已知ΔABC,AD是角平分线,BE⊥AD于E,过E作AC的平行线,交AB于F,求证:∠FBE=∠FEB。

第二篇:初一几何证明题

初一几何证明题

1.如图,AD∥BC,∠B=∠D,求证:AB∥CD。

A

B

D

C

2.如图CD⊥AB,EF⊥AB,∠1=∠2,求证:∠AGD=∠ACB。

A

D

G

/

F

BEC

3.如图,已知∠1=∠2,∠C=∠CDO,求证:CD∥OP。

D

P

/

C

OB

4.如图∠1=∠2,求证:∠3=∠4。

A

/

B

C

D

5.已知∠A=∠E,FG∥DE,求证:∠CFG=∠B。

A

B

C F D

E

6.已知,如图,∠1=∠2,∠2+∠3=1800,求证:a∥b,c∥d。

cd

a

b

7.如图,AC∥DE,DC∥EF,CD平分∠BCA,求

A

证:EF平分∠BED。

D

F

B

E

C8、已知,如图,∠1=450,∠2=1450,∠3=450,∠4=1350,求证:l1∥l2,l3∥l5,l2∥l4。

l3

l11 l2

4l59、如图,∠A=2∠B,∠D=2∠C,求证:AB∥CD。

C

A

B10、如图,EF∥GH,AB、AD、CB、CD是∠EAC、∠FAC、∠GCA、∠HCA的平分线,求证:∠BAD=∠B=∠C=∠D。

A

E

F

B G

C

H11、已知,如图,B、E、C在同一直线上,∠A=∠DEC,∠D=∠BEA,∠A+∠D=900,求证:AE⊥DE,AB∥CD。

A

D

BE

第三篇:初一几何证明题

初一几何证明题

一、1)D是三角形ABC的BC边上的点且CD=AB,角ADB=角BAD,AE是三角形ABD的中线,求证AC=2AE。

(2)在直角三角形ABC中,角C=90度,BD是角B的平分线,交AC于D,CE垂直AB于E,交BD于O,过O作FG平行AB,交BC于F,交AC于G。求证CD=GA。

延长AE至F,使AE=EF。BE=ED,对顶角。证明ABE全等于DEF。=》AB=DF,角B=角EDF角ADB=角BAD=》AB=BD,CD=AB=》CD=DF。角ADE=BAD+B=ADB+EDF。AD=AD=》三角形ADF全等于ADC=》AC=AF=2AE。

题干中可能有笔误地方:第一题右边的E点应为C点,第二题求证的CD不可能等于GA,是否是求证CD=FA或CD=CO。如上猜测准确,证法如下:第一题证明:设F是AB边上中点,连接EF角ADB=角BAD,则三角形ABD为等腰三角形,AB=BD;∵AE是三角形ABD的中线,F是AB边上中点。∴EF为三角形ABD对应DA边的中位线,EF∥DA,则∠FED=∠ADC,且EF=1/2DA。∵∠FED=∠ADC,且EF=1/2DA,AF=1/2AB=1/2CD∴△AFE∽△CDA∴AE:CA=FE:DA=AF:CD=1:2AC=2AE得证第二题:证明:过D点作DH⊥AB交AB于H,连接OH,则∠DHB=90°;∵∠ACB=90°=∠DHB,且BD是角B的平分线,则∠DBC=∠DBH,直角△DBC与直角△DBH有公共边DB;∴△DBC≌△DBH,得∠CDB=∠HDB,CD=HD;∵DH⊥AB,CE⊥AB;∴DH∥CE,得∠HDB=∠COD=∠CDB,△CDO为等腰三角形,CD=CO=DH;四边形CDHO中CO与DH两边平行且相等,则四边形CDHO为平行四边形,HO∥CD且HO=CD∵GF∥AB,四边形AHOF中,AH∥OF,HO∥AF,则四边形AHOF为平行四边形,HO=FA∴CD=FA得证

有很多题

1.已知在三角形ABC中,BE,CF分别是角平分线,D是EF中点,若D到三角形三边BC,AB,AC的距离分别为x,y,z,求证:x=y+z

证明;过E点分别作AB,BC上的高交AB,BC于M,N点.过F点分别作AC,BC上的高交于p,Q点.根据角平分线上的点到角的2边距离相等可以知道FQ=Fp,EM=EN.过D点做BC上的高交BC于O点.过D点作AB上的高交AB于H点,过D点作AB上的高交AC于J点.则X=DO,Y=HY,Z=DJ.因为D是中点,角ANE=角AHD=90度.所以HD平行ME,ME=2HD

同理可证Fp=2DJ。

又因为FQ=Fp,EM=EN.FQ=2DJ,EN=2HD。

又因为角FQC,DOC,ENC都是90度,所以四边形FQNE是直角梯形,而D是中点,所以2DO=FQ+EN

又因为

FQ=2DJ,EN=2HD。所以DO=HD+JD。

因为X=DO,Y=HY,Z=DJ.所以x=y+z。

2.在正五边形ABCDE中,M、N分别是DE、EA上的点,BM与CN相交于点O,若∠BON=108°,请问结论BM=CN是否成立?若成立,请给予证明;若不成立,请说明理由。

当∠BON=108°时。BM=CN还成立

证明;如图5连结BD、CE.在△BCI)和△CDE中

∵BC=CD,∠BCD=∠CDE=108°,CD=DE

∴ΔBCD≌ΔCDE

∴BD=CE,∠BDC=∠CED,∠DBC=∠CEN

∵∠CDE=∠DEC=108°,∴∠BDM=∠CEN

∵∠OBC+∠ECD=108°,∠OCB+∠OCD=108°

∴∠MBC=∠NCD

又∵∠DBC=∠ECD=36°,∴∠DBM=∠ECN

∴ΔBDM≌ΔCNE∴BM=CN

3.三角形ABC中,AB=AC,角A=58°,AB的垂直平分线交AC与N,则角NBC=()

因为AB=AC,∠A=58°,所以∠B=61°,∠C=61°。

因为AB的垂直平分线交AC于N,设交AB于点D,一个角相等,两个边相等。所以,Rt△ADN全等于Rt△BDN

所以∠NBD=58°,所以∠NBC=61°-58°=3°

4.在正方形ABCD中,p,Q分别为BC,CD边上的点。且角pAQ=45°,求证:pQ=pB+DQ

延长CB到M,使BM=DQ,连接MA

∵MB=DQAB=AD∠ABM=∠D=RT∠

∴三角形AMB≌三角形AQD

∴AM=AQ∠MAB=∠DAQ

∴∠MAp=∠MAB+∠pAB=45度=∠pAQ

∵∠MAp=∠pAQ

AM=AQAp为公共边

∴三角形AMp≌三角形AQp

∴Mp=pQ

∴MB+pB=pQ

∴pQ=pB+DQ

5.正方形ABCD中,点M,N分别在AB,BC上,且BM=BN,Bp⊥MC于点p,求证Dp⊥Np

∵直角△BMp∽△CBp

∴pB/pC=MB/BC

∵MB=BN

正方形BC=DC

∴pB/pC=BN/CD

∵∠pBC=∠pCD

∴△pBN∽△pCD

∴∠BpN=∠CpD

∵Bp⊥MC

∴∠BpN+∠NpC=90°

∴∠CpD+∠NpC=90°

∴Dp⊥Np。

第四篇:初一几何证明题

初一《几何》复习题2002--6—29姓名:一.填空题

1.过一点

2.过一点,有且只有直线与这条直线平行;

3.两条直线相交的,它们的交点叫做;4.直线外一点与直线上各点连接的中,最短;A B 5.如果C[图1]6.如图1,AB、CD相交于O点,OE⊥CD,∠1和∠2叫做,∠1和∠3叫做,∠1和∠4叫做,∠2和∠3叫做;A7.如图2,AC⊥BC,CD⊥AB,B点到AC的距离是A点到BC的距离是,C点到AB的距离是D43

8.如图3,∠1=110°,∠2=75°,∠3=110°,∠4=;CB

二.判断题[图2][图3] 1.有一条公共边的两个角是邻补角;()2.不相交的两条直线叫做平行线;()

3.垂直于同一直线的两条直线平行;()4.命题都是正确的;()

5.命题都是由题设和结论两部分组成()6.一个角的邻补角有两个;()三.选择题

1.下列命题中是真命题的是()A、相等的角是对顶角B、如果a⊥b,a⊥c,那

么b⊥cC、互为补角的两个角一定是邻补角D、如果a∥b,a⊥c,那么b⊥c 2.下列语句中不是命题的是()A、过直线AB外一点C作AB的平行线CF B、任意两个奇数之和是偶数C、同旁内角互补,则两直线平行D、两个角互为

补角,与这两个角所在位置无关A 3.如图4,已知∠1=∠2,若要∠3=∠4,则需()DA、∠1=∠3B、∠2=∠3C、∠1=∠4D、AB∥CDC [图4] 4.将命题“同角的补角相等”改写成“如果„„,那么„„”的形式,正确的是()

A.如果同角的补角,那么相等B.如果两个角是同一个角,那么它们的补角相等 C.如果有一个角,那么它们的补角相等D.如果两个角是同一个角的补角,那么它们相等 四.解答下列各题 :P 1.如图5,能表示点到直线(或线段)的距离的线段QAC 有、、;ABF 2.如图6,直线AB、CD分别和EF相交,已知AB∥CD,OREBBA平分∠CBE,∠CBF=∠DFE,与∠D相等的角有∠[图5][图6]D∠、∠、∠、∠等五个。C 五.证明题E[图8]如图7,已知:BE平分∠ABC,∠1=∠3。求证:DE∥BCB[图7]CADB

六.填空题

1.过一点可以画条直线,过两点可以画 2.在图8中,共有条线段,共有个锐角,个直角,∠A的余角是; 3.AB=3.8cm,延长线段AB到C,使BC=1cm,再反向延长AB到D,使AD=3cm,E是AD中点,F是CD的中点,则EF=cm ;

4.35.56°=度 分秒;105°45′15″—48°37′26 ″ 5.如图9,三角形ABC中,D是BC上一点,E是AC上一点,AD与BE交于F点,则图中共有E 6.如图10,图中共有条射线,七.计算题BDC 1.互补的两个角的比是1:2,求这两个角各是多少度?[图9]

A2.互余的两角的差为15°,小角的补角比大角的补角大多少?E

BDC[图10] 1.如图11,AOB是一条直线,OD是∠BOC的平分线,若∠AOC=34°56′求∠BOD的度数;

DC 八.画图题。1.已知∠α,画出它的余角和补角,并表示出来AOB

[图11]北 2.已知∠α和∠β,画一个角,使它等于2∠α—∠β北偏西20

β 3.仿照图12,作出表示下列方向的射线:西东 ⑴北偏东43° ⑵南偏西37° ⑶东北方向 ⑷ 西北方向 九.证明题[图12]南 两直线平行,内错角的平分线平行(要求:画出图形,写出已知、求证,并进行证明)已知:求证:证明:

第五篇:初一几何证明题

三角形

1、已知ΔABC,AD是BC边上的中线。E在AB边上,ED平分∠ADB。F在AC边上,FD平分∠ADC。求证:BE+CF>EF。

1、已知ΔABC,BD是AC边上的高,CE是AB边上的高。F在BD上,BF=AC。G在CE延长线上,CG=AB。求证:AG=AF,AG⊥AF。

3、已知ΔABC,AD是BC边上的高,AD=BD,CE是AB边上的高。AD交CE于H,连接BH。求证:BH=AC,BH⊥AC。

4、已知ΔABC,AD是BC边上的中线,AB=2,AC=4,求AD的取值范围。

5、已知ΔABC,AB>AC,AD是角平分线,P是AD上任意一点。求证:AB-AC>PB-PC。

6、已知ΔABC,AB>AC,AE是外角平分线,P是AE上任意一点。求证:PB+PC>AB+AC。

7、已知ΔABC,AB>AC,AD是角平分线。求证:BD>DC。

8、已知ΔABD是直角三角形,AB=AD。ΔACE是直角三角形,AC=AE。连接CD,BE。求证:CD=BE,CD⊥BE。

9、已知ΔABC,D是AB中点,E是AC中点,连接DE。求证:DE‖BC,2DE=BC。

10、已知ΔABC是直角三角形,AB=AC。过A作直线AN,BD⊥AN于D,CE⊥AN于E。求证:DE=BD-CE。

四边形

1、已知四边形ABCD,AB=BC,AB⊥BC,DC⊥BC。E在BC边上,BE=CD。AE交BD于F。求证:AE⊥BD。

2、已知ΔABC,AB>AC,BD是AC边上的中线,CE⊥BD于E,AF⊥BD延长线于F。求证:BE+BF=2BD。

3、已知四边形ABCD,AB‖CD,E在BC上,AE平分∠BAD,DE平分∠ADC,若AB=2,CD=3,求AD。

4、已知ΔABC是直角三角形,AC=BC,BE是角平分线,AF⊥BE延长线于F。求证:BE=2AF。

5、已知ΔABC,∠ACB=90°,AD是角平分线,CE是AB边上的高,CE交AD于F,FG‖AB交BC于G。求证:CD=BG。

6、已知ΔABC,∠ACB=90°,AD是角平分线,CE是AB边上的高,CE交AD于F,FG‖BC交AB于G。求证:AC=AG。

7、已知四边形ABCD,AB‖CD,∠D=2∠B,若AD=m,DC=n,求AB。

8、已知ΔABC,AC=BC,CD是角平分线,M为CD上一点,AM交BC于E,BM交AC于F。求证:ΔCME≌ΔCMF,AE=BF。

9、已知ΔABC,AC=2AB,∠A=2∠C,求证:AB⊥BC。

10、已知ΔABC,∠B=60°。AD,CE是角平分线,求证:AE+CD=AC

全等形

1、知ΔABC是直角三角形,AB=AC,ΔADE是直角三角形,AD=AE,连接CD,BE,M是BE中点,求证:AM⊥CD。

2、已知ΔABC,AD,BE是高,AD交BE于H,且BH=AC,求∠ABC。

3、已知∠AOB,P为角平分线上一点,PC⊥OA于C,∠OAP+∠OBP=180°,求证:AO+BO=2CO。

4、已知ΔABC是直角三角形,AB=AC,M是AC中点,AD⊥BM于D,延长AD交BC于E,连接EM,求证:∠AMB=∠EMC。

5、已知ΔABC,AD是角平分线,DE⊥AB于E,DF⊥AC于F,求证:AD⊥EF。

6、已知ΔABC,∠B=90°,AD是角平分线,DE⊥AC于E,F在AB上,BF=CE,求证:DF=DC。

7、已知ΔABC,∠A与∠C的外角平分线交于P,连接PB,求证:PB平分∠B。

8、已知ΔABC,到三边AB,BC,CA的距离相等的点有几个?

9、已知四边形ABCD,AD‖BC,AD⊥DC,E为CD中点,连接AE,AE平分∠BAD,求证:AD+BC=AB。

10、已知ΔABC,AD是角平分线,BE⊥AD于E,过E作AC的平行线,交AB于F,求证:∠FBE=∠FEB。

下载初一几何证明题答案word格式文档
下载初一几何证明题答案.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    初一数学几何证明题

    初一数学几何证明题一般认为,要提升数学能力就是要多做,培养兴趣。事实上,兴趣不是培养出来的,而是每次考试都要考得好,产生信心,才能生出兴趣来。所以数学不好,问题不在自信,而是要......

    初一上册几何证明题

    初一上册几何证明题1.在三角形ABC中,∠ACB=90°,AC=BC,E是BC边上的一点,连接AE,过C作CF⊥AE于F,过B作BD⊥BC交CF的延长线于D,试说明:AE=CD。满意回答因为AE⊥CF,BD⊥BC所以∠AFC=90......

    初一几何证明题练习

    初一下学期几何证明题练习1、如图,∠B=∠C,AB∥EF,试说明:∠BGF=∠C。(6解:∵ ∠B=∠C∴ AB∥CD 又∵ AB∥EFD∴∥) ∴ ∠BGF=∠C2、如图,在△ABC中,CD⊥AB于D,FG⊥AB于G,ED//BC,试说明......

    初中几何基础证明题(初一)

    几何证明题(1) 1.如图,AD∥BC,∠B=∠D,求证:AB∥CD。 AD C 2.如图CD⊥AB,EF⊥AB,∠1=∠2,求证:∠AGD=∠ACB。A D / F 2BG BE 3. 已知∠1=∠2,∠1=∠3,求证:CD∥OB。 APC 3D /2 BO 4.......

    几何证明题

    几何证明题集(七年级下册)姓名:_________班级:_______一、互补”。ED二、 证明下列各题:1、如图,已知∠1=∠2,∠3=∠D,求证:DB//EC.E D 3ACB2、如图,已知AD//BC,∠1=∠B,求证:AB//DE.AD 1......

    如何做几何证明题(无答案)

    如何做几何证明题【知识精读】1. 几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面......

    初一几何证明题 幂的运算[大全]

    1.如图1,已知AB∥CD,∠1=∠2,求证:∠BEF=∠EFC.A图1C2B D【图2】2.如图2,AB∥CD, ∠3∶∠2=3∶1,求∠1的度数。【图3】3.如图3,C在AB的延长线上,CE⊥AF于E,交FB于D,若∠F=40°,∠C=20°,......

    初一下册几何证明题(优秀范文5篇)

    初一下册几何证明题1.已知在三角形ABC中,BE,CF分别是角平分线,D是EF中点,若D到三角形三边BC,AB,AC的距离分别为x,y,z,求证:x=y+z证明;过E点分别作AB,BC上的高交AB,BC于M,N点.过F......