第一篇:余弦定理学案2
高二数学必修五学案
姓名班级有梦就有希望编制:杜凤华
余弦定理 学案(2)
一.复习公式:
1.余弦定理:___________________________2.利用余弦定理可以解决哪类解三角形问题?
二、基本题型:
类型一:已知两边一角解三角形。
例1:在△ABC中,根据下列条件解三角形:
(1)a2,b22,C15.(2)a,b2,B45.类型二:已知三边及三边关系解三角形。
例2:在△ABC中,a:b:c=2:6:(31),求各角度数。
变式练习:在△ABC中,sinA:sinB:sinC=2:6:(1),求各角度数。
类型三:判断三角形的形状:
例3:在△ABC中,已知sinA=2sinBcosC,试判断△ABC的形状。
变式1:△ABC中,已知(a+b+c)(b+c-a)=3bc,且sinA=2sinBcosC,判断△ABC的形状.
变式2:△ABC中,已知2a=b+c,且sin2A=sinBsinC,判断△ABC的形状.
:
跟踪练习:
1.在△ABC中,sinA:sinB:sinC2:3:4,那么cosC等于()
A.
23B. 23C.13D.14
2.已知△ABC的三边满足1ab1bc3abc,则B等于()A.30
B. 45
C.60
D.120
3.在平行四边形ABCD中,B120,AB6,BC4则AC_________,BD_______
4.用余弦定理证明: 在△ABC中,(1)abcosCccosB(2)bccosAAcosC(3)cacosBbcosA
5.在△ABC中,已知2abc,sin2
AsinBsinC,试判断△ABC的形状.成功来自与勤奋和努力
第二篇:余弦定理学案
【总03】§1.2余弦定理第3课时
一、学习目标
1理解用向量的数量积证明余弦定理的方法。,2.掌握并熟记余弦定理
3.能运用余弦定理及其推论解三角形
二、学法指导
1.余弦定理揭示了任意三角形的边角关系,其证明的方法有向量法,解析法和几何法。
2.余弦定理适用的题型:
(1)已知三边求三角,用余弦定理,有解时只有一解
(2)已知两边和它们的夹角,求第三边和其他的角,用余弦定理必有一解 3.余弦定理适用于判断三角形的形状。
三、课前预习
(1)余弦定理:
a2____________________________b2____________________________ c2____________________________
(2)余弦定理的推论:
cosA____________________________cosB____________________________ cosC____________________________
(3)用余弦定理可以解决两类有关解三角形的问题 已知三边,求
已知和它们的,求第三边和其他两个角。
三、课堂探究
1.余弦定理的证明及理解:
2.例题讲解
例1在ABC中,(1)已知b3,c1,A600,求a;(2)已知a4,b5,c6,求A
例2 △ABC中,sinA∶sinB∶sinC=3∶5∶,求C
例3在ABC中,A、B、C所对的边长分别为a、b、c,设a、b、c满足条件b2c2bca2,求A
例题4在△ABC中,已知a=2,b=22,C=15°,求A。
四、巩固训练
(一)当堂练习
1.在ABC中,(1)已知A60,b4,c7,求a;(2)已知a7,b5,c3,求A
2.在ABC中,已知a2
b2
abc2,求C的大小.(二)课后作业
1. 在ABC中,(ac)(ac)b(bc),求 A
2.在ABC中,已知a7,b8,cosC13
14,求最大角的余弦值是
第三篇:余弦定理学案
1.1正弦定理和余弦定理
探究案
Ⅰ.质疑探究——质疑解惑、合作探究
探究一:课本中余弦定理是用()法证明的,也就是说,在△ABC中,已知BC=a,AC=b及边BC,AC的夹角C,则=(),所以BA2=()=(),即c=()
探究二:勾股定理指出了直角三角形中三边平方之间的关系,余弦定理则指出了一般三角
形中三边平方之间的关系,如何看这两个定理之间的关系?
【归纳总结】
1.熟悉余弦定理的(),注意(),(),()等。
2.余弦定理是()的推广,()是余弦定理的特例.3.变形:(),(),()。
3.余弦定理及其推论的基本作用为:
(1)
(2)
例1. 在△ABC中,已知a2,c62,B45,求b及A。
【规律方法总结】
1.当已知三角形的两边及其夹角三角形时,可选用()求解。
2.在解三角形时,如果()与()均可选用时,那么 求边时(),求角是最好()原因是()
例2.(1)在△ABC中,已知a42,b4,c2(62),解三角形。
(2)在△ABC中,已知a:b:c2::31,求△ABC的各角。
【拓展提升】 在△ABC中,已知sinA:sinB:sinC3:2:4,判断△ABC 的形状。
2例3.在ABC中,a、b、c分别是A,B,C的对边长。已知bac,且2
a2c2acbc,求A的大小及bsinB的值。c
课后作业
基础巩固-----------把简单的事情做好就叫不简单!
1.在△ABC中,已知a2,b2,c31,则A等于()
A.30B.135C.45D.120
2.在△ABC中,已知abcbc,则A为()
A.22222B.C.D.或 3336
33.若三条线段的长分别为5、6、7,则用这三条线段()
A.能组成直角三角形B.能组成锐角三角形C.能组成钝角三角形
D.不能组成三角形
4.已知△ABC中,a=6 ,b=3 ,C=2,c=
35.(2012,福建理)已知△ABC的三边长分别是2x,2x,22x(x>0),则其最大角的余弦值
6.(2012,北京理)在△ABC中,若a2,bc7,cosB
综合应用--------------挑战高手,我能行!
7.在不等边三角形ABC中,a是最大边,若acb,则A的取值范()
A.90A180B.45A90C.60A90 B.0A90
8.在△ABC中,已知a+b+c=2c(a+b),则角C=
9.若△ABC的内角A、B、C所对的边a、b、c满足(ab)c4且C=
值为
拓展探究题------------战胜自我,成就自我10.在△ABC中,已知a=2,b=2,(a+b+c)(b+c-a)=(22)bc,解三角形。
11.在△ABC中,角A,B,C的对边分别为a,b,c,tanC
(1)求cosC; 224442221,则b=4222,则ab的35CA,且ab9,求c.(2)若CB
2课后检测案
1.△ABC中,若AB5,AC3,BC7,则A 的大小为()
A.150 B.120C.60D.30
22.在△ABC中,若c
A.60°a2b2ab,则∠C=()C.150°D.120°B.90°
3.在△ABC中,若a=7,b=8,cosC=13/14,则最大角的余弦为()1111B.C.D. 5678
4.边长为5,7,8的三角形的最大角的余弦是().A.A.11111B.C.D.714147
ab,cosBcosA5.在ABC中,角A、B、C的对边分别为a、b、c,若
则ABC的形状一定是()
A.等腰三角形B.直角三角形
C.等腰三角形或直角三角形D.等腰直角三角形
6.已知ABC的内角A,B,C所对的边分别为a,b,c,且a2,b3,cosB则sinA 的值为. 4,512,13cosA7.已知△ABC的面积是30,内角A、B、C所对边分别为a、b、c,若cb1,则a的值是.8.在△ABC中,若(a+c-b)tanB = 3ac,则角B的值为。2229.在ABC中,若cosBb cosC2ac
(1)求角B的大小
(2)若bac4,求ABC的面积
10.在△ABC中,角A,B,C的对边分别为a,b,c,且bcosC3acosBccosB.(1)求cosB的值;
(2)若2,且b22,求a和c的值.
第四篇:余弦定理教学案
余弦定理数学教学案2
教学目的
1.使学生掌握余弦定理及其证明方法.
2.使学生初步掌握余弦定理的应用.
教学重点与难点
教学重点是余弦定理及其应用;
教学难点是用解析法证明余弦定理.
教学过程设计
一、复习
师:直角△ABC中有如下的边角关系(设∠C=90°):
(1)角的关系 A+B+C=180°.
A+B=90°.
(2)边的关系c2=a2+b2.
二、引入
师:在△ABC中,当∠C=90°时,有c2=a2+b2.若a,b边的长短不变,变换∠C的大小时,c2与a2+b2有什么关系呢?请同学们思考.
如图1,若∠C<90°时,由于AC与BC的长度不变,所以AB的长度变短,即c2<a2+b2.
如图2,若∠C>90°时,由于AC与BC的长度不变,所以AB的长度变长,即c2>a2+b2.
经过议论学生已得到当∠C≠90°时,c2≠a2+b2,那么c2与a2+b2到底相差多少呢?请同学们继续思考.
如图3,当∠C为锐角时,作BD⊥AC于D,BD把△ABC分成两个直角三角形:
在Rt△ABD中,AB2=AD2+BD2;
在Rt△BDC中,BD=BC·sinC=asinC,DC=BC·cosC=acosC.
所以,AB2=AD2+BD2化为
c2=(b-acosC)2+(asinC)2,c2=b2-2abcosC+a2cos2C+a2sin2C,c2=a2+b2-2abcosC.
我们可以看出∠C为锐角时,△ABC的三边a,b,c具有c2=a2+b2-2abcosC的关系.
从以上分析过程,我们对∠C是锐角的情况有了清楚认识.我们不仅要认识到,∠C为锐角时有c2=a2+b2-2abcosC,还要体会出怎样把一个斜三角形转化成两个直角三角形的.这种未知向已知的转化在数学中经常碰到.
下面请同学们自己动手推导结论.
如图4,当∠C为钝角时,作BD⊥AC,交AC的延长线于D.
△ACB是两个直角三角形之差.
在Rt△ABD中,AB2=AD2+BD2.
在Rt△BCD中,∠BCD=π-C.
BD=BC·sin(π-C),CD=BC· cos(π-C).
所以AB2=AD2+BD2化为
c2=(AC+CD)2+BD2
=[b+acos(π-C)]2+[asin(π-C)]2
=b2+2abcos(π-C)+a2cos2(π-C)+a2sin2(π-C)
=b2+2abcos(π-C)+a2.
因为cos(π-C)=-cosC,所以c2=b2+a2-2abcosC.
这里∠C为钝角,cosC为负值,-2abcosC为正值,所以b2+a2-2abcosC>a2+b2,即c2>a2+b2.
从以上我们可以看出,无论∠C是锐角还是钝角,△ABC的三边都满足
c2=a2+b2-2abcosC.
这就是余弦定理.我们轮换∠A,∠B,∠C的位置可以得到
a2=b2+c2-2bccosA. b2=c2+a2-2accosB.
三、证明余弦定理
师:在引入过程中,我们不仅找到了斜三角形的边角关系,而且还给出了证明,这个证明是依据分类讨论的方法,把斜三角形化归为两个直角三角形的和或差,再利用勾股定理和锐角三角函数证明的.这是证明余弦定理的一个好方法,但比较麻烦.现在我们已学完了三角函数,无论∠α是锐角、直角或钝角,我们都有统一的定义,借用三角函数和两定点间的距离来证明余弦定理,我们就可避开分类讨论.
我们仍就以∠C为主进行证明.
如图5,我们把顶点C置于原点,CA落在x轴的正半轴上,由于△ABC的AC=b,CB=a,AB=c,则A,B,C点的坐标分别为A(b,0),B(acosC,asinC),C(0,0).
请同学们分析B点坐标是怎样得来的.
生:∠ACB=∠C,CB为∠ACB的终边,B为CB上一点,设B的坐标为(x,师:回答很准确,A,B两点间的距离如何求?
生:|AB|2=(acosC-b)2+(asinC-0)=a2cos2C-2abcosC+b2+a2sin2C
=a2+b2-2abcosC,即c2=a2+b2-2abcosC.
师:大家请看,我们这里也导出了余弦定理,这个证明方法是解析法.这种方法以后还要详细学习.
余弦定理用语言可以这样叙述,三角形一边的平方等于另两边的平方和再减去这两边与夹角余弦的乘积的2倍.即:
a2=b2+c2-2bccosA. c2=a2+b2-2abcosC. b2=a2+c2-2accosB.
若用三边表示角,余弦定理可以写为
四、余弦定理的作用
(1)已知三角形的三条边长,可求出三个内角;
(2)已知三角形的两边及夹角,可求出第三边.
解 由余弦定理可知
Bc2=Ab2+Ac2-2AB×AC·cosA
所以BC=7.
以上两个小例子简单说明了余弦定理的作用.
五、余弦定理与勾股定理的关系、余弦定理与锐角三角函数的关系
在△ABC中,c2=a2+b2-2abcosC.若∠C=90°,则cosC=0,于是
c2=a2+b2-2ab·0=a2+b2.
说明勾股定理是余弦定理的特例,余弦定理是勾股定理的推广.
这与Rt△ABC中,∠C=90°的锐角三角函数一致,即直角三角形中的锐角三角函数是余弦定理的特例.
六、应用举例
例1 在△ABC中,求证c=bcosA+acosB.
师:请同学们先做几分钟.
生甲:如图6,作CD⊥AB于D.
在Rt△ACD中,AD=b·cosA;在Rt△CBD中,DB=a·cosB.而c=AD+DB,所以
c=bcosA+acosB.
师:这位学生的证法是否完备,请大家讨论.
生乙:他的证法有问题,因为作CD⊥AB时垂足D不一定落在AB上.若落在AB的延长线上时,c≠AD+DB,而c=AD-DB.
师:学生乙的问题提得好,我们如果把学生乙所说的情况补充上是否就完备了呢?
生丙:还不够.因为作CD⊥AB时,垂足D还可以落在B处.
师:其实垂足D有五种落法,如落在AB上;AB的延长线上;BA的延长线上;A点或B点处.我们要分这么多种情况证明未免有些太麻烦了.
请大家借用余弦定理证明.
生:因为 acosB+bcosA
所以 c=acosB+bcosA.
师:这种证法显然简单,它避开了分类讨论.你们知道为什么这种证法不用分类讨论吗?
生:因为余弦定理本身适用于各种三角形.
例2 三角形ABC中,AB=2,AC=3,BC=4,求△ABC的面积.
师:我们通常求三角形的面积要用公式
这个题目,我们应该如何下手呢?
生:可以用余弦定理由三边求出一个内角的余弦值,再用同角公式导出这个角的正弦后,最后代入三角形面积公式.
解 因为a=4,b=3,c=2,所以
由sin2A+cos2A=1,且A为△ABC内角,得
例3 在三角形ABC中,若CB=7,AC=8,AB=9,求AB边的中线长.
请同学们先设计解题方案.
生甲:我想在△ABC中,已知三边的长可求出cosB.在△BCD中,由BC=7,BD=4.5及cosB的值,再用一次余弦定理便可求出CD.
师:这个方案很好.请同学很快计算出结果.
解 设D为AB中点,连CD.
在△ACB中,由AC=8,BC=7,AB=9,得
生乙:我们在初中碰到中线时,经常延长中线,所以我想延长中线CD到E,使DE=CD,想在△BCE中解决.
已知BC=7,BE=AC=8,若再知道cos∠CBE,便可解决,但我不知怎样求cos∠CBE.
师:这个问题提得很有价值,请大家一起帮助学生乙解决这个难点.
(学生开始议论.)
生丙:连接AE,由于AD=DB,CD=DE,所以四边形ACBE为平行四边形,可得AC∥BE,∠CBE与∠ACB互补.我能利用余弦定理求出cos∠BCA,再利用互补关系解出cos∠CBE.
师:大家看看他讲得好不好.请大家用第二套方案解题.
解 延长CD至E,使DE=CD.
因为CD=DE,AD=DB,所以四边形ACBE是平行四边形.所以
BE=AC=8,∠ACB+∠CBE=180°.
在△ACB中,CB=7,AC=8,AB=9,由余弦定理可得
在△CBE中,这两种解法都是两次用到余弦定理,可见掌握余弦定理是十分必要的.
七、总结
本节课我们研究了三角形的一种边角关系,即余弦定理,它的证明我们可以用解析法.它的形式有两种,一种是用两边及夹角的余弦表示第三边,另一种是三边表示角.
余弦定理适用于各种三角形,当一个三角形的一个内角为90°时,余弦定理就自然化为勾股定理或锐角三角函数.
余弦定理的作用如同它的两种形式,一是已知两边及夹角解决第三边问题;另一个是已知三边解决三内角问题.注意在(0,π)范围内余弦值和角的一一对应性.若cos A>0,则A为锐角;若cosA=0,则A为直角;若cosA<0,则A为钝角.
另外本节课我们所涉及的内容有两处用到分类讨论的思想方法.请大家解决问题时要考虑全面.如果能回避分类讨论的,应尽可能回避,如用解析法证明余弦定理、用余弦定理证明例1等等.
八、作业
5.已知△ABC中,acosB=bcos A,请判断三角形的形状.
课堂教学设计说明
1.余弦定理是解三角形的重要依据,要给予足够重视.本内容安排两节课适宜.第一节,余弦定理的引出、证明和简单应用;第二节复习定理内容,加强定理的应用.
2.当已知两边及一边对角需要求第三边时,可利用方程的思想,引出含第三边为未知量的方程,间接利用余弦定理解决问题,此时应注意解的不唯一性.
第五篇:余弦定理导学案
1.1.2余弦定理导学案
一、学习聚焦
1.余弦定理揭示了任意三角形的边角关系,其证明的方法有向量法,解析法和几何法。
2.余弦定理适用的题型:
(1)已知三边求三角,用余弦定理,有解时只有一解
(2)已知两边和它们的夹角,求第三边和其他的角,用余弦定理必有一解
3.余弦定理适用于判断三角形的形状
二、目标设置
1.理解用几何画板验证余弦定理成立的过程
2.掌握并熟记余弦定理及其变形
3.能运用余弦定理及其推论解三角形
三、课前预习
1.余弦定理:三角形任何一边的平方等于 ________
222①即a=________,②即b=________,③即c=________,2.余弦定理的推论:
cosA=⑤________,cosB=⑥________,cosC=⑦________.四、课堂探究
1.余弦定理的证明过程及理解:证明涉及到了向量方法,暂时不要求,我们可以用数学软件几何画板对这一结论进行验证,以加深理解。
2.余弦定理适用的题型:
(1)已知三边求三角,用余弦定理,有解时只有一解
(2)已知两边和它们的夹角,求第三边和其他的角,用余弦定理必有一解
3.余弦定理适用于判断三角形的形状(怎么判断?在判断时有没有什么技巧?)
4.例题:(1)已知b3,c1,A600,求a;
(2)已知a4,b5,c6,求A
(3)用余弦定理证明:在ABC中,当C为锐角时,abc;当C为钝角时,abc 22222
2五、学法回顾
1.余弦定理的内容及其变形,余弦定理适用的题型,解题时的技巧
2.正弦定理与余弦定理在解三角形时的选用原则
六、达标练习
1.在ABC中,(1)已知A60,b4,c7,求a;
(2)已知a7,b5,c3,求A
2.在ABC中,已知ababc,求C的大小
222